Quantum Field Theory

Problem Sheet 3

Problem 4: Lorentz Group I

A coordinate transformation $x^{\mu}=\Lambda^{\mu}{ }_{\nu} x^{\nu}$ is a Lorentz transformation if the Minkowski metric g is invariant:

$$
\begin{equation*}
g_{\mu \nu}=\Lambda^{\sigma}{ }_{\mu} \Lambda^{\rho}{ }_{\nu} g_{\sigma \rho} \tag{1}
\end{equation*}
$$

a) Investigate the Lorentz transformations in the vicinity of the unity element. To this end exploit the ansatz $\Lambda^{\mu}{ }_{\nu}=g^{\mu}{ }_{\nu}+w^{\mu}{ }_{\nu}$ and show that it solves (1) for small deviations $w^{\mu}{ }_{\nu}$ provided that $w^{\mu}{ }_{\nu}$ fulfills a condition.
(1 point)
b) Decompose $w^{\mu}{ }_{\nu}=-\frac{i}{2}\left(L^{\alpha \beta}\right)^{\mu}{ }_{\nu} w_{\alpha \beta}$ into the expansion coefficients $w_{\alpha \beta}$ and the basis generators $\left(L^{\alpha \beta}\right)^{\mu}{ }_{\nu}$. Show that the basis generators $L^{\alpha \beta}$ of the Lorentz group in the Minkowski space-time are given by the following representation matrices:

$$
\begin{equation*}
\left(L^{\alpha \beta}\right)^{\mu}{ }_{\nu}=i\left(g^{\alpha \mu} g^{\beta}{ }_{\nu}-g^{\beta \mu} g^{\alpha}{ }_{\nu}\right) . \tag{2}
\end{equation*}
$$

c) Prove the symmetry properties

$$
\begin{align*}
& \left(L^{\alpha \beta}\right)^{\mu}{ }_{\nu}+\left(L^{\alpha \beta}\right)_{\nu}^{\mu}=0, \tag{3}\\
& \left(L^{\alpha \beta}\right)^{\mu}{ }_{\nu}+\left(L^{\beta \alpha}\right)^{\mu}{ }_{\nu}=0, \tag{4}
\end{align*}
$$

and demonstrate that the commutator of the basis generators is given by

$$
\begin{equation*}
\left[L^{\alpha \beta}, L^{\gamma \delta}\right]_{-}=i\left(g^{\alpha \delta} L^{\beta \gamma}+g^{\beta \gamma} L^{\alpha \delta}-g^{\alpha \gamma} L^{\beta \delta}-g^{\beta \delta} L^{\alpha \gamma}\right) . \tag{5}
\end{equation*}
$$

d) The basis generators $L^{\alpha \beta}$ can be divided into two classes:

$$
\begin{equation*}
M_{k}=L^{0 k}, \quad L_{k}=\frac{1}{2} \epsilon_{k l m} L^{l m} \tag{6}
\end{equation*}
$$

where the Latin indices take the values $1,2,3$, whereas the Greek indices can have the values $0,1,2,3$. Using (5) determine the commutators

$$
\begin{equation*}
\left[M_{k}, M_{l}\right]_{-}=?, \quad\left[L_{k}, L_{l}\right]_{-}=?, \quad\left[L_{k}, M_{l}\right]_{-}=? \tag{7}
\end{equation*}
$$

Problem 5: Lorentz Group II

a) Determine the Lorentz transformation $R(\boldsymbol{\varphi})$ between two inertial systems S and S^{\prime}, which are rotated with respect to each other. To this end apply the Lie theorem and evaluate

$$
\begin{equation*}
R(\boldsymbol{\varphi})=\exp (-i \boldsymbol{L} \boldsymbol{\varphi}) \tag{8}
\end{equation*}
$$

where the matrix-valued exponential function is defined via its Taylor series.
b) Verify the following two properties of $R(\boldsymbol{\varphi})$:

$$
\begin{align*}
\operatorname{Tr} R(\boldsymbol{\varphi}) & =2+2 \cos |\boldsymbol{\varphi}|, \tag{9}\\
R(\boldsymbol{\varphi})\binom{0}{\boldsymbol{\varphi}} & =\binom{0}{\boldsymbol{\varphi}} . \tag{10}
\end{align*}
$$

c) Find the boost transformation $B(\boldsymbol{\xi})$ between two inertial systems S and S^{\prime}, which move uniformly with respect to each other. Apply to this end the Lie theorem and evaluate explicitly the matrix-valued exponential function

$$
\begin{equation*}
B(\boldsymbol{\xi})=\exp (-i \boldsymbol{M} \boldsymbol{\xi}) . \tag{11}
\end{equation*}
$$

d) Demonstrate then the relation

$$
\begin{equation*}
\boldsymbol{\xi}=\boldsymbol{\xi}(\boldsymbol{v}) \tag{12}
\end{equation*}
$$

between the rapidity $\boldsymbol{\xi}$ and the velocity \boldsymbol{v}, with which the coordinate system S^{\prime} moves with respect to the other coordinate system S . The relation (12) follows from demanding that the origin of S^{\prime} being described by the coordinates of S and S^{\prime} according to

$$
\begin{equation*}
\left(x^{\mu}\right)=\binom{c t}{\boldsymbol{v} t}, \quad\left(x^{\prime \mu}\right)=\binom{c t^{\prime}}{\mathbf{0}} \tag{13}
\end{equation*}
$$

and the boost transformation (11) relating them via $x^{\prime \mu}=(B(\boldsymbol{\xi}))^{\mu}{ }_{\nu} x^{\nu}$. What is the resulting relationship between t und t^{\prime} ? With the help of (11) and (12) display that the boost transformation B depends on the velocity \boldsymbol{v} :

$$
\begin{equation*}
B(\boldsymbol{v})=B(\boldsymbol{\xi}(\boldsymbol{v})) . \tag{14}
\end{equation*}
$$

e) For $\boldsymbol{v}=v \boldsymbol{e}$ with an arbitrary unity vector \boldsymbol{e} the boost transformations (14) represent a subgroup of the Lorentz group. Show the corresponding closure relation

$$
\begin{equation*}
B(\boldsymbol{v})=B\left(\boldsymbol{v}_{2}\right) B\left(\boldsymbol{v}_{1}\right) \tag{15}
\end{equation*}
$$

and the addition theorem for velocities

$$
\begin{equation*}
\boldsymbol{v}=\boldsymbol{v}\left(\boldsymbol{v}_{1}, \boldsymbol{v}_{2}\right) \tag{16}
\end{equation*}
$$

Is the result symmetric with respect to the velocities \boldsymbol{v}_{1} and \boldsymbol{v}_{2} ? What would one get in the limits $v_{1} \ll c, v_{2} \ll c$ and $v_{2}=c$, respectively?
(2 points)

Problem 6: Lorentz Group III

The infinitesimal Lorentz transformation of a space-time four-vector is given by

$$
\begin{align*}
x^{\prime \mu} & =\Lambda^{\mu}{ }_{\nu} x^{\nu}, \tag{17}\\
\Lambda^{\mu}{ }_{\nu} & =g^{\mu}{ }_{\nu}+\omega^{\mu}{ }_{\nu}, \tag{18}\\
\omega^{\mu}{ }_{\nu} & =-\frac{i}{2}\left(L^{\alpha \beta}\right)^{\mu}{ }_{\nu} \omega_{\alpha \beta} . \tag{19}
\end{align*}
$$

a) Consider a scalar field $\psi(x)$, which is invariant with respect to a Lorentz transformation:

$$
\begin{equation*}
\psi^{\prime}(x)=\psi\left(\Lambda^{-1} x\right) \tag{20}
\end{equation*}
$$

With the help of (17)-(19) employ (20) to infinitesimal Lorentz transformations. Show

$$
\begin{equation*}
\psi^{\prime}(x)=\left\{1-\frac{i}{2} \omega_{\alpha \beta} \hat{L}^{\alpha \beta}\right\} \psi(x) \tag{21}
\end{equation*}
$$

where the differential operators

$$
\begin{equation*}
\hat{L}^{\alpha \beta}=\frac{1}{\hbar}\left\{x^{\alpha} \hat{p}^{\beta}-x^{\beta} \hat{p}^{\alpha}\right\} \tag{22}
\end{equation*}
$$

contain the momentum operators $\hat{p}^{\alpha}=i \hbar \partial^{\alpha}$.
b) Determine the commutators of the differential operators (22) with respect to both spacetime and momentum operators:

$$
\begin{equation*}
\left[\hat{L}^{\alpha \beta}, x^{\gamma}\right]_{-}=?, \quad\left[\hat{L}^{\alpha \beta}, \hat{p}^{\gamma}\right]_{-}=? . \tag{23}
\end{equation*}
$$

With the help of (23) show that the differential operators have the commutator

$$
\begin{equation*}
\left[\hat{L}^{\alpha \beta}, \hat{L}^{\gamma \delta}\right]_{-}=i\left(g^{\alpha \delta} \hat{L}^{\beta \gamma}+g^{\beta \gamma} \hat{L}^{\alpha \delta}-g^{\alpha \gamma} \hat{L}^{\beta \delta}-g^{\beta \delta} \hat{L}^{\alpha \gamma}\right) . \tag{24}
\end{equation*}
$$

Which conclusion can you draw from comparing (5) and (24)?

Drop the solutions in the post box on the 5 th floor of building 46 or send them via email to radonjic@physik.uni-kl.de until November 19, 2020 at 12.00!

