Quantum Field Theory

Problem 17: Foldy-Wouthuysen Representation for Field-Free Case

A free spin $1 / 2$ particle with mass m is described in Dirac representation via a four-spinor ψ, which obeys the evolution equation

$$
\begin{equation*}
i \hbar \frac{\partial \psi}{\partial t}=\hat{H}_{\mathrm{D}} \psi \tag{1}
\end{equation*}
$$

with the Hamilton operator

$$
\begin{equation*}
\hat{H}_{\mathrm{D}}=c \vec{\alpha} \hat{\vec{p}}+\beta m c^{2} \tag{2}
\end{equation*}
$$

Here α_{j} with $j=1,2,3$ and β denote the 4×4 matrices

$$
\alpha_{j}=\left(\begin{array}{cc}
\mathbf{0} & \sigma_{j} \tag{3}\\
\sigma_{j} & \mathbf{0}
\end{array}\right), \quad \beta=\left(\begin{array}{cc}
\mathbf{1} & \mathbf{0} \\
\mathbf{0} & \mathbf{- 1}
\end{array}\right)
$$

which consist of 2×2 Pauli matrices

$$
\sigma_{1}=\left(\begin{array}{cc}
0 & 1 \tag{4}\\
1 & 0
\end{array}\right), \quad \sigma_{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad \sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

as well as the 2×2 identity matrix $\mathbf{1}$ and the 2×2 zero matrix $\mathbf{0}$.
a) Go now over from the Dirac representation to another representation by applying the unitary transformation

$$
\begin{equation*}
\phi=\hat{T} \psi, \quad \hat{T}=e^{i \hat{S}} \tag{5}
\end{equation*}
$$

with a hermitian operator \hat{S}. To this end transform the equation of motion (1) and determine the transformed Hamilton operator.
(1 point)
b) With this you arrive at the Foldy-Wouthuysen representation by choosing

$$
\begin{equation*}
\hat{S}=-i f(\hat{\vec{p}}) \beta \vec{\alpha} \hat{\vec{p}} \tag{6}
\end{equation*}
$$

where $f(\hat{\vec{p}})$ denotes a yet unknown function of the momentum operator $\hat{\vec{p}}$. Is the operator \hat{S} hermitian? Explicitly determine the unitary operator $\hat{T}=e^{i \hat{S}}$ by expanding the exponential function into a Taylor series.
c) State the Hamilton operator \hat{H}_{FW} in the Foldy-Wouthuysen representation. How do you have to choose the yet unknown function $f(\hat{\vec{p}})$, so that the Hamilton operator \hat{H}_{FW} becomes diagonal? Which expression do you then get for the diagonalized Hamilton operator $\hat{H}_{\text {FW }}$? (3 points)
d) Determine the orthonormalized four-spinors in the Foldy-Wouthuysen representation, which correspond to plane waves. Afterwards, calculate those plane waves in the original Dirac representation.
(3 points)

Problem 18: Foldy-Wouthuysen Representation with Electromagnetic Field

Provided that a spin $1 / 2$ particle with mass m and charge q is coupled to a vector potential \vec{A} and a scalar potential ϕ, the Hamilton operator in the Dirac representation in the SI units system reads

$$
\begin{equation*}
\hat{H}=c \vec{\alpha}(\vec{p}-q \vec{A})+\beta m c^{2}+q \phi I \tag{7}
\end{equation*}
$$

where I is the 4×4 identity matrix. In the non-relativistic limit one can approximately construct a unitary transformation, where the upper and the lower two components of the four-spinor are decoupled from each other. Here, one distinguishes two kinds of operators. Odd (even) operators like $\alpha_{j}(\beta, I)$ are those, which (do not) couple to the upper and the lower components.
a) Determine the Taylor series of the operator function

$$
\begin{equation*}
\hat{H}^{\prime}(\lambda)=e^{i \lambda \hat{S}}\left(\hat{H}-i \hbar \frac{\partial}{\partial t}\right) e^{-i \lambda \hat{S}} \tag{8}
\end{equation*}
$$

and with this prove the Baker-Hausdorff identity

$$
\begin{align*}
\hat{H}^{\prime} & =e^{i \hat{S}}\left(\hat{H}-i \hbar \frac{\partial}{\partial t}\right) e^{-i \hat{S}}=\hat{H}+i[\hat{S}, \hat{H}]_{-}+\frac{i^{2}}{2}\left[\hat{S},[\hat{S}, \hat{H}]_{-}\right]_{-}+\frac{i^{3}}{6}\left[\hat{S},\left[\hat{S},[\hat{S}, \hat{H}]_{-}\right]_{-}\right]_{-} \\
& +\frac{i^{4}}{24}\left[\hat{S},\left[\hat{S},\left[\hat{S},[\hat{S}, \hat{H}]_{-}\right]_{-}\right]_{-}\right]_{-}+\ldots-\hbar\left(\dot{\hat{S}}+\frac{i}{2}[\hat{S}, \dot{\hat{S}}]_{-}+\frac{i^{2}}{6}\left[\hat{S},[\hat{S}, \dot{\hat{S}}]_{-}\right]_{-}+\ldots\right) \tag{9}
\end{align*}
$$

b) Now perform the unitary transformation

$$
\begin{equation*}
\hat{T}=e^{i \hat{S}}, \quad \hat{S}=\frac{-i}{m c^{2}} \beta \hat{O} \tag{10}
\end{equation*}
$$

where \hat{O} denotes a yet unknown odd operator with the anti-commuting property $[\beta, \hat{O}]_{+}=0$. Expand the transformed Hamilton operator (9) in powers of $1 / m c^{2}$ up to the order $\left(1 / m c^{2}\right)^{3}$. How do you have to fix the operator \hat{O}, so that \hat{H}^{\prime} only consists of even operators up to the order $\left(1 / m c^{2}\right)^{0}$? Show that the transformed Hamilton operator \hat{H}^{\prime} has the form

$$
\begin{align*}
\hat{H}^{\prime}= & \beta m c^{2}+q \phi I+\frac{a_{1}}{m c^{2}} \beta \hat{U}^{2}+\frac{a_{2}}{m^{2} c^{4}}\left[\hat{U},[\hat{U}, q \phi]_{-}\right]_{-}+\frac{i \hbar a_{3}}{m^{2} c^{4}}[\hat{U}, \dot{\hat{U}}]_{-}+\frac{a_{4}}{m^{3} c^{6}} \beta \hat{U}^{4}+\frac{a_{5}}{m c^{2}} \beta[\hat{U}, q \phi]_{-} \\
& +\frac{i \hbar a_{6}}{m c^{2}} \beta \dot{\hat{U}}+\frac{a_{7}}{m^{2} c^{4}} \hat{U}^{3}+\frac{a_{8}}{m^{3} c^{6}} \beta\left[\hat{U},\left[\hat{U},[\hat{U}, q \phi]_{-}\right]_{-}+\frac{i \hbar a_{9}}{m^{3} c^{6}} \beta\left[\hat{U},[\hat{U}, \dot{\hat{U}}]_{-}\right]_{-}\right. \tag{11}
\end{align*}
$$

with the odd operator

$$
\begin{equation*}
\hat{U}=c \vec{\alpha}(\hat{\vec{p}}-q \vec{A}) \tag{12}
\end{equation*}
$$

and determine the coefficients a_{1}, \ldots, a_{9}.
c) Perform further successive unitary transformations

$$
\begin{align*}
\hat{T}^{\prime}=e^{i \hat{S}^{\prime}}, & \hat{S}^{\prime}=\frac{-i}{m^{2} c^{4}} \beta \hat{O}^{\prime} \tag{13}\\
\hat{T}^{\prime \prime}=e^{i \hat{S}^{\prime \prime}}, & \hat{S}^{\prime \prime}=\frac{-i}{m^{3} c^{6}} \beta \hat{O}^{\prime \prime} \tag{14}\\
\hat{T}^{\prime \prime \prime}=e^{i \hat{S}^{\prime \prime \prime}}, & \hat{S}^{\prime \prime \prime}=\frac{-}{m^{4} c^{8}} \beta \hat{O}^{\prime \prime \prime} \tag{15}
\end{align*}
$$

so that the transformed Hamilton operators $\hat{H}^{\prime \prime}, \hat{H}^{\prime \prime \prime}, \hat{H}^{\prime \prime \prime \prime}$ up to the orders $\left(1 / m c^{2}\right)^{1},\left(1 / m c^{2}\right)^{2}$, $\left(1 / m c^{2}\right)^{3}$ consist only of even operators. Determine how the transformed Hamilton operators $\hat{H}^{\prime \prime}$, $\hat{H}^{\prime \prime \prime}, \hat{H}^{\prime \prime \prime \prime}$ depend on the odd operators \hat{U} up to the order $\left(1 / m c^{2}\right)^{3}$.
d) Specialize your result for $\hat{H}^{\prime \prime \prime \prime}$ by substituting \hat{U} according to (12) and by introducing the electromagnetic fields $\vec{E}=-\operatorname{grad} \phi-\dot{\vec{A}}$ and $\vec{B}=\operatorname{rot} \vec{A}$. How can you physically interpret the respective terms in $\hat{H}^{\prime \prime \prime \prime}$?

Hint: Show at first $(\vec{\alpha} \vec{A})(\vec{\alpha} \vec{B})=\vec{A} \vec{B}+i \vec{\Sigma}(\vec{A} \times \vec{B})$, where the vector of the 4×4 spin matrices $\vec{\Sigma}$ is given by

$$
\Sigma_{j}=\left(\begin{array}{cc}
\sigma_{j} & \mathbf{0} \tag{16}\\
\mathbf{0} & \sigma_{j}
\end{array}\right)
$$

Drop the solutions in the post box on the 5 th floor of building 46 or, in case of illness/quarantine, send them via email to jkrauss@rhrk.uni-kl.de until June 28 at 14.00.

