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Problem 9: Schrödinger Field Theory

Here you work out a field-theoretic description of the Schrödinger theory. The underlying

action A is considered to be a functional of both Schrödinger fields ψ∗(x, t) and ψ(x, t). It

is defined as a temporal integral over a Lagrange function L according to

A =

∫
dt L

[
ψ∗(•, t), ∂ψ

∗(•, t)
∂t

;ψ(•, t), ∂ψ(•, t)
∂t

]
(1)

and the Lagrange function L represents a spatial integral over the Lagrange density L:

L =

∫
d3xL

(
ψ∗(x, t),∇ψ∗(x, t),

∂ψ∗(x, t)

∂t
;ψ(x, t),∇ψ(x, t),

∂ψ(x, t)

∂t

)
. (2)

Furthermore, the Lagrange density of the Schrödinger field reads

L = i~ψ∗(x, t)
∂ψ(x, t)

∂t
− ~2

2M
∇ψ∗(x, t) · ∇ψ(x, t)− V (x)ψ∗(x, t)ψ(x, t) . (3)

a) Formulate the Hamilton principle of extremizing the action with respect to the

Schrödinger fields ψ∗(x, t) and ψ(x, t) and derive with this the corresponding Euler-Lagrange

equation

∂L
∂ψ∗(x, t)

−∇ ∂L
∇ψ∗(x, t)

− ∂

∂t

∂L

∂
∂ψ∗(x, t)

∂t

= 0 , (4)

∂L
∂ψ(x, t)

−∇ ∂L
∇ψ(x, t)

− ∂

∂t

∂L

∂
∂ψ(x, t)

∂t

= 0 . (5)

(4 points)

b) Evaluate the Euler-Lagrange equations (4), (5) for the Lagrange density (3). What do

you get? (2 points)

c) Now we go over from the Lagrange to the Hamilton formulation of classical field theory.

Determine to this end at first the momenta fields π∗(x, t), π(x, t), which are canonically

conjugated to the Schödinger fields ψ∗(x, t), ψ(x, t):

π∗(x, t) =
δL

δ
∂ψ∗(x, t)

∂t

, π(x, t) =
δL

δ
∂ψ(x, t)

∂t

. (6)

(2 points)



d) Calculate the Hamilton function follows via a Legendre transformation from the Lagrange

function:

H =

∫
d3x

{
π∗(x, t)

∂ψ∗(x, t)

∂t
+ π(x, t)

∂ψ(x, t)

∂t

}
− L . (7)

Show that it turns out to be of the form

H =

∫
d3xH (π(x, t),∇π(x, t);ψ(x, t),∇ψ(x, t)) . (8)

Which result do you get for the Hamilton density H? (3 points)

e) Consider now the action A as a functional of the fields π(x, t) and ψ(x, t), so that the

Hamilton principle reads

δA
δπ(x, t)

= 0 ,
δA

δψ(x, t)
= 0 . (9)

Determine from (9) the Hamilton equations of motion of classical field theory and show that

they are of the form

∂ψ(x, t)

∂t
=

∂H
∂π(x, t)

−∇ ∂H
∂∇π(x, t)

, (10)

∂π(x, t)

∂t
= − ∂H

∂ψ(x, t)
+ ∇ ∂H

∂∇ψ(x, t)
. (11)

Evaluate (10) and (11) for the Hamilton density H from d) and show that you recover with

this the equations of motion of the Schrödinger theory. (4 points)

f) The Poisson brackets of two functionals F [π(•, •);ψ(•, •)] and G [π(•, •);ψ(•, •)] is de-

fined via {
F,G

}
−

=

∫
d3x

(
δF

δψ(x, t)

δG

δπ(x, t)
− δF

δπ(x, t)

δG

δψ(x, t)

)
. (12)

Evaluate now the Poisson brackets with the Hamilton function{
ψ(x, t), H

}
−

=? ,
{
π(x, t), H

}
−

=? (13)

and interpret your result physically. Furthermore, determine the fundamental Poisson brack-

ets of the Schrödinger field ψ(x, t) and its canonical momentum field π(x, t) at equal times:{
ψ(x, t), ψ(x′, t)

}
−

=? ,
{
π(x, t), π(x′, t)

}
−

=? ,
{
ψ(x, t), π(x′, t)

}
−

=? . (14)

(4 points)



Problem 10: Canonical Field Quantization of Schrödinger Theory

You work out here the canonical field quantization in the Heisenberg picture. To this end

associate to the complex Schrödinger field ψ(x, t) and its canonically conjugated momentum

field π(x, t) corresponding second quantized field operators ψ̂(x, t) and π̂(x, t). Furthermore,

in close analogy to the quantum mechanics for a finite number of degrees of freedom, postu-

late that the Poisson bracket between two functionals F and G goes over into a commutator

between their corresponding second quantized operators F̂ and Ĝ as follows:{
F,G

}
−

=⇒ 1

i~

[
F̂ , Ĝ

]
−
. (15)

a) Starting from the fundamental Poisson brackets (14) determine the resulting equal-time

commutation relations[
ψ̂(x, t), ψ̂(x′, t)

]
−

=? ,
[
π̂(x, t), π̂(x′, t)

]
−

=? ,
[
ψ̂(x, t), π̂(x′, t)

]
−

=? . (16)

Show that you could deduce from 9c) that the momentum field operator π̂(x, t) is given by

the adjoint field operator ψ̂†(x, t) via

π̂(x, t) = i~ ψ̂†(x, t) . (17)

Which consequences does (16) have for the equal-time commutation relations between the

field operators ψ̂(x, t) and ψ̂†(x, t)? (3 points)

b) Deduce from 9e) and the postulate (15) the Heisenberg equations

i~
∂ψ̂(x, t)

∂t
=
[
ψ̂(x, t), Ĥ

]
−
, (18)

i~
∂π̂(x, t)

∂t
=
[
π̂(x, t), Ĥ

]
−
. (19)

Which explicit form does the Hamilton operator Ĥ have? Which result do you then get for

evaluating the Heisenberg equations? (4 points)

Drop the solutions in the post box on the 5th floor of building 46 or, in case of

illness/quarantine, send them via email to jkrauss@rhrk.uni-kl.de until May 24

at 14.00.


