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Problem 24: Atom Interferometer (10 points)

In this exercise we derive a formalism for atomic interferometry, which is based on the optical Bloch equations with

vanishing detuning ∆.

a) Solve the optical Bloch equations for the Bloch vector s(t) in the special case ∆ = 0, i.e.

ṡ(t) = −ΩRe1 × s(t) , (1)

where ΩR denotes the Rabi frequency. Write down an explicit expression for the time-evolution operator Û(t).

b) Consider now as the initial state that the atom is in the ground state. What is the final state for times ΩRt = π/2

and ΩRt = π? How does the operator for measurement of the population imbalance s3 read, and how can you

calculate the actual population of ground and excited state from this operator?

c) Can you construct a beam splitter for atoms with your results from a) and b)?

d) Describe how you can build up an atomic Mach-Zehnder interferometer and calculate the evolution of the atom

beam through the interferometer.

e) Explain qualitatively how the results change in presence of a detuning ∆.

Problem 25: Bloch Equations and Decay (14 points)

Real experiments with atomic beams suffer from several decay mechanisms like population decay via spontaneous

emission, which is modelled via the T1-time, and decoherence of the atomic phases through varying detuning ∆,

which is described via the T2-time. In this exercise, we will simulate these processes stochastically.

a) Implement the optical Bloch equations with detuning ∆

ṡ(t) = −

ΩR

0

∆

× s(t) (2)

numerically.

In the following we add peu à peu the stochastic processes.

b) At first we focus on the spontaneous decay, which means that at some random time the excited states decay into

the ground state.

The spontaneous emission is included numerically by drawing a uniformly distributed real number r from the interval

[0, 1]. If r < ∆tγ, where ∆t is the time step and γ the decay rate, we set s3 = −1, otherwise we perform a normal

time step. Show numerically that in the special case ΩR = 0 this procedure yields in the average of many realisations



an exponential damping e−γt for the excited state population. Which initial condition makes the most sense? What

happens for finite frequency ΩR?

c) We come now to the decoherence, which means that the detuning ∆ is not constant but varies from atom to

atom. We assume here a Gaussian distributed detuning, which can arise, for instance, in atomic beams through the

Doppler effect.

Use your implementation from a) with the initial state s0 = (0, 1, 0)T and a Gaussian distributed detuning ∆ with

〈∆〉 = 0 and
〈
∆2
〉
∼ T , where T is the temperature of the surrounding introducing the Doppler shift. Show that this

leads in the ensemble average to a decay of the Bloch vector.

d) We now combine the effects from b) and c) and implement a typical experimental sequence, namely the spin-echo

sequence. At the beginning, the atom is considered to be in the ground state. The sequence consists of a π/2-pulse

followed by a waiting time τ , then a π-pulse again followed by a waiting time τ and finally a π/2-pulse again. What

do you observe for the Bloch vector for different waiting times τ and how do you explain your findings?

e) Implement your Mach-Zehnder interferometer from d) and add spontaneous decay and decoherence. How do the

results change?

Drop the solutions in the post box on the 5th floor of building 46 or, in case of illness/quarantine,

send them via email to jkrauss@rhrk.uni-kl.de until July 7 at 12.00.


