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Problem 13: Klein-Gordon Equation with Electromagnetic Field

Within a non-relativistic theory the electromagnetic field is described by a scalar potential Φ(x, t)

and a vector potential A(x, t). Coupling a non-relativistic quantum particle with charge e mini-

mally to an electromagnetic field, the usual Jordan rule is modified in SI units according to

E =⇒ i~
∂

∂t
− eΦ(x, t), p =⇒ ~

i
∇− eA(x, t) . (1)

Contrary to that the electromagnetic field is described within the realm of a relativistic theory by a

four-potential, whose contravariant components Aµ(xµ) consist of the scalar potential Φ(x, t) and

the vector potential A(x, t):

(Aµ(xµ)) =

(
Φ(x, t)/c

A(x, t)

)
. (2)

The minimal coupling (1) of a relativistic quantum particle to the electromagnetic field reads then

in contravariant notation:

pµ =⇒ i~∂µ − eAµ(xµ). (3)

a) Start with the relativistic energy-momentum relation pµpµ− (mc)2 = 0 and apply the modified

Jordan rule (3). Derive with this the Klein-Gordon equation with electromagnetic field for a wave

function Ψ(xµ). Write it in a compact form by using the gauge covariant derivative

Dµ = ∂µ +
ie

~
Aµ(xµ) . (4)

(2 points)

b) Electrodynamics is a gauge invariant theory as the Maxwell equations for the electric and the

magnetic field do not change with respect to a local gauge transformation of the four-potential

A′µ(xµ) = Aµ(xµ) + ∂µχ(xµ) (5)

with an arbitrary gauge function χ(xµ). As the Klein-Gordon wave function Ψ(xµ) is uniquely

determined only up to a phase factor, the local gauge transformation (5) can be complemented by

Ψ′(xµ) = Ψ(xµ) exp

{
− ie

~
χ(xµ)

}
. (6)



How does then the gauge covariant derivative Dµ transform? Prove that the Klein-Gordon

equation with electromagnetic field is invariant with respect to the local gauge transformations

(5) and (6). (4 points)

c) Derive for the Klein-Gordon equation with electromagnetic field the continuity equation

∂µjµ(xµ) = 0 . (7)

Determine the covariant components jµ(xµ) of the four-current density. (3 points)

d) Decomponse the four-potential and the four-spacetime in their respectie time- and space-like

parts. Show with this that the Klein-Gordon equation with electromagnetic field gets the following

form: {
1

c2
∂2

∂t2
−∇2 +

2ie

~c

[
Φ(x, t)

c

∂

∂t
+ A(x, t)∇

]
+
ie

~c

[
1

c

∂Φ(x, t)

∂t
+ divA(x, t)

]
− e

2

~2

[
Φ(x, t)2

c2
−A(x, t)2

]
+
m2c2

~2

}
Ψ(x, t) = 0 . (8)

(3 points)

Problem 14: Klein Paradox

A relativistic particle of mass m and charge e comes from x = −∞ and hits at x = 0 a potential

step V (x, t) = V = eΦ = constant:

a) Specialize the Klein-Gordon equation (8) to this one-dimensional problem. Decompose to this

end the wave function Ψ(x, t) for both regions x < 0 and x > 0:

Ψ(x, t) =

{
ΨI(x, t) ;x < 0,

ΨII(x, t) ;x > 0 .
(9)

Determine the equations of motion for both ΨI(x, t) and ΨII(x, t). (1 point)

b) In both equations of motion it is possible to separate the spatial and the temporal part of the

wave function:

ΨI(x, t) = fI(t)ϕI(x) ;x < 0 , (10)

ΨII(x, t) = fII(t)ϕII(x) ;x > 0 . (11)

Due to this separation ansatz the partial differential equations for ΨI(x, t) and ΨII(x, t) decompose

into ordinary differential equations for the functions fI(t), fII(t), ϕI(x), ϕII(x).

(1 point)



c) Determine the general solutions of the respective ordinary differential equations. In order to

determine then the physical solution one has to demand that both the wave function Ψ(x, t) and

its first partial derivatives with respect to x and t at x = 0 are continuous. Determine with this

the functions fI(t) and fII(t). Which intermediate result do you get for the wave function Ψ(x, t)?

(2 points)

d) Determine now the functions ϕI(x) and ϕII(x), by solving the corresponding ordinary differen-

tial equations and by imposing the continuity conditions from 14c). Take also into account the

boundary condition of the problem that in region x > 0 no left-moving wave should exist. Discuss

the resulting solution for the following three cases:

i) 0 ≤ V ≤ E −mc2, ii) E −mc2 ≤ V ≤ E +mc2, iii) E +mc2 ≤ V . (12)

Solve the same problem within the realm of non-relativistic quantum mechanics. Compare the

non-relativistic solution with the corresponding relativistic one. (4 points)

e) With the help of the µ = 0-component of the covariant four-current density jµ(x, t) from

problem 13c) you can determine via ρ(x, t) = j0(x, t)/c the charge density ρ(x, t). Determine the

charge density ρ(x, t) for both regions x < 0 and x > 0 and discuss the three cases i) to iii). (2

points)

f) Determine for all three cases i) to iii) in both regions x < 0 und x > 0 the current j(x, t), which

you can identify with the negative of the µ = 1-component of the covariant four-current density

jµ(x, t) from problem 13c). Interpret your results by introducing the transmission coefficient T

and the reflection coefficient R. Which result do you get in case iii) if you demand that the group

velocity

vg =
1

~
dE

dk
(13)

should be positive in the region x > 0? Is this result compatible with a one-particle interpretation?

(2 points)

g) Solve the Klein paradox by combining the Heisenberg uncertainty relation of quantum

mechanics with the relativistic energy-momentum relation. (1 point)

Drop the solutions in the post box on the 5th floor of building 46 or, in case of

illness/quarantine, send them via email to jkrauss@rhrk.uni-kl.de until June 7 at

14.00.


