Quantum Optics

Problem 6: Finite Box Potential

In this exercise we will proceed on working with the Hamiltonian

$$
\begin{equation*}
\hat{H}=\frac{1}{2} \int_{0}^{L} d x\left[\hat{\Pi}^{2}+c^{2}\left(\partial_{x} \hat{\phi}\right)^{2}\right] . \tag{1}
\end{equation*}
$$

At first, we will specify the formalism to Dirichlet boundary conditions.
a) Consider the boundary conditions $\hat{\phi}(0, t)=0=\hat{\phi}(L, t)$. What are suitable functions $u_{n}(x)$ for expanding the field operators in the form

$$
\begin{align*}
& \hat{\phi}(x, t)=\sum_{n} \hat{\Phi}_{n}(t) u_{n}(x), \tag{2}\\
& \hat{\Pi}(x, t)=\sum_{n} \hat{\Pi}_{n}(t) u_{n}(x) ? \tag{3}
\end{align*}
$$

Write down these expansions.
b) Show by using the corresponding procedure from Problem 4 that the Hamiltonian can again be written as

$$
\begin{equation*}
\hat{H}=\sum_{n=1}^{\infty} \hbar \omega_{n}\left(\hat{a}_{n}^{\dagger}(t) \hat{a}_{n}(t)+\frac{1}{2}\right) . \tag{4}
\end{equation*}
$$

c) Solve the dynamical equations for the operators $\hat{a}_{n}^{\dagger}(t)$ and $\hat{a}_{n}(t)$ and write down the full expression for the generalised momentum operator $\hat{\Pi}(x, t)$. Comparing to the lecture and its definition, what is the physical meaning of $\hat{\Pi}(x, t)$?
d) Calculate the vacuum expectation value $\langle 0| \hat{\Pi}(x, t)|0\rangle$. What does this mean? Calculate the expectation value $\langle 0| \hat{\Pi}(x, t)^{2}|0\rangle$. What do you note about the resulting sum?

Problem 7: 1D Casimir Effect

(12 points)

In this problem we calculate the Casimir force, whose origin are the fluctuations of the electromagnetic vacuum, between two parallel plates at distance L in a pure 1D setting. In this case, the field is described by the Hamiltonian (4).
a) Calculate the expectation value $E_{\text {disc }}=\langle 0| \hat{H}|0\rangle$ of the Hamiltonian (4). What do you note?
b) In order to regularise the expression from a) introduce a convergence factor $e^{-\gamma n}$, where n is the summation index. Note, that in the limit $\gamma \downarrow 0$ the original expression is not changed. Expand the result up to order $\mathcal{O}\left(\gamma^{0}\right)$.
c) Now calculate the energy $E_{\text {cont }}$ in the case without plates, by going over from the discrete summation to a continuous integration over the energy states. Use also here a convergence factor and show that the Casimir energy $\Delta E=E_{\text {disc }}-E_{\text {cont }}$ yields a finite result in the limit $\gamma \downarrow 0$. What is the physical implication of this result?

Drop the solutions in the post box on the 5 th floor of building 46 or , in case of illness/quarantine, send them via email to jkrauss@rhrk.uni-kl.de until May 5 at $\mathbf{1 2 . 0 0}$.

