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Quantum Field Theory Problem Sheet 6
Problem 13: Klein-Gordon Equation with Electromagnetic Field

Within a non-relativistic theory the electromagnetic field is described by a scalar potential ®(x,t)
and a vector potential A(x,t). Coupling a non-relativistic quantum particle with charge e mini-

mally to an electromagnetic field, the usual Jordan rule is modified in SI units according to

E:>m§t —ed(x,t), p= EV—eA(x,t). (1)
i

Contrary to that the electromagnetic field is described within the realm of a relativistic theory by a
four-potential, whose contravariant components A*(z*) consist of the scalar potential ®(x,t) and

the vector potential A(x,1t):

() = (") @

The minimal coupling (1) of a relativistic quantum particle to the electromagnetic field reads then

in contravariant notation:

pt = iho* — e AH(zt). (3)

a) Start with the relativistic energy-momentum relation p#p, — (mc)? = 0 and apply the modified
Jordan rule (3). Derive with this the Klein-Gordon equation with electromagnetic field for a wave

function W(xz*). Write it in a compact form by using the gauge covariant derivative
e
DH = 9" + %A“(:c“) . (4)

(2 points)

b) Electrodynamics is a gauge invariant theory as the Maxwell equations for the electric and the

magnetic field do not change with respect to a local gauge transformation of the four-potential
At (o) = AM(at) + 0"x (") (5)

with an arbitrary gauge function y(a*). As the Klein-Gordon wave function W(x*) is uniquely

determined only up to a phase factor, the local gauge transformation (5) can be complemented by

W) = 0(e) exp { - (e} (6)



How does then the gauge covariant derivative D* transform? Prove that the Klein-Gordon
equation with electromagnetic field is invariant with respect to the local gauge transformations
(5) and (6). (4 points)

c) Derive for the Klein-Gordon equation with electromagnetic field the continuity equation
Mju(z") =0. (7)

Determine the covariant components j,(z*) of the four-current density. (3 points)

d) Decomponse the four-potential and the four-spacetime in their respectie time- and space-like

parts. Show with this that the Klein-Gordon equation with electromagnetic field gets the following

form:
{01238; —vig % [CD(X’t)gt + A(X,t)V} + % [i%g;’t) + divA (x, 1)
_f; P’@;”Q . A(x,t)z] + m;CQ } U(x, 1) =0. (8)
(3 points)
Problem 14: Klein Paradox
A relativistic particle of mass m and charge e comes from x = —oc and hits at z = 0 a potential

step V(z,t) =V = e® = constant:

a) Specialize the Klein-Gordon equation (8) to this one-dimensional problem. Decompose to this

end the wave function ¥(z,t) for both regions < 0 and z > 0:

Uy (‘7;7 t) ;o <0,
U(x,t) = 9
(z,) {\I’H(x,t) > 0. 9)
Determine the equations of motion for both Wi(z,t) and Uy(z,t). (1 point)

b) In both equations of motion it is possible to separate the spatial and the temporal part of the

wave function:
Ui(z,t) = fil)er(z) 52<0, (10)
Un(z,t) = fult)en(z) ;2>0. (11)
Due to this separation ansatz the partial differential equations for Wy(x,t) and Uyy(x,t) decompose

into ordinary differential equations for the functions f;(¢), fir(t), e1(x), em(x).
(1 point)



c) Determine the general solutions of the respective ordinary differential equations. In order to
determine then the physical solution one has to demand that both the wave function ¥(z,¢) and
its first partial derivatives with respect to x and ¢t at x = 0 are continuous. Determine with this
the functions fi(¢) and fi;(¢). Which intermediate result do you get for the wave function ¥(z,t)?
(2 points)

d) Determine now the functions ¢;(x) and ¢r1(x), by solving the corresponding ordinary differen-
tial equations and by imposing the continuity conditions from 14c). Take also into account the
boundary condition of the problem that in region z > 0 no left-moving wave should exist. Discuss

the resulting solution for the following three cases:
NO<SV<E-mc, ii)E-m<V<E+mc, ii)E+m<V. (12)

Solve the same problem within the realm of non-relativistic quantum mechanics. Compare the

non-relativistic solution with the corresponding relativistic one. (4 points)

e) With the help of the u = 0O-component of the covariant four-current density j,(z,t) from
problem 13c) you can determine via p(x,t) = jo(x,t)/c the charge density p(x,t). Determine the
charge density p(x,t) for both regions z < 0 and x > 0 and discuss the three cases i) to iii). (2
points)

f) Determine for all three cases i) to iii) in both regions < 0 und « > 0 the current j(x,t), which
you can identify with the negative of the y = l-component of the covariant four-current density
Ju(z,t) from problem 13c). Interpret your results by introducing the transmission coefficient 7'
and the reflection coefficient R. Which result do you get in case iii) if you demand that the group

velocity

1dE
’Ug = ﬁ% (13)
should be positive in the region x > 07 Is this result compatible with a one-particle interpretation?

(2 points)

g) Solve the Klein paradox by combining the Heisenberg uncertainty relation of quantum

mechanics with the relativistic energy-momentum relation. (1 point)

Drop the solutions in the post box on the 5th floor of building 46 or, in case of
illness/quarantine, send them via email to jkrauss@rhrk.uni-kl.de until June 7 at
14.00.



