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Department of Physics Priv.-Doz. Dr. Axel Pelster

Quantum Field Theory Problem Sheet 2

Problem 3: Propagators of Schrödinger Theory

Consider a non-relativistic particle of mass m, which moves in one dimension under the

influence of a potential V (x). Then the corresponding wave function ψ(x, t) evolves from an

initial wave function

ψ(x0, t0) = ψ0(x0, t0) (1)

given at time t0 according to the Schrödinger equation

i~
∂

∂t
ψ(x, t) =

{
− ~2

2m

∂2

∂x2
+ V (x)

}
ψ(x, t) (2)

In the following you solve this initial value problem (1), (2) with the help of the fundamental

solutions

un(x, t) = ϕn(x) exp

{
− i
~
Ent

}
(3)

where ϕn(x) represent the eigenfunctions and En the eigenvalues of the Hamilton operator:{
− ~2

2m

∂2

∂x2
+ V (x)

}
ϕn(x) = Enϕn(x) . (4)

Note that the quantum numbers n can be both discrete and continuous. The orthonormality

and completeness relation of the fundamental solutions are then given by

(un(x, t), un′(x, t)) = δ(n− n′) , (5)∑
n

∫
un(x, t)u∗n(x0, t) = δ(x− x0) , (6)

Here δ(n−n′) in the orthonormality relation (5) represents the Kronecker symbol for discrete

and the Dirac delta function for continuous quantum numbers, respectively. Correspondingly

one has to use in the completeness relation (6) the sum (integral) for discrete (continuous)

quantum numbers. Furthermore, the scalar product of the Schrödinger theory is defined via

(ψ1(x, t), ψ2(x, t)) =

∫ ∞
−∞

dxψ∗1(x, t)ψ2(x, t) . (7)

a) Using the completeness relation (6) the solution ψ(x, t) of the Schrödinger equation (2)

can be decomposed in the fundamental solutions un(x, t):

ψ(x, t) =
∑
n

∫
cnun(x, t) . (8)
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Determine the expansion coefficients cn from the initial condition (1). Show that the time

evolution of the wave function ψ(x, t) is related to the initially given wave function (1)

according to

ψ(x, t) = (G∗I (x, t;x0, t0), ψ0(x0, t0)) . (9)

Show that the propagator GI(x, t;x0, t0) depends on the fundamental solutions un(x, t) via

GI(x, t;x0, t0) =
∑
n

∫
un(x, t)u∗n(x0, t0) (10)

(2 points)

b) Prove the following properties of the propagator GI(x, t;x0, t0):

• It solves the initial value problem

i~
∂

∂t
GI(x, t;x0, t0) =

{
− ~2

2m

∂2

∂x2
+ V (x)

}
GI(x, t;x0, t0) , (11)

GI(x, t0;x0, t0) = δ(x− x0) . (12)

• It obeys the group property GI(x3, t3;x1, t1) = (G∗I (x3, t3;x2, t2), GI(x2, t2;x1, t1)).

• It fulfills the symmetry relation GI(x, t;x0, t0) = G∗I (x0, t0;x, t). (3 points)

c) Consider now the special case of a freely moving non-relativistic particle. The fundamen-

tal solutions of the Schrödinger equation for V (x) = 0 are given by plane waves:

up(x, t) = Np exp

{
i

~
(px− Ept)

}
. (13)

Which dispersion Ep do you get? Find the normalization constants Np from the orthonor-

mality relation (5) and verify the completeness relation (6). Perform the integration in (10)

explicitly and determine the propagator GFP
I (x, t;x0, t0) of the free particle. Show that the

propagator GFP
I (x, t;x0, t0) of the free particle fulfills, indeed, the properties of 3b).

Note: Prove the Fresnel integral ∫ ∞
−∞

dx e−ix
2

=

√
π

i
. (14)

To this end use the complex integral I =
∮
CR
dz e−z

2
along the closed curve

CR =


z(t) = t ; t ∈ [0, R] ,

z(t) = Reit ; t ∈ [0, π/4] ,

z(t) = teiπ/4 ; t ∈ [R, 0]

(15)
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and reduce the Fresnel integral (14) in the limit R → ∞ to the Gaussian integral∫∞
−∞ dx e−x

2
=
√
π. (6 points)

d) Within the realm of perturbation theory investigate now the impact of an external po-

tential upon the non-relativistic particle, where one has to solve the Schrödinger equation

with respect to an additional inhomogeneity:

i~
∂

∂t
ψ(x, t) =

{
− ~2

2m

∂2

∂x2
+ V (x)

}
ψ(x, t) + ξ(x, t) . (16)

To this end perform a decomposition of the inhomogeneity ξ(x, t) with respect to the eigen-

functions ϕn(x) and a Fourier transformation with respect to the time:

ξ(x, t) =
∑
n

∫ ∫ ∞
−∞

dE

2π~
ϕn(x) exp

{
− i
~
Et

}
ξ(n,E) . (17)

With a corresponding decomposition of the particular solution ψ(x, t) of the inhomogeneous

Schrödinger equation (16) you obtain a connection between the respective expansion coeffi-

cients ξ(n,E) and ψ(n,E). Prove the integral

lim
η↓0

∫ ∞
−∞

dE

2π~
1

E − En + iη
exp

{
− i
~
E(t− t0)

}
= − i

~
Θ(t− t0) exp

{
− i
~
En(t− t0)

}
(18)

with the help of the residue theorem, where Θ(t− t0) denotes the Heaviside function:

Θ(t− t0) =

{
1 ; t > t0 ,

0 ; t < t0 .
(19)

Prove with this that the particular solution ψ(x, t) has the following form:

ψ(x, t) =

∫ ∞
−∞

dx0

∫ ∞
−∞

dt0GII(x, t;x0, t0) ξ(x0, t0) . (20)

What is the relation between the propagators GI(x, t;x0, t0) and GII(x, t;x0, t0)? Prove

that the propagator GII(x, t;x0, t0) is a particular solution of the following inhomogeneous

Schrödinger equation

i~
∂

∂t
GII(x, t;x0, t0) =

{
− ~2

2m

∂2

∂x2
+ V (x)

}
GII(x, t;x0, t0) + δ(x− x0)δ(t− t0) . (21)

(4 points)

e) Summarize the previous results by deriving the Lippmann-Schwinger integral equation

for the propagator GI(x, t;x0, t0):

GI(x, t;x0, t0) = GFP
I (x, t;x0, t0)

− i
~

∫ ∞
−∞

dx′0

∫ t

t0

dt′0G
FP
I (x, t;x′0, t

′
0)V (x′0)GI(x

′
0, t
′
0;x0, t0) . (22)
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In case that the potential V (x) is small, the propagator GI(x
′
0, t
′
0;x0, t0) on the right-hand

side of the Lippmann-Schwinger integral equation can be approximated by the free-particle

propagator GFP
I (x′0, t

′
0;x0, t0). Determine the propagator GI(x, t;x0, t0) in this order by as-

suming a harmonic oscillator for the potential V (x). To this end prove the integral∫ ∞
−∞

dx x2 eix
2

=
i

2

√
iπ (23)

with the help of the Fresnel integral (14). (5 points)

f) Within a second quantization of the Schrödinger theory both fields ψ(x, t) and ψ∗(x, t)

go over into the field operators ψ̂(x, t) and ψ̂†(x, t). In case of a bosonic field quantization

one has to postulate equal-time canonical commutator relations between the field operators

ψ̂(x, t) and ψ̂†(x, t):[
ψ̂(x, t), ψ̂(x0, t)

]
−

=
[
ψ̂†(x, t), ψ̂†(x0, t)

]
−

= 0 ,
[
ψ̂(x, t), ψ̂†(x0, t)

]
−

= δ(x− x0) . (24)

Expand both field operators with respect to the fundamental solutions un(x, t):

ψ̂(x, t) =
∑
n

∫
ĉn un(x, t) , ψ̂†(x, t) =

∑
n

∫
ĉ†n u

∗
n(x, t) . (25)

Determine the commutator relations between the operators ĉn and ĉ†n. Determine with this

• the commutator of the field operators at different times[
ψ̂(x, t), ψ̂†(x0, t0)

]
−

=? , (26)

• the vacuum expectation value of the time-ordered product of the field operators

− i
~
〈0|T̂

(
ψ̂(x, t)ψ̂†(x0, t0)

)
|0〉 =? . (27)

Here the action of the time-ordering operator T̂ upon two field operators Â(x, t) and B̂(x, t)

is defined according to

T̂
(
Â(x, t)B̂(x0, t0)

)
= Θ(t− t0) Â(x, t)B̂(x0, t0) + Θ(t0 − t) B̂(x0, t0)Â(x, t) (28)

and the vacuum state |0〉 is given by ĉn|0〉 = 0 for all n. With which propagators can you

identify (26) and (27), respectively? (3 points)

Drop the solutions in the post box on the 5th floor of building 46 or send

them via email to radonjic@physik.uni-kl.de until November 12, 2020 at

12.00!


