Quantum Field Theory

Problem 1: Classical Linear Chain

As a preliminary example for classical field theory we consider a system of N point masses M, which are ordered in equilibrium equidistantly within a one-dimensional chain of lattice constant a. Neighboring masses are coupled via elastic springs with a spring constant K. In order to analyze the longitudinal oscillations of this linear chain we introduce the elongations $q_{1}(t), \ldots, q_{N}(t)$ of the point masses out of their equilibrium positions. As we consider the linear chain as a model for an infinitely extended system, we assume periodic boundary conditions. By demanding

$$
\begin{equation*}
q_{N+m}(t)=q_{m}(t) \tag{1}
\end{equation*}
$$

for the linear chain and any integer m we obtain the topology of a closed ring.
a) Determine the Lagrange function $L\left(q_{1}, \ldots, q_{N} ; \dot{q}_{1}, \ldots, \dot{q}_{N}\right)$ of this system. Derive the underlying equations of evolution for the respective point masses using the Hamilton principle.
b) The possible oscillations of such a system are most efficiently analyzed by decomposing the elongations $q_{n}(t)$ with respect to a suitably chosen set of linear independent basis functions u_{n}^{k} :

$$
\begin{equation*}
q_{n}(t)=\sum_{k} a_{k}(t) u_{n}^{k} . \tag{2}
\end{equation*}
$$

Here the index k enumerates the set of basis functions. Due to the periodic boundary conditions (1) it is suggested to consider (2) as a discrete Fourier transformation and to choose the basis functions u_{n}^{k} via

$$
\begin{equation*}
u_{n}^{k}=\frac{1}{\sqrt{N}} e^{i k n a} \tag{3}
\end{equation*}
$$

Show that both (2) and (3) fulfill the period boundary conditions (1) provided the index k is restricted via $k=$ $2 \pi l /(N a)$, where the integer l is given by

$$
\begin{equation*}
-\frac{N}{2}<l \leq+\frac{N}{2} . \tag{4}
\end{equation*}
$$

Show that the basis functions u_{n}^{k} fulfill both the orthonormality relation

$$
\begin{equation*}
\sum_{n=1}^{N} u_{n}^{k *} u_{n}^{k^{\prime}}=\delta_{k k^{\prime}} \tag{5}
\end{equation*}
$$

and the completeness relation

$$
\begin{equation*}
\sum_{k} u_{n}^{k *} u_{n^{\prime}}^{k}=\delta_{n n^{\prime}} \tag{6}
\end{equation*}
$$

c) Due to (2) and (3) the equations of evolution for the elongations $q_{n}(t)$ decouple. Show that, consequently, the expansion coefficients $a_{k}(t)$ in (2) fulfill the differential equation of a harmonic oscillator with frequency ω_{k} :

$$
\begin{equation*}
\ddot{a}_{k}(t)+\omega_{k}^{2} a_{k}(t)=0 . \tag{7}
\end{equation*}
$$

Determine the dispersion relation ω_{k}. Show that the general solution of (7) for real elongations $q_{n}(t)$ is given by

$$
\begin{equation*}
a_{k}(t)=b_{k} e^{-i \omega_{k} t}+b_{-k}^{*} e^{+i \omega_{k} t} \tag{8}
\end{equation*}
$$

where b_{k} and b_{k}^{*} represent the respective amplitudes.
d) Determine the momenta p_{n}, which are canonical conjugate of the respective elongations q_{n}, and derive the Hamilton function $H\left(p_{1}, \ldots, p_{N} ; q_{1}, \ldots, q_{N}\right)$ of the linear chain. With the help of Eqs. (2), (3), and (8) show that both the elongations $q_{n}(t)$ and the momenta $p_{n}(t)$ can be expressed in terms of the amplitudes b_{k} and b_{k}^{*} :

$$
\binom{q_{n}(t)}{p_{n}(t)}=\sum_{k}\left(\begin{array}{cc}
e^{-i \omega_{k} t} u_{n}^{k} & e^{i \omega_{k} t} u_{n}^{k *} \tag{9}\\
-i \omega_{k} M e^{-i \omega_{k} t} u_{n}^{k} & i \omega_{k} M e^{i \omega_{k} t} u_{n}^{k *}
\end{array}\right)\binom{b_{k}}{b_{k}^{*}} .
$$

Using the orthonormality relation (5) and the dispersion relation ω_{k} the Hamilton function can be rewritten in terms of the amplitudes b_{k} and b_{k}^{*}. Is the resulting Hamilton function time dependent?
(3 points)

Problem 2: Quantum Mechanical Linear Chain

a) Going from the classical to the quantum mechanical treatment of the linear chain the classical observables $q_{n}(t)$ and $p_{n}(t)$ become operators in the Heisenberg picture $\hat{q}_{n}(t)$ and $\hat{p}_{n}(t)$, for which we have to demand the canonical equal-time commutation relations:

$$
\begin{equation*}
\left[\hat{q}_{n}(t), \hat{q}_{n^{\prime}}(t)\right]_{-}=\left[\hat{p}_{n}(t), \hat{p}_{n^{\prime}}(t)\right]_{-}=0, \quad\left[\hat{q}_{n}(t), \hat{p}_{n^{\prime}}(t)\right]_{-}=i \hbar \delta_{n n^{\prime}} \tag{10}
\end{equation*}
$$

Determine the Hamilton operator \hat{H} of the linear chain. Derive the Heisenberg evolution equations for the operators $\hat{q}_{n}(t)$ and $\hat{p}_{n}(t)$.
b) For the quantum mechanical investigation of the linear chain it is useful to also expand the operators $\hat{q}_{n}(t)$ and $\hat{p}_{n}(t)$ with respect to the basis functions u_{n}^{k}. In analogy with (9) we decompose

$$
\binom{\hat{q}_{n}(t)}{\hat{p}_{n}(t)}=\sum_{k}\left(\begin{array}{cc}
e^{-i \omega_{k} t} u_{n}^{k} & e^{i \omega_{k} t} u_{n}^{k *} \tag{11}\\
-i \omega_{k} M e^{-i \omega_{k} t} u_{n}^{k} & i \omega_{k} M e^{i \omega_{k} t} u_{n}^{k *}
\end{array}\right)\binom{\hat{b}_{k}}{\hat{b}_{k}^{\dagger}}
$$

where the classical amplitudes b_{k} and b_{k}^{*} are substituted by their corresponding operators \hat{b}_{k} and \hat{b}_{k}^{\dagger}. Explain why this decomposition guarantees that $\hat{q}_{n}(t)$ and $\hat{p}_{n}(t)$ are hermitian operators. Use the orthonormality relation in order to reexpress the amplitude operators \hat{b}_{k} and \hat{b}_{k}^{\dagger} conversely in terms of the canonically conjugated operators $\hat{q}_{n}(t)$ and $\hat{p}_{n}(t)$. Evaluate the commutator relations

$$
\begin{equation*}
\left[\hat{b}_{k}, \hat{b}_{k^{\prime}}\right]_{-}=?, \quad\left[\hat{b}_{k}^{\dagger}, \hat{b}_{k^{\prime}}^{\dagger}\right]_{-}=?, \quad\left[\hat{b}_{k}, \hat{b}_{k^{\prime}}^{\dagger}\right]_{-}=? \tag{12}
\end{equation*}
$$

Rescale the amplitude operators \hat{b}_{k} and \hat{b}_{k}^{\dagger} according to $\hat{b}_{k}=\alpha_{k} \hat{B}_{k}$ and $\hat{b}_{k}^{\dagger}=\alpha_{k} \hat{B}_{k}^{\dagger}$ such that the new operators \hat{B}_{k} and \hat{B}_{k}^{\dagger} fulfill the same equal-time commutator relations as the ladder operators of independent harmonic oscillators.
(3 points)
c) By proceeding analogously to Problem 1d) reexpress the Hamilton operator \hat{H} of the quantum mechanical linear chain via the rescaled amplitude operators \hat{B}_{k} and \hat{B}_{k}^{\dagger}. Show that in this way you obtain a Hamilton operator for a system of uncoupled harmonic oscillators.
d) Define the ground state $|0\rangle$ of the linear chain. What is its expectation value for the energy?

Drop the solutions in the post box on the 5 th floor of building 46 or, in case of illness/quarantine, send them via email to jkrauss@rhrk.uni-kl.de until May 3 at 14.00.

