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Problem 22: Rate Equations and Thermal States of Light (12 points)

In this exercise we investigate the three fundamental Einstein processes of light-matter interaction from the point of

view on how to generate thermal states of light. Consider N dye molecules interacting with a single light mode. We

assume the molecules to have two electronic degrees of freedom and include the vibronic degrees of freedom later in

the exercise in the modelling of the absorption and emission rates. The rate for light absorption of a single molecule

is denoted by B12(ω) and the one for stimulated and spontaneous emission by B21(ω).

a) Write down the rate equations for the number N1, N2 of molecules in the ground and excited state, respectively,

as well as for n(ω) photons in the cavity mode with frequency ω. Explain concisely which term arises from which

of the three fundamental Einstein processes of light-matter interaction and illustrate the latter via meaningful sketches.

b) Calculate the steady state of the resulting equations of motion for N1, N2 and n(ω).

c) Now we take into account that the vibronic degrees of freedom of the molecules are thermalised by using the

experimentally found Kennard-Stepanov relation

B12(ω) = B21(ω) exp

(
~ω
kBT

)
, (1)

where ω is the frequency of the cavity mode and T the temperature. Show that with this relation the steady-state

equation for the photon number n takes the form of the Bose-Einstein distribution. How do you interpret physically

the resulting chemical potential?

d) Which conclusion can you draw from the steady-state solution for N1, N2? Interpret your finding physically.

Problem 23: Light-Matter Interaction (12 points)

In the lecture notes we derived with Eq. (4.21) the so-called xE Hamiltonian for the light-matter interaction: ĤxE =

−qx ·E. However, there is a second possibility to describe the light-matter interaction via the pA Hamiltonian, which

we will derive in this exercise. As a starting point, consider Hamiltonian (4.5) in radiation gauge, which is defined by

both divA = 0 and vanishing scalar potential:

Ĥ(x, t) =
1

2M

[
p̂− qA(x, t)

]2
. (2)

Note: In this exercise we will use as in the lecture notes the notation q = −e for the electron charge with e > 0

denoting the elementary charge.

a) Show within the dipole approximation and for small vector potentials A that the Hamiltonian (2) can be written

as

Ĥ = Ĥ0 + ĤpA, (3)

where Ĥ0 = p̂2/(2M) and ĤpA = −qp̂ ·A/M .



b) Consider now a monochromatic plane wave E = E0 cos(ωt). How do the interaction Hamiltonians ĤpA and ĤxE

read in this situation, respectively? Show that the ratio of the transition amplitudes for both interaction Hamiltonians

c
(1)
fi (t, ĤpA) = − i

~

∫ t

0

dt′eiωfit
′
〈f |ĤpA(t′)|i〉 , (4)

c
(1)
fi (t, ĤxE) = − i

~

∫ t

0

dt′eiωfit
′
〈f |ĤxE(t′)|i〉 (5)

are related according to

c
(1)
fi (t, ĤpA)

c
(1)
fi (t, ĤxE)

=
ωfi
ω

. (6)

Here |i〉 and |f〉 denote some eigenstates of the unperturbed Hamiltonian Ĥ0, ωf and ωi stand for the corresponding

eigenfrequencies, and ωfi = ωf − ωi abbreviates the transition frequency.

Note: Consider the commutator
[
x̂, Ĥ0

]
−

=?. Furthermore, restrict yourself to the case ωfi > 0 and apply the

rotating wave approximation.

The result (6) implies that you have obtained a difference in measurable quantities like the transition rates. The

reason, why this yields a difference, is hidden in the gauge transformations. Operators of physical quantities Ĝ(A)

change under unitary transformations Û = eiqχ(x,t)/~ involving a gauge function χ according to Ĝ(A′) = ÛĜ(A)Û†

with a gauge transformed vector potential A′(x, t) = A(x, t) + ∇χ(x, t).

c) Show that in this sense the operator of the mechanical momentum π̂ = p̂ − qA(x, t) is an operator of a physical

quantity and the operator of the canonical momentum p̂ is none. Does in this sense the Hamiltonian (2) in the

lecture notes represent the operator of a physical quantity?

Drop the solutions in the post box on the 5th floor of building 46 or, in case of illness/quarantine,

send them via email to jkrauss@rhrk.uni-kl.de until June 23 at 12.00.


