Quantum Field Theory

Problem 13: Klein-Gordon Equation with Electromagnetic Field

Within a non-relativistic theory the electromagnetic field is described by a scalar potential $\Phi(\mathbf{x}, t)$ and a vector potential $\mathbf{A}(\mathbf{x}, t)$. Coupling a non-relativistic quantum particle with charge e minimally to an electromagnetic field, the usual Jordan rule is modified in SI units according to

$$
\begin{equation*}
E \Longrightarrow i \hbar \frac{\partial}{\partial t}-e \Phi(\mathbf{x}, t), \quad \mathbf{p} \Longrightarrow \frac{\hbar}{i} \boldsymbol{\nabla}-e \mathbf{A}(\mathbf{x}, t) \tag{1}
\end{equation*}
$$

Contrary to that the electromagnetic field is described within the realm of a relativistic theory by a four-potential, whose contravariant components $A^{\mu}\left(x^{\mu}\right)$ consist of the scalar potential $\Phi(\mathbf{x}, t)$ and the vector potential $\mathbf{A}(\mathbf{x}, t)$:

$$
\begin{equation*}
\left(A^{\mu}\left(x^{\mu}\right)\right)=\binom{\Phi(\mathbf{x}, t) / c}{\mathbf{A}(\mathbf{x}, t)} \tag{2}
\end{equation*}
$$

The minimal coupling (1) of a relativistic quantum particle to the electromagnetic field reads then in contravariant notation:

$$
\begin{equation*}
p^{\mu} \Longrightarrow i \hbar \partial^{\mu}-e A^{\mu}\left(x^{\mu}\right) \tag{3}
\end{equation*}
$$

a) Start with the relativistic energy-momentum relation $p^{\mu} p_{\mu}-(m c)^{2}=0$ and apply the modified Jordan rule (3). Derive with this the Klein-Gordon equation with electromagnetic field for a wave function $\Psi\left(x^{\mu}\right)$. Write it in a compact form by using the gauge covariant derivative

$$
\begin{equation*}
D^{\mu}=\partial^{\mu}+\frac{i e}{\hbar} A^{\mu}\left(x^{\mu}\right) \tag{4}
\end{equation*}
$$

b) Electrodynamics is a gauge invariant theory as the Maxwell equations for the electric and the magnetic field do not change with respect to a local gauge transformation of the four-potential

$$
\begin{equation*}
A^{\prime \mu}\left(x^{\mu}\right)=A^{\mu}\left(x^{\mu}\right)+\partial^{\mu} \chi\left(x^{\mu}\right) \tag{5}
\end{equation*}
$$

with an arbitrary gauge function $\chi\left(x^{\mu}\right)$. As the Klein-Gordon wave function $\Psi\left(x^{\mu}\right)$ is uniquely determined only up to a phase factor, the local gauge transformation (5) can be complemented by

$$
\begin{equation*}
\Psi^{\prime}\left(x^{\mu}\right)=\Psi\left(x^{\mu}\right) \exp \left\{-\frac{i e}{\hbar} \chi\left(x^{\mu}\right)\right\} \tag{6}
\end{equation*}
$$

How does then the gauge covariant derivative D^{μ} transform? Prove that the Klein-Gordon equation with electromagnetic field is invariant with respect to the local gauge transformations (5) and (6).
c) Derive for the Klein-Gordon equation with electromagnetic field the continuity equation

$$
\begin{equation*}
\partial^{\mu} j_{\mu}\left(x^{\mu}\right)=0 . \tag{7}
\end{equation*}
$$

Determine the covariant components $j_{\mu}\left(x^{\mu}\right)$ of the four-current density.
d) Decomponse the four-potential and the four-spacetime in their respectie time- and space-like parts. Show with this that the Klein-Gordon equation with electromagnetic field gets the following form:

$$
\begin{align*}
& \left\{\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}-\nabla^{2}+\frac{2 i e}{\hbar c}\left[\frac{\Phi(\mathbf{x}, t)}{c} \frac{\partial}{\partial t}+\mathbf{A}(\mathbf{x}, t) \boldsymbol{\nabla}\right]+\frac{i e}{\hbar c}\left[\frac{1}{c} \frac{\partial \Phi(\mathbf{x}, t)}{\partial t}+\operatorname{div} \mathbf{A}(\mathbf{x}, t)\right]\right. \\
& \left.-\frac{e^{2}}{\hbar^{2}}\left[\frac{\Phi(\mathbf{x}, t)^{2}}{c^{2}}-\mathbf{A}(\mathbf{x}, t)^{2}\right]+\frac{m^{2} c^{2}}{\hbar^{2}}\right\} \Psi(\mathbf{x}, t)=0 \tag{8}
\end{align*}
$$

Problem 14: Klein Paradox

A relativistic particle of mass m and charge e comes from $x=-\infty$ and hits at $x=0$ a potential step $V(x, t)=V=e \Phi=$ constant:
a) Specialize the Klein-Gordon equation (8) to this one-dimensional problem. Decompose to this end the wave function $\Psi(x, t)$ for both regions $x<0$ and $x>0$:

$$
\Psi(x, t)= \begin{cases}\Psi_{\mathrm{I}}(x, t) & ; x<0 \tag{9}\\ \Psi_{\mathrm{II}}(x, t) & ; x>0\end{cases}
$$

Determine the equations of motion for both $\Psi_{\mathrm{I}}(x, t)$ and $\Psi_{\mathrm{II}}(x, t)$.
b) In both equations of motion it is possible to separate the spatial and the temporal part of the wave function:

$$
\begin{align*}
& \Psi_{\mathrm{I}}(x, t)=f_{\mathrm{I}}(t) \varphi_{\mathrm{I}}(x) \quad ; x<0, \tag{10}\\
& \Psi_{\mathrm{II}}(x, t)=f_{\mathrm{II}}(t) \varphi_{\mathrm{II}}(x) ; x>0 . \tag{11}
\end{align*}
$$

Due to this separation ansatz the partial differential equations for $\Psi_{\mathrm{I}}(x, t)$ and $\Psi_{\text {II }}(x, t)$ decompose into ordinary differential equations for the functions $f_{I}(t), f_{\mathrm{II}}(t), \varphi_{\mathrm{I}}(x), \varphi_{\mathrm{II}}(x)$.
c) Determine the general solutions of the respective ordinary differential equations. In order to determine then the physical solution one has to demand that both the wave function $\Psi(x, t)$ and its first partial derivatives with respect to x and t at $x=0$ are continuous. Determine with this the functions $f_{\mathrm{I}}(t)$ and $f_{\mathrm{II}}(t)$. Which intermediate result do you get for the wave function $\Psi(x, t)$? (2 points)
d) Determine now the functions $\varphi_{I}(x)$ and $\varphi_{\mathrm{II}}(x)$, by solving the corresponding ordinary differential equations and by imposing the continuity conditions from 14c). Take also into account the boundary condition of the problem that in region $x>0$ no left-moving wave should exist. Discuss the resulting solution for the following three cases:
i) $0 \leq V \leq E-m c^{2}$,
ii) $E-m c^{2} \leq V \leq E+m c^{2}$,
iii) $E+m c^{2} \leq V$.

Solve the same problem within the realm of non-relativistic quantum mechanics. Compare the non-relativistic solution with the corresponding relativistic one.
e) With the help of the $\mu=0$-component of the covariant four-current density $j_{\mu}(x, t)$ from problem 13c) you can determine via $\rho(x, t)=j_{0}(x, t) / c$ the charge density $\rho(x, t)$. Determine the charge density $\rho(x, t)$ for both regions $x<0$ and $x>0$ and discuss the three cases i) to iii). points)
f) Determine for all three cases i) to iii) in both regions $x<0$ und $x>0$ the current $j(x, t)$, which you can identify with the negative of the $\mu=1$-component of the covariant four-current density $j_{\mu}(x, t)$ from problem $\left.13 \mathbf{c}\right)$. Interpret your results by introducing the transmission coefficient T and the reflection coefficient R. Which result do you get in case iii) if you demand that the group velocity

$$
\begin{equation*}
v_{g}=\frac{1}{\hbar} \frac{d E}{d k} \tag{13}
\end{equation*}
$$

should be positive in the region $x>0$? Is this result compatible with a one-particle interpretation? (2 points)
g) Solve the Klein paradox by combining the Heisenberg uncertainty relation of quantum mechanics with the relativistic energy-momentum relation.

Drop the solutions in the post box on the 5 th floor of building 46 or, in case of illness/quarantine, send them via email to jkrauss@rhrk.uni-kl.de until June 7 at 14.00 .

