Quantum Optics

Problem 15: Damped Harmonic Oscillator

In this problem we tackle the equation of motion for the P-representation of a damped harmonic oscillator, as this yields non-singular results compared to Problem 14.
a) Argue that the P-representation of a coherent state $\left|\alpha_{0}\right\rangle$ is given by

$$
\begin{equation*}
P_{0}\left(\alpha, \alpha^{*}\right)=\delta\left(\alpha-\alpha_{0}\right) \delta\left(\alpha^{*}-\alpha_{0}^{*}\right) \tag{1}
\end{equation*}
$$

Consider now the equation of motion for the harmonic oscillator

$$
\begin{equation*}
\frac{\partial}{\partial t} P=\left[\left(\frac{\gamma}{2}+i \omega\right) \frac{\partial}{\partial \alpha} \alpha+\left(\frac{\gamma}{2}-i \omega\right) \frac{\partial}{\partial \alpha^{*}} \alpha^{*}+\gamma \bar{n} \frac{\partial^{2}}{\partial \alpha \partial \alpha^{*}}\right] P \tag{2}
\end{equation*}
$$

where γ denotes the damping rate and \bar{n} the occupation of the bath to which the oscillator is coupled.
b) Show that with the transformation $\alpha=e^{-i \omega t} \tilde{\alpha}, \alpha^{*}=e^{i \omega t} \tilde{\alpha}^{*}$ the equation for the transformed P-representation $\tilde{P}\left(\tilde{\alpha}, \tilde{\alpha}^{*}, t\right)$ takes the form

$$
\begin{equation*}
\frac{\partial}{\partial t} \tilde{P}=\left[\frac{\gamma}{2}\left(\frac{\partial}{\partial \tilde{\alpha}} \tilde{a}+\frac{\partial}{\partial \tilde{\alpha}^{*}} \tilde{\alpha}^{*}\right)+\gamma \bar{n} \frac{\partial^{2}}{\partial \tilde{\alpha} \partial \tilde{\alpha}^{*}}\right] \tilde{P} . \tag{3}
\end{equation*}
$$

c) Expand the complex quantities $\tilde{\alpha}, \tilde{\alpha}^{*}$ by real and imaginary part $\tilde{\alpha}=\tilde{x}+i \tilde{y}$. How does the equation of motion (3) read now? Separate the resulting equation with the ansatz $\tilde{P}(\tilde{x}, \tilde{y}, t)=X(\tilde{x}, t) Y(\tilde{y}, t)$. What are the initial conditions for X and Y from (1)?
d) Given the solution

$$
\begin{equation*}
X(\tilde{x}, t)=\frac{1}{\sqrt{\pi \bar{n}\left(1-e^{-\gamma t}\right)}} \exp \left\{-\frac{\left(\tilde{x}-\tilde{x}_{0} e^{-\gamma t / 2}\right)^{2}}{\bar{n}\left(1-e^{-\gamma t}\right)}\right\} \tag{4}
\end{equation*}
$$

and the similar one for $Y(\tilde{y}, t)$ how does the complete P-representation $P\left(\alpha, \alpha^{*}, t\right)$ read?
e) Finally, calculate the mean value $\langle\hat{a}\rangle$ and the variance $\left\langle\hat{a}^{\dagger} \hat{a}\right\rangle-\left\langle\hat{a}^{\dagger}\right\rangle\langle\hat{a}\rangle$. How do you interpret the results?
f) Illustrate the time evolution of the P-representation in phase space. What is the behaviour of $P\left(\alpha, \alpha^{*}, t\right)$ in the limit $t \rightarrow \infty$? Calculate the mean value $\langle\hat{a}\rangle$ as well as the variance $\left\langle\hat{a}^{\dagger} \hat{a}\right\rangle-\left\langle\hat{a}^{\dagger}\right\rangle\langle\hat{a}\rangle$ in this long-time limit and interpret your results.

Problem 16: (Anti-)Normal Ordered Displacement Operator

a) Disentangle the operator $e^{t \hat{Z}}$ with $\hat{Z}=\alpha \hat{a}^{\dagger}-\alpha^{*} \hat{a}$ as described in the lecture with the ansatz

$$
\begin{equation*}
e^{t \alpha \hat{a}^{\dagger}-t \alpha^{*} \hat{a}}=e^{f_{1}(t) \hat{a}^{\dagger}} e^{f_{2}(t) \hat{n}} e^{f_{3}(t) \hat{a}} e^{f_{4}(t)} \tag{5}
\end{equation*}
$$

Which differential equations do you find for the functions $f_{1}(t), f_{2}(t), f_{3}(t), f_{4}(t)$ and which initial conditions $f_{1}(0), f_{2}(0), f_{3}(0), f_{4}(0)$ do you have to take into account? Show with this that the displacement operator $\hat{D}(\alpha)=$
$e^{\alpha \hat{a}^{\dagger}-\alpha^{*} \hat{a}}$ reads in normal ordering

$$
\begin{equation*}
\hat{D}(\alpha)=e^{\alpha \hat{a}^{\dagger}} e^{-\alpha^{*} \hat{a}} e^{-|\alpha|^{2} / 2} \tag{6}
\end{equation*}
$$

b) Insert a unity factor according to

$$
\begin{equation*}
\hat{D}(\alpha)=\left(e^{\alpha \hat{a}^{\dagger}} e^{-\alpha^{*} \hat{a}} e^{-\alpha \hat{a}^{\dagger}}\right) e^{\alpha \hat{a}^{\dagger}} e^{-|\alpha|^{2} / 2} \tag{7}
\end{equation*}
$$

and determine with this the displacement operator $\hat{D}(\alpha)$ in anti-normal ordered form.

Drop the solutions in the post box on the 5 th floor of building 46 or, in case of illness/quarantine, send them via email to jkrauss@rhrk.uni-kl.de until June 2 at 12.00.

