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Problem 1: Classical Linear Chain

As a preliminary example for classical field theory we consider a system of N point masses M , which are ordered

in equilibrium equidistantly within a one-dimensional chain of lattice constant a. Neighboring masses are coupled

via elastic springs with a spring constant K. In order to analyze the longitudinal oscillations of this linear chain we

introduce the elongations q1(t), . . . , qN (t) of the point masses out of their equilibrium positions. As we consider the

linear chain as a model for an infinitely extended system, we assume periodic boundary conditions. By demanding

qN+m(t) = qm(t) (1)

for the linear chain and any integer m we obtain the topology of a closed ring.

a) Determine the Lagrange function L(q1, . . . , qN ; q̇1, . . . , q̇N ) of this system. Derive the underlying equations of

evolution for the respective point masses using the Hamilton principle. (2 points)

b) The possible oscillations of such a system are most efficiently analyzed by decomposing the elongations qn(t) with

respect to a suitably chosen set of linear independent basis functions ukn:

qn(t) =
∑
k

ak(t)ukn . (2)

Here the index k enumerates the set of basis functions. Due to the periodic boundary conditions (1) it is suggested

to consider (2) as a discrete Fourier transformation and to choose the basis functions ukn via

ukn =
1√
N
eikna . (3)

Show that both (2) and (3) fulfill the period boundary conditions (1) provided the index k is restricted via k =

2πl/(Na), where the integer l is given by

−N
2
< l ≤ +

N

2
. (4)

Show that the basis functions ukn fulfill both the orthonormality relation

N∑
n=1

uk∗n uk
′

n = δkk′ (5)

and the completeness relation ∑
k

uk∗n ukn′ = δnn′ . (6)

(3 points)

c) Due to (2) and (3) the equations of evolution for the elongations qn(t) decouple. Show that, consequently, the

expansion coefficients ak(t) in (2) fulfill the differential equation of a harmonic oscillator with frequency ωk:

äk(t) + ω2
k ak(t) = 0 . (7)



Determine the dispersion relation ωk. Show that the general solution of (7) for real elongations qn(t) is given by

ak(t) = bk e
−iωkt + b∗−k e

+iωkt , (8)

where bk and b∗k represent the respective amplitudes. (3 points)

d) Determine the momenta pn, which are canonical conjugate of the respective elongations qn, and derive the Hamilton

function H(p1, . . . , pN ; q1, . . . , qN ) of the linear chain. With the help of Eqs. (2), (3), and (8) show that both the

elongations qn(t) and the momenta pn(t) can be expressed in terms of the amplitudes bk and b∗k:(
qn(t)

pn(t)

)
=
∑
k

(
e−iωktukn eiωktuk∗n

−iωkM e−iωktukn iωkM eiωktuk∗n

) (
bk

b∗k

)
. (9)

Using the orthonormality relation (5) and the dispersion relation ωk the Hamilton function can be rewritten in terms

of the amplitudes bk and b∗k. Is the resulting Hamilton function time dependent? (3 points)

Problem 2: Quantum Mechanical Linear Chain

a) Going from the classical to the quantum mechanical treatment of the linear chain the classical observables qn(t)

and pn(t) become operators in the Heisenberg picture q̂n(t) and p̂n(t), for which we have to demand the canonical

equal-time commutation relations:

[q̂n(t), q̂n′(t)]− = [p̂n(t), p̂n′(t)]− = 0 , [q̂n(t), p̂n′(t)]− = i~ δnn′ . (10)

Determine the Hamilton operator Ĥ of the linear chain. Derive the Heisenberg evolution equations for the operators

q̂n(t) and p̂n(t).

(2 points)

b) For the quantum mechanical investigation of the linear chain it is useful to also expand the operators q̂n(t) and

p̂n(t) with respect to the basis functions ukn. In analogy with (9) we decompose(
q̂n(t)

p̂n(t)

)
=
∑
k

(
e−iωktukn eiωktuk∗n

−iωkM e−iωktukn iωkM eiωktuk∗n

) (
b̂k

b̂†k

)
, (11)

where the classical amplitudes bk and b∗k are substituted by their corresponding operators b̂k and b̂†k. Explain why

this decomposition guarantees that q̂n(t) and p̂n(t) are hermitian operators. Use the orthonormality relation in order

to reexpress the amplitude operators b̂k and b̂†k conversely in terms of the canonically conjugated operators q̂n(t) and

p̂n(t). Evaluate the commutator relations[
b̂k, b̂k′

]
−

=? ,
[
b̂†k, b̂

†
k′

]
−

=? ,
[
b̂k, b̂

†
k′

]
−

=? . (12)

Rescale the amplitude operators b̂k and b̂†k according to b̂k = αk B̂k and b̂†k = αk B̂
†
k such that the new operators B̂k

and B̂†k fulfill the same equal-time commutator relations as the ladder operators of independent harmonic oscillators.

(3 points)

c) By proceeding analogously to Problem 1d) reexpress the Hamilton operator Ĥ of the quantum mechanical linear

chain via the rescaled amplitude operators B̂k and B̂†k. Show that in this way you obtain a Hamilton operator for a

system of uncoupled harmonic oscillators. (3 points)

d) Define the ground state |0〉 of the linear chain. What is its expectation value for the energy? (1 point)

Drop the solutions in the post box on the 5th floor of building 46 or, in case of illness/quarantine,

send them via email to jkrauss@rhrk.uni-kl.de until May 3 at 14.00.


