Quantum Field Theory

Problem 21: Electron-Proton Scattering

Consider a scattering process where an electron and a proton in the initial state

$$
\begin{equation*}
|i\rangle=\left|\mathbf{p}_{i}, s_{i} ; \mathbf{P}_{i}, S_{i}\right\rangle \tag{1}
\end{equation*}
$$

go over into an electron and a proton in the final state

$$
\begin{equation*}
|f\rangle=\left|\mathbf{p}_{f}, s_{f} ; \mathbf{P}_{f}, S_{f}\right\rangle \tag{2}
\end{equation*}
$$

The corresponding scattering operator \hat{S} is given with the time ordering operator \hat{T} via

$$
\begin{equation*}
\hat{S}=\hat{T}\left\{e^{-i \hat{H}_{I} / \hbar}\right\} \tag{3}
\end{equation*}
$$

where Hamiltonian operator in the interaction picture

$$
\begin{equation*}
\hat{H}_{I}=\frac{e}{c} \int d^{4} x \hat{A}_{\mu}(x)\left\{\hat{j}_{e}^{\mu}(x)-\hat{j}_{p}^{\mu}(x)\right\} \tag{4}
\end{equation*}
$$

contains the normal ordered current density operators

$$
\begin{equation*}
\hat{j}_{e}^{\mu}=c: \hat{\bar{\psi}}_{e}(x) \gamma^{\mu} \hat{\psi}_{e}(x):, \quad \hat{j}_{p}^{\mu}=c: \hat{\bar{\psi}}_{p}(x) \gamma^{\mu} \hat{\psi}_{p}(x): \tag{5}
\end{equation*}
$$

a) Show that the scattering matrix $S_{f i}=\langle f| \hat{S}|i\rangle$ in lowest order is given by

$$
\begin{equation*}
S_{f i}=\frac{e^{2}}{\hbar^{2} c^{2}} \int d^{4} x \int d^{4} y\langle 0| \hat{T}\left\{\hat{A}_{\mu}(x) \hat{A}_{\nu}(y)\right\}|0\rangle\left\langle\mathbf{p}_{f}, s_{f}\right| \hat{j}_{e}^{\mu}(x)\left|\mathbf{p}_{i}, s_{i}\right\rangle\left\langle\mathbf{P}_{f}, S_{f}\right| \hat{j}_{p}^{\nu}(y)\left|\mathbf{P}_{i}, S_{i}\right\rangle . \tag{6}
\end{equation*}
$$

b) Insert the Fourier decomposition of both the photon propagator

$$
\begin{equation*}
\langle 0| \hat{T}\left\{\hat{A}_{\mu}(x) \hat{A}_{\nu}(y)\right\}|0\rangle=\frac{i \hbar}{c \epsilon_{0}} \int \frac{d^{4} k}{(2 \pi)^{4}} e^{-i k \cdot(x-y)} \frac{-g_{\mu \nu}}{k^{2}+i \epsilon} \tag{7}
\end{equation*}
$$

and the field operators

$$
\begin{gather*}
\hat{\psi}_{e}(x)=\sum_{\mathbf{p}, s} \sqrt{\frac{m c^{2}}{V e_{\mathbf{p}}}}\left\{e^{-i p \cdot x / \hbar} u(\mathbf{p}, s) \hat{a}_{\mathbf{p}, s}+e^{i p \cdot x / \hbar} v(\mathbf{p}, s) \hat{b}_{\mathbf{p}, s}^{\dagger}\right\} \tag{8}\\
\hat{\psi}_{p}(x)=\sum_{\mathbf{P}, S} \sqrt{\frac{M c^{2}}{V E_{\mathbf{P}}}}\left\{e^{-i P \cdot x / \hbar} u(\mathbf{P}, S) \hat{a}_{\mathbf{P}, S}+e^{i P \cdot x / \hbar} v(\mathbf{P}, S) \hat{b}_{\mathbf{P}, S}^{\dagger}\right\} \tag{9}
\end{gather*}
$$

in (6) with the respective relativistic dispersion relations $e_{\mathbf{p}}=\sqrt{\mathbf{p}^{2} c^{2}+m^{2} c^{4}}$ and $E_{\mathbf{P}}=$ $\sqrt{\mathbf{P}^{2} c^{2}+M^{2} c^{4}}$. Show that the scattering matrix results in

$$
\begin{align*}
& S_{f i}=\frac{e^{2} \hbar}{\epsilon_{0} c}(2 \pi \hbar)^{4} \delta\left(p_{f}+P_{f}-p_{i}-P_{i}\right) \sqrt{\frac{m c^{2}}{V e_{\mathbf{p}_{i}}}} \sqrt{\frac{m c^{2}}{V e_{\mathbf{p}_{f}}}} \sqrt{\frac{M c^{2}}{V E_{\mathbf{P}_{i}}}} \sqrt{\frac{M c^{2}}{V E_{\mathbf{P}_{f}}}} \\
& \times \bar{u}\left(\mathbf{p}_{f}, s_{f}\right) \gamma^{\mu} u\left(\mathbf{p}_{i}, s_{i}\right) \frac{-i g_{\mu \nu}}{\left(p_{f}-p_{i}\right)^{2}+i \epsilon} \bar{u}\left(\mathbf{P}_{f}, S_{f}\right) \gamma^{\nu} u\left(\mathbf{P}_{i}, S_{i}\right) . \tag{10}
\end{align*}
$$

Interpret (10) via Feynman diagrams.
c) Justify why the cross section of this scattering process is defined according to

$$
\begin{equation*}
\sigma=\frac{1}{4} \sum_{s_{i}, s_{f}, S_{i}, S_{f}} \int d^{3} p_{f} \frac{V}{(2 \pi \hbar)^{3}} \int d^{3} P_{f} \frac{V}{(2 \pi \hbar)^{3}} \frac{\left|S_{f i}\right|^{2}}{J T} \tag{11}
\end{equation*}
$$

Insert (10) into (11) and apply the heuristic rule (see lecture)

$$
\begin{equation*}
\delta\left(p_{f}+P_{f}-p_{i}-P_{i}\right)^{2}=\frac{V T c}{(2 \pi \hbar)^{4}} \delta\left(p_{f}+P_{f}-p_{i}-P_{i}\right) . \tag{12}
\end{equation*}
$$

Show that the cross section can then be rewritten as

$$
\begin{equation*}
\sigma=\int d^{3} p_{f} \int d^{3} P_{f} \frac{e^{4}\left(m c^{2}\right)^{2}\left(M c^{2}\right)^{2} M_{f i}}{16 \pi^{2} \epsilon_{0}^{2} c V J e_{\mathbf{p}_{i}} e_{\mathbf{p}_{f}} E_{\mathbf{P}_{i}} E_{\mathbf{P}_{f}}\left(p_{f}-p_{i}\right)^{4}} \delta\left(p_{f}+P_{f}-p_{i}-P_{i}\right) \tag{13}
\end{equation*}
$$

and determine the expression for the spinor contribution $M_{f i}$.
(1 point)
d) The expresion for $M_{f i}$ contains terms of the form ,,adjoint spinor \cdot matrix \cdot spinor". As it represents a complex number, its complex conjugate coincides with its adjoint. Considering the hermiticity of γ^{0} and the anti-hermiticity of γ^{i} prove the identity:

$$
\begin{equation*}
\left\{\bar{u}\left(\mathbf{p}_{f}, s_{f}\right) \gamma^{\mu} u\left(\mathbf{p}_{i}, s_{i}\right)\right\}^{*}=\bar{u}\left(\mathbf{p}_{i}, s_{i}\right) \gamma^{\mu} u\left(\mathbf{p}_{f}, s_{f}\right) . \tag{14}
\end{equation*}
$$

(1 point)
e) For both four-spinors

$$
\begin{equation*}
u\left(\mathbf{p}_{i}, s_{i}\right)=\frac{1}{\sqrt{2}}\binom{\sqrt{\frac{p_{i} \sigma}{m c}}}{\sqrt{\frac{p_{i} \tilde{\sigma}}{m c}}} \chi\left(s_{i}\right), \quad \chi\left(+\frac{1}{2}\right)=\binom{1}{0}, \quad \chi\left(-\frac{1}{2}\right)=\binom{0}{1} \tag{15}
\end{equation*}
$$

prove the property

$$
\begin{equation*}
\sum_{s_{i}= \pm 1 / 2} u\left(\mathbf{p}_{i}, s_{i}\right) \bar{u}\left(\mathbf{p}_{i}, s_{i}\right)=\frac{\not p_{i}+m c}{2 m c} \tag{16}
\end{equation*}
$$

Show that all summations with respect to the spin variables $s_{i}, s_{f}, S_{i}, S_{f}$ in $M_{f i}$ can be explicitly performed with the help of (16), so that $M_{f i}$ is of the form

$$
\begin{equation*}
M_{f i}=\frac{1}{16(m c)^{2}(M c)^{2}} \operatorname{Tr}\left\{\left(\not p_{f}+m c\right) \gamma^{\mu}\left(\not p_{i}+m c\right) \gamma^{\nu}\right\} \cdot \operatorname{Tr}\left\{\left(\not P_{f}+M c\right) \gamma_{\mu}\left(\not P_{i}+M c\right) \gamma_{\nu}\right\} \tag{17}
\end{equation*}
$$

(3 points)
f) Determine the traces in (17) with the methods of Problem 19 and show

$$
\begin{equation*}
M_{f i}=\frac{2\left[p_{f} \cdot P_{f} p_{i} \cdot P_{i}+p_{f} \cdot P_{i} p_{i} \cdot P_{f}-(m c)^{2} P_{f} \cdot P_{i}-(M c)^{2} p_{f} \cdot p_{i}+2(m c)^{2}(M c)^{2}\right]}{(m c)^{2}(M c)^{2}} . \tag{18}
\end{equation*}
$$

(2 points)
g) Go now into a reference system where the incoming proton rests:

$$
\begin{equation*}
E_{\mathbf{P}_{i}}=M c^{2}, \quad \mathbf{P}_{i}=\mathbf{0} \tag{19}
\end{equation*}
$$

In the reference system the number of incoming particles per time and area is given by $J=\left|\vec{j}_{e}\right|$ with $j_{e}^{k}=\langle i| \hat{j}_{e}^{k}|i\rangle$. With the help of (1), (5), (8), (15) and (20) show that the current density then reads

$$
\begin{equation*}
J=\frac{\left|\mathbf{p}_{i}\right| c^{2}}{V e_{\mathbf{p}_{i}}} \tag{20}
\end{equation*}
$$

Note: Use the identities from the lecture

$$
\begin{align*}
& \sqrt{\frac{p_{i} \sigma}{m c}} \tilde{\sigma}^{\mu} \sqrt{\frac{p_{i} \sigma}{m c}}=\Lambda_{\nu}^{\mu}\left(\mathbf{p}_{i}\right) \tilde{\sigma}^{\nu}, \tag{21}\\
& \sqrt{\frac{p_{i} \tilde{\sigma}}{m c}} \sigma^{\mu} \sqrt{\frac{p_{i} \tilde{\sigma}}{m c}}=\Lambda_{\nu}^{\mu}\left(\mathbf{p}_{i}\right) \sigma^{\nu} . \tag{22}
\end{align*}
$$

h) Determine the cross section from (11), (18) - (20) by nelecting the proton recoil. This approximation follows from performing the formal limit $M \rightarrow \infty$ so that you have, for instance: $E_{\mathbf{P}_{f}} \approx M c^{2}$. With this approximation show that you obtain the Mott cross section

$$
\begin{align*}
& \left(\frac{d \sigma}{d \Omega_{f}}\right)_{\text {Mott }}=\left(\frac{d \sigma}{d \Omega_{f}}\right)_{\text {Ruth }} \frac{1-\beta^{2} \sin ^{2} \theta / 2}{1-\beta^{2}} \tag{23}\\
& \left(\frac{d \sigma}{d \Omega_{f}}\right)_{\text {Ruth }}=\frac{\alpha^{2} m^{2} \hbar^{2} c^{2}}{4\left|\mathbf{p}_{i}\right|^{4} \sin ^{4} \theta / 2} \tag{24}
\end{align*}
$$

Here the following notations were introduced: Ω_{f} stands for the solid angle, $\alpha=e^{2} /\left(4 \pi \epsilon_{0} \hbar c\right)$ represents the Sommerfeld fine structure constant, $\beta=\left|\mathbf{p}_{i}\right| c / e_{\mathbf{p}_{i}}$ denotes the dimensionless velocity, and θ abbreviates the angle between \mathbf{p}_{i} and \mathbf{p}_{f}.
(4 points)

Drop the solutions in the post box on the 5 th floor of building 46 or, in case of illness/quarantine, send them via email to jkrauss@rhrk.uni-kl.de until July 19 at 14.00 .

