General Relativity

Problem 1: Lorentz Transformation

In Special Relativity the time coordinate t and the three spatial coordinates x, y, z of an inertial system are united to a four-vector x^{μ} with $\mu=0,1,2,3$:

$$
\left(\begin{array}{l}
x^{0} \tag{1}\\
x^{1} \\
x^{2} \\
x^{3}
\end{array}\right)=\left(\begin{array}{c}
c t \\
x \\
y \\
z
\end{array}\right) .
$$

Here c denotes the velocity of light. A Lorentz transformation $\Lambda^{\mu}{ }_{\nu}$ connects the four-vectors x^{μ} and $x^{\prime \nu}$ of two inertial systems Σ and Σ^{\prime} as follows:

$$
\begin{equation*}
x^{\prime \mu}=\Lambda^{\mu}{ }_{\nu} x^{\nu} . \tag{2}
\end{equation*}
$$

According to Einstein we have to postulate that the Lorentz transformation $\Lambda^{\mu}{ }_{\nu}$ leaves the Minkowski metric

$$
\left(g_{\mu \nu}\right)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \tag{3}\\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)
$$

invariant, i.e. we have:

$$
\begin{equation*}
g_{\mu \nu}^{\prime}=\Lambda^{\alpha}{ }_{\mu} \Lambda^{\beta}{ }_{\nu} g_{\alpha \beta} \equiv g_{\mu \nu} . \tag{4}
\end{equation*}
$$

Thus, the Minkowski metrik $g_{\mu \nu}$ has the same form in all inertial systems.
a) For two inertial systems Σ and Σ^{\prime}, which move uniformly relative to each other, we perform the ansatz

$$
\left(\Lambda_{\nu}^{\mu}\right)=\left(\begin{array}{cccc}
\Lambda_{0}^{0} & \Lambda^{0} & { }_{1} & 0 \tag{5}\\
\Lambda_{0}^{1} & \Lambda^{1} \\
{ }_{1} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Determine the equations for the four unknowns $\Lambda^{0}{ }_{0}, \Lambda^{0}{ }_{1}, \Lambda^{1}{ }_{0}$, and $\Lambda^{1}{ }_{1}$ from the Eqs. (3)-(5).
b) Assume that Σ^{\prime} moves relative to Σ with velocity v. Show from (1), (2), and (5) that this implies the relation

$$
\begin{equation*}
\Lambda_{0}^{1}=-\frac{v}{c} \Lambda_{1}^{1} . \tag{6}
\end{equation*}
$$

c) Determine uniquely the four unknowns $\Lambda^{0}{ }_{0}, \Lambda^{0}{ }_{1}, \Lambda^{1}{ }_{0}$, and $\Lambda^{1}{ }_{1}$ from a) and b) as well as from demanding that the Lorentz transformation reduces to the Galilei transformation in the limit $c \rightarrow \infty$.
d) Show that performing successively two Lorentz transformations yields again a Lorentz transformation

$$
\begin{equation*}
\Lambda_{\nu}^{\mu}(v)=\Lambda_{\kappa}^{\mu}\left(v_{2}\right) \Lambda_{\nu}^{\kappa}\left(v_{1}\right) \tag{7}
\end{equation*}
$$

and determine from this the Einstein addition theorem for velocities: $v=v\left(v_{1}, v_{2}\right)$. Is the addition theorem symmetric $v\left(v_{1}, v_{2}\right)=v\left(v_{2}, v_{1}\right)$? Evaluate the addition theorem for the special cases (i) $v_{1} \ll c, v_{2} \ll c$ and (ii) $v_{2} \rightarrow c$. (4 points)

Problem 2: Doppler Effect

Consider a wave propagating in inertial system Σ with light velocity c in x-direction, i.e. $\psi(x, t)=A e^{i(\omega t-k x)}$ with circular frequency $\omega=2 \pi f$ and frequency f as well as wave vector $k=2 \pi / \lambda$ and wave length λ. Another inertial system Σ^{\prime} moves with velocity v relative to Σ.
a) Transform the wave with a Galilei transformation from Σ to Σ^{\prime}. Determine for the wave in Σ^{\prime} both the frequency f^{\prime} and the wave length λ^{\prime}. What result do you get for the light velocity c^{\prime} in Σ^{\prime} ?
b) Analyze now correspondingly the consequences for a Lorentz transformation from Σ to Σ^{\prime}.
c) The H_{α}-line of a star $(\lambda=6563 \AA)$ appears red shifted by $30 \AA$. How fast is the star moving away from Earth?
(2 points)
d) The quasar PC $0910+5625$ moves away from Earth at the velocity $v=0.92 c$. How large is the dimensionless red shift $z=\left(\lambda^{\prime}-\lambda\right) / \lambda$ for an observer on Earth?
(2 points)

Drop the solutions in the post box on the 5 th floor of building 46 or, in case of illness/quarantine, send them via email to axel.pelster@physik.uni-kl.de until May 6 at 12.00 .

