WS 2020/2021
Department of Physics

Priv.-Doz. Dr. Axel Pelster

Quantum Field Theory

Problem Sheet 7

Problem 13: Quantization of Maxwell Field

The operators of the transversal vector potential $\hat{A}_{\perp i}(\mathbf{x}, t)$ and their canonical conjugated momenta $\hat{\pi}_{i}(\mathbf{x}, t)=\epsilon_{0} \frac{\partial \hat{A}_{\perp i(\mathbf{x}, t)}}{\partial t}$ in the Heisenberg picture obey the equal-time commutation relations

$$
\left[\hat{\pi}_{i}(\mathbf{x}, t), \hat{\pi}_{j}\left(\mathbf{x}^{\prime}, t\right)\right]_{-}=\left[\hat{A}_{\perp i}(\mathbf{x}, t), \hat{A}_{\perp j}\left(\mathbf{x}^{\prime}, t\right)\right]_{-}=0,\left[\hat{A}_{\perp i}(\mathbf{x}, t), \hat{\pi}_{j}\left(\mathbf{x}^{\prime}, t\right)\right]_{-}=i \hbar \delta_{i j}^{\perp}\left(\mathbf{x}-\mathbf{x}^{\prime}\right)(1)
$$

with the transversal delta function

$$
\begin{equation*}
\delta_{i j}^{\perp}\left(\mathbf{x}-\mathbf{x}^{\prime}\right)=\delta_{i j} \delta\left(\mathbf{x}-\mathbf{x}^{\prime}\right)+\frac{1}{4 \pi} \partial_{j}^{\prime} \partial_{i}^{\prime} \frac{1}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|} \tag{2}
\end{equation*}
$$

a) Demonstrate that the commutation relations (1) are compatible with the quantized version of the transversality condition

$$
\begin{equation*}
\partial_{i} \hat{A}_{\perp i}(\mathbf{x}, t)=0 . \tag{3}
\end{equation*}
$$

Here we have used the Einstein summation convention that implies a summation over equal indices.
b) In the lecture it is shown that the field operator $\hat{\mathbf{A}}_{\perp}(\mathbf{x}, t)$ has the following Fourier decomposition:

$$
\begin{equation*}
\hat{\mathbf{A}}_{\perp}(\mathbf{x}, t)=\sum_{\lambda= \pm} \int d^{3} k N_{\mathbf{k}}\left\{\boldsymbol{\epsilon}(\mathbf{k}, \lambda) e^{i\left(\mathbf{k x}-\omega_{\mathbf{k}} t\right)} \hat{a}_{\mathbf{k}, \lambda}+\boldsymbol{\epsilon}(\mathbf{k}, \lambda)^{*} e^{-i\left(\mathbf{k x}-\omega_{\mathbf{k}} t\right)} \hat{a}_{\mathbf{k}, \lambda}^{\dagger}\right\} \tag{4}
\end{equation*}
$$

Here the dispersion reads $\omega_{\mathbf{k}}=c|\mathbf{k}|$ and the polarization vectors $\boldsymbol{\epsilon}(\mathbf{k}, \lambda)$ fulfill the properties

$$
\begin{equation*}
\mathbf{k} \boldsymbol{\epsilon}(\mathbf{k}, \lambda)=0, \quad \boldsymbol{\epsilon}(\mathbf{k}, \lambda) \boldsymbol{\epsilon}\left(\mathbf{k}, \lambda^{\prime}\right)^{*}=\delta_{\lambda, \lambda^{\prime}}, \quad \boldsymbol{\epsilon}(-\mathbf{k}, \lambda)=\boldsymbol{\epsilon}(\mathbf{k},-\lambda)=\boldsymbol{\epsilon}(\mathbf{k}, \lambda)^{*} . \tag{5}
\end{equation*}
$$

Prove

$$
\begin{equation*}
\hat{a}_{\mathbf{k}, \lambda}=\frac{1}{2(2 \pi)^{3} N_{\mathbf{k}}} \int d^{3} x \boldsymbol{\epsilon}(-\mathbf{k}, \lambda) e^{-i\left(\mathbf{k} \mathbf{x}-\omega_{\mathbf{k}} t\right)}\left\{\hat{\mathbf{A}}_{\perp}(\mathbf{x}, t)+\frac{i}{\epsilon_{0} \omega_{\mathbf{k}}} \hat{\boldsymbol{\pi}}(\mathbf{x}, t)\right\} \tag{6}
\end{equation*}
$$

and the corresponding relation for $\hat{a}_{\mathbf{k}, \lambda}^{\dagger}$.
c) Determine the commutators

$$
\begin{equation*}
\left[\hat{a}_{\mathbf{k}, \lambda}, \hat{a}_{\mathbf{k}^{\prime}, \lambda^{\prime}}\right]_{-}=?, \quad\left[\hat{a}_{\mathbf{k}, \lambda}^{\dagger}, \hat{a}_{\mathbf{k}^{\prime}, \lambda^{\prime}}^{\dagger}\right]_{-}=?, \quad\left[\hat{a}_{\mathbf{k}, \lambda}, \hat{a}_{\mathbf{k}^{\prime}, \lambda^{\prime}}^{\dagger}\right]_{-}=? . \tag{7}
\end{equation*}
$$

How do you have to fix the normalization constants $N_{\mathbf{k}}$, so that the operators $\hat{a}_{\mathbf{k}, \lambda}$ and $\hat{a}_{\mathbf{k}, \lambda}^{\dagger}$ can be interpreted as annihilation and creation operators of a single particle? (6 points)
d) According to the lecture the Hamilton operator of the electromagnetic field reads

$$
\begin{equation*}
\hat{H}=\frac{1}{2} \int d^{3} x\left\{\frac{1}{\epsilon_{0}} \hat{\pi}_{i}(\mathbf{x}, t) \hat{\pi}_{i}(\mathbf{x}, t)+\frac{1}{\mu_{0}} \partial_{i} \hat{A}_{\perp j}(\mathbf{x}, t) \partial_{i} \hat{A}_{\perp j}(\mathbf{x}, t)\right\} . \tag{8}
\end{equation*}
$$

Show that the normal ordered Hamilton operator : $\hat{H}:=\hat{H}-\langle 0| \hat{H}|0\rangle$ has the following representation:

$$
\begin{equation*}
: \hat{H}:=\sum_{\lambda= \pm 1} \int d^{3} k \hbar \omega_{\mathbf{k}} \hat{a}_{\mathbf{k}, \lambda}^{\dagger} \hat{a}_{\mathbf{k}, \lambda} . \tag{9}
\end{equation*}
$$

(4 points)
e) The momentum operator of the electromagnetic field reads

$$
\begin{equation*}
\hat{\mathbf{p}}=\int d^{3} x\left[\boldsymbol{\nabla} \times \hat{\mathbf{A}}_{\perp}(\mathbf{x}, t)\right] \times \hat{\boldsymbol{\pi}}(\mathbf{x}, t) . \tag{10}
\end{equation*}
$$

Demonstrate that the normal ordered momentum operator : $\hat{\mathbf{p}}:=\hat{\mathbf{p}}-\langle 0| \hat{\mathbf{p}}|0\rangle$ has the following representation

$$
\begin{equation*}
: \hat{\mathbf{p}}:=\sum_{\lambda= \pm 1} \int d^{3} k \hbar \mathbf{k} \hat{a}_{\mathbf{k}, \lambda}^{\dagger} \hat{a}_{\mathbf{k}, \lambda} . \tag{11}
\end{equation*}
$$

f) The spin operator of the electromagnetic field reads

$$
\begin{equation*}
\hat{\mathbf{S}}=\int d^{3} x \hat{\mathbf{A}}_{\perp}(\mathbf{x}, t) \times \hat{\boldsymbol{\pi}}(\mathbf{x}, t) . \tag{12}
\end{equation*}
$$

Prove that the normal ordered spin operator : $\hat{\mathbf{S}}:=\hat{\mathbf{S}}-\langle 0| \hat{\mathbf{S}}|0\rangle$ possesses the following representation

$$
\begin{equation*}
: \hat{\mathbf{S}}:=\sum_{\lambda= \pm 1} \int d^{3} k \lambda \hbar \frac{\mathbf{k}}{|\mathbf{k}|} \hat{a}_{\mathbf{k}, \lambda}^{\dagger} \hat{a}_{\mathbf{k}, \lambda} . \tag{13}
\end{equation*}
$$

Hint: Use the following identity for the polarization vectors

$$
\begin{equation*}
\boldsymbol{\epsilon}(\mathbf{k}, \lambda) \times \boldsymbol{\epsilon}\left(\mathbf{k}, \lambda^{\prime}\right)^{*}=-i \lambda \frac{\mathbf{k}}{|\mathbf{k}|} \delta_{\lambda \lambda^{\prime}} . \tag{14}
\end{equation*}
$$

Drop the solutions in the post box on the 5 th floor of building 46 or send them via email to radonjic@physik.uni-kl.de until December 31, 2020 at 12.00!

