Quantum Field Theory

Problem 11: Euler-Lagrange Equations

Assume that the action \mathcal{A} of a field theory is given by the Lagrange density \mathcal{L} via

$$
\begin{equation*}
\mathcal{A}=\frac{1}{c} \int_{\Omega} d^{4} x \mathcal{L}\left(\psi^{\sigma}\left(x^{\lambda}\right) ; \partial_{\mu} \psi^{\sigma}\left(x^{\lambda}\right)\right) \tag{1}
\end{equation*}
$$

a) The field-theoretic Hamilton principle states that the action is extremized with the help of the functional derivative

$$
\begin{equation*}
\frac{\delta \mathcal{A}}{\delta \psi^{\sigma}\left(x^{\lambda}\right)}=0 \tag{2}
\end{equation*}
$$

Derive with this the Euler-Lagrange equations:

$$
\begin{equation*}
\frac{\partial \mathcal{L}}{\partial \psi^{\sigma}\left(x^{\lambda}\right)}-\partial_{\mu} \frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \psi^{\sigma}\left(x^{\lambda}\right)\right)}=0 \tag{3}
\end{equation*}
$$

(4 points)
b) The Lagrange density of the Maxwell field in vacuum reads

$$
\begin{equation*}
\mathcal{L}=\alpha F_{\mu \nu} F^{\mu \nu}, \quad F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu} \tag{4}
\end{equation*}
$$

Show that the corresponding Euler-Lagrange equations reduce to the Maxwell equations in the vacuum. (6 points)

Problem 12: Symmetrization of Energy-Momentum Tensor

a) Determine the canonical momentum tensor $\Theta^{\mu \nu}\left(x^{\lambda}\right)$ for the Maxwell field and show that it is neither symmetric nor gauge invariant.
b) Perform the Belifante construction for obtaining the symmetrized energy-momentum tensor $T^{\mu \nu}\left(x^{\lambda}\right)$ from the the canonical momentum tensor $\Theta^{\mu \nu}\left(x^{\lambda}\right)$ by the example of the Maxwell field. Determine the constant α such that energy density $u=c T^{00}$ reduces to the usual expression in SI units:

$$
\begin{equation*}
u=\frac{1}{2} \varepsilon_{0} \mathbf{E}^{2}+\frac{1}{2 \mu_{0}} \mathbf{B}^{2} \tag{5}
\end{equation*}
$$

Is the symmetric energy-momentum tensor of the Maxwell field gauge invariant?

Drop the solutions in the post box on the 5 th floor of building 46 or, in case of illness/quarantine, send them via email to jkrauss@rhrk.uni-kl.de until May 31 at 14.00.

