RPTU Kaiserslautern-Landau Department of Physics

Quantum Optics

Problem 15: Damped Harmonic Oscillator

In this problem we tackle the equation of motion for the *P*-representation of a damped harmonic oscillator, as this yields non-singular results compared to **Problem 14**.

a) Argue that the *P*-representation of a coherent state $|\alpha_0\rangle$ is given by

$$P_0(\alpha, \alpha^*) = \delta\left(\alpha - \alpha_0\right) \delta\left(\alpha^* - \alpha_0^*\right). \tag{1}$$

Consider now the equation of motion for the harmonic oscillator

$$\frac{\partial}{\partial t}P = \left[\left(\frac{\gamma}{2} + i\omega\right) \frac{\partial}{\partial \alpha} \alpha + \left(\frac{\gamma}{2} - i\omega\right) \frac{\partial}{\partial \alpha^*} \alpha^* + \gamma \bar{n} \frac{\partial^2}{\partial \alpha \partial \alpha^*} \right] P, \qquad (2)$$

where γ denotes the damping rate and \bar{n} the occupation of the bath to which the oscillator is coupled.

b) Show that with the transformation $\alpha = e^{-i\omega t}\tilde{\alpha}$, $\alpha^* = e^{i\omega t}\tilde{\alpha}^*$ the equation for the transformed *P*-representation $\tilde{P}(\tilde{\alpha}, \tilde{\alpha}^*, t)$ takes the form

$$\frac{\partial}{\partial t}\tilde{P} = \left[\frac{\gamma}{2}\left(\frac{\partial}{\partial\tilde{\alpha}}\tilde{a} + \frac{\partial}{\partial\tilde{\alpha}^*}\tilde{\alpha}^*\right) + \gamma\bar{n}\frac{\partial^2}{\partial\tilde{\alpha}\partial\tilde{\alpha}^*}\right]\tilde{P}.$$
(3)

c) Expand the complex quantities $\tilde{\alpha}$, $\tilde{\alpha}^*$ by real and imaginary part $\tilde{\alpha} = \tilde{x} + i\tilde{y}$. How does the equation of motion (3) read now? Separate the resulting equation with the ansatz $\tilde{P}(\tilde{x}, \tilde{y}, t) = X(\tilde{x}, t)Y(\tilde{y}, t)$. What are the initial conditions for X and Y from (1)?

d) Given the solution

$$X(\tilde{x},t) = \frac{1}{\sqrt{\pi\bar{n}(1-e^{-\gamma t})}} \exp\left\{-\frac{\left(\tilde{x}-\tilde{x}_0 \, e^{-\gamma t/2}\right)^2}{\bar{n}(1-e^{-\gamma t})}\right\}$$
(4)

and the similar one for $Y(\tilde{y}, t)$ how does the complete *P*-representation $P(\alpha, \alpha^*, t)$ read?

e) Finally, calculate the mean value $\langle \hat{a} \rangle$ and the variance $\langle \hat{a}^{\dagger} \hat{a} \rangle - \langle \hat{a}^{\dagger} \rangle \langle \hat{a} \rangle$. How do you interpret the results?

f) Illustrate the time evolution of the *P*-representation in phase space. What is the behaviour of $P(\alpha, \alpha^*, t)$ in the limit $t \to \infty$? Calculate the mean value $\langle \hat{a} \rangle$ as well as the variance $\langle \hat{a}^{\dagger} \hat{a} \rangle - \langle \hat{a}^{\dagger} \rangle \langle \hat{a} \rangle$ in this long-time limit and interpret your results.

Problem 16: (Anti-)Normal Ordered Displacement Operator (9 points)

a) Disentangle the operator $e^{t\hat{Z}}$ with $\hat{Z} = \alpha \hat{a}^{\dagger} - \alpha^* \hat{a}$ as described in the lecture with the ansatz

$$e^{t\alpha\hat{a}^{\dagger} - t\alpha^{*}\hat{a}} = e^{f_{1}(t)\hat{a}^{\dagger}} e^{f_{2}(t)\hat{n}} e^{f_{3}(t)\hat{a}} e^{f_{4}(t)} .$$
(5)

Which differential equations do you find for the functions $f_1(t), f_2(t), f_3(t), f_4(t)$ and which initial conditions $f_1(0), f_2(0), f_3(0), f_4(0)$ do you have to take into account? Show with this that the displacement operator $\hat{D}(\alpha) =$

Summer Term 2023 Priv.-Doz. Dr. Axel Pelster

(15 points)

Problem Sheet 7

 $e^{\alpha \hat{a}^\dagger - \alpha^* \hat{a}}$ reads in normal ordering

$$\hat{D}(\alpha) = e^{\alpha \hat{a}^{\dagger}} e^{-\alpha^{*} \hat{a}} e^{-|\alpha|^{2}/2} \,. \tag{6}$$

b) Insert a unity factor according to

$$\hat{D}(\alpha) = \left(e^{\alpha \hat{a}^{\dagger}} e^{-\alpha^{*} \hat{a}} e^{-\alpha \hat{a}^{\dagger}}\right) e^{\alpha \hat{a}^{\dagger}} e^{-|\alpha|^{2}/2}$$
(7)

and determine with this the displacement operator $\hat{D}(\alpha)$ in anti-normal ordered form.

Drop the solutions in the post box on the 5th floor of building 46 or, in case of illness/quarantine, send them via email to jkrauss@rhrk.uni-kl.de until June 2 at 12.00.