TU KAISERSLAUTERN Department of Physics WS 2020/2021 Priv.-Doz. Dr. Axel Pelster

Quantum Field Theory

Problem Sheet 9

Problem 16: Foldy-Wouthuysen Representation for Field-Free Case

A free spin 1/2 particle with mass m is described in Dirac representation via a four-spinor ψ , which obeys the evolution equation

$$i\hbar \frac{\partial \psi}{\partial t} = \hat{H}_{\rm D} \psi \tag{1}$$

with the Hamilton operator

$$\hat{H}_{\rm D} = c\vec{\alpha}\hat{\vec{p}} + \beta mc^2 \,. \tag{2}$$

Here α_j with j = 1, 2, 3 and β denote the 4×4 matrices

$$\alpha_j = \begin{pmatrix} \mathbf{0} & \sigma_j \\ \sigma_j & \mathbf{0} \end{pmatrix}, \qquad \beta = \begin{pmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{0} & -\mathbf{1} \end{pmatrix}, \tag{3}$$

which consist of 2×2 Pauli matrices

$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \qquad \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \qquad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix},$$
(4)

as well as the 2×2 identity matrix 1 and the 2×2 zero matrix 0.

a) Go now over from the Dirac representation to another representation by applying the unitary transformation

$$\phi = \hat{T}\psi, \qquad \hat{T} = e^{i\hat{S}} \tag{5}$$

with a hermitian operator \hat{S} . To this end transform the equation of motion (1) and determine the transformed Hamilton operator. (1 point)

b) With this you arrive at the Foldy-Wouthuysen representation by choosing

$$\hat{S} = -if(\hat{\vec{p}})\beta\vec{\alpha}\hat{\vec{p}},\tag{6}$$

where $f(\hat{\vec{p}})$ denotes a yet unknown function of the momentum operator $\hat{\vec{p}}$. Is the operator \hat{S} hermitian? Explicitly determine the unitary operator $\hat{T} = e^{i\hat{S}}$ by expanding the exponential function into a Taylor series. (2 points)

- c) State the Hamilton operator \hat{H}_{FW} in the Foldy-Wouthuysen representation. How do you have to choose the yet unknown function $f(\hat{\vec{p}})$, so that the Hamilton operator \hat{H}_{FW} becomes diagonal? Which expression do you then get for the diagonalized Hamilton operator \hat{H}_{FW} ?

 (3 points)
- d) Determine the orthonormalized four-spinors in the Foldy-Wouthuysen representation, which correspond to plane waves. Afterwards, calculate those plane waves in the original Dirac representation. (3 points)

Problem 17: Foldy-Wouthuysen Representation with Electromagnetic Field

Provided that a spin 1/2 particle with mass m and charge q is coupled to a vector potential \vec{A} and a scalar potential ϕ , the Hamilton operator in the Dirac representation in the SI units system reads

$$\hat{H} = c\vec{\alpha} \left(\vec{p} - q\vec{A} \right) + \beta mc^2 + q\phi I, \qquad (7)$$

where I is the 4×4 identity matrix. In the non-relativistic limit one can approximately construct a unitary transformation, where the upper and the lower two components of the four-spinor are decoupled from each other. Here, one distinguishes two kinds of operators. Odd (even) operators like α_j (β ,I) are those, which (do not) couple to the upper and the lower components.

a) Determine the Taylor series of the operator function

$$\hat{H}'(\lambda) = e^{i\lambda\hat{S}} \left(\hat{H} - i\hbar \frac{\partial}{\partial t} \right) e^{-i\lambda\hat{S}}$$
(8)

and with this prove the Baker-Hausdorff identity

$$\hat{H}' = e^{i\hat{S}} \left(\hat{H} - i\hbar \frac{\partial}{\partial t} \right) e^{-i\hat{S}} = \hat{H} + i \left[\hat{S}, \hat{H} \right]_{-} + \frac{i^{2}}{2} \left[\hat{S}, \left[\hat{S}, \hat{H} \right]_{-} \right]_{-} + \frac{i^{3}}{6} \left[\hat{S}, \left[\hat{S}, \hat{H} \right]_{-} \right]_{-} + \frac{i^{4}}{24} \left[\hat{S}, \left[\hat{S}, \left[\hat{S}, \hat{H} \right]_{-} \right]_{-} \right]_{-} + \dots - \hbar \left(\dot{\hat{S}} + \frac{i}{2} \left[\hat{S}, \dot{\hat{S}} \right]_{-} + \frac{i^{2}}{6} \left[\hat{S}, \left[\hat{S}, \dot{\hat{S}} \right]_{-} \right]_{-} + \dots \right).$$
 (9)
$$(3 \text{ points})$$

b) Now perform the unitary transformation

$$\hat{T} = e^{i\hat{S}}, \qquad \hat{S} = \frac{-i}{mc^2} \beta \hat{O}, \qquad (10)$$

where \hat{O} denotes a yet unknown odd operator with the anti-commuting property $[\beta, \hat{O}]_+ = 0$. Expand the transformed Hamilton operator (9) in powers of $1/mc^2$ up to the order $(1/mc^2)^3$. How do you have to fix the operator \hat{O} , so that \hat{H}' only consists of even operators up to the order $(1/mc^2)^0$? Show that the transformed Hamilton operator \hat{H}' has the form

$$\hat{H}' = \beta mc^{2} + q\phi I + \frac{a_{1}}{mc^{2}}\beta \hat{U}^{2} + \frac{a_{2}}{m^{2}c^{4}} \left[\hat{U}, \left[\hat{U}, q\phi \right]_{-} \right]_{-} + \frac{i\hbar a_{3}}{m^{2}c^{4}} \left[\hat{U}, \dot{\hat{U}} \right]_{-} + \frac{a_{4}}{m^{3}c^{6}}\beta \hat{U}^{4} + \frac{a_{5}}{mc^{2}}\beta \left[\hat{U}, q\phi \right]_{-} \right]_{-} + \frac{i\hbar a_{6}}{mc^{2}}\beta \dot{\hat{U}} + \frac{a_{7}}{m^{2}c^{4}}\hat{U}^{3} + \frac{a_{8}}{m^{3}c^{6}}\beta \left[\hat{U}, \left[\hat{U}, q\phi \right]_{-} \right]_{-} + \frac{i\hbar a_{9}}{m^{3}c^{6}}\beta \left[\hat{U}, \left[\hat{U}, \dot{\hat{U}} \right]_{-} \right]_{-}$$

$$(11)$$

with the odd operator

$$\hat{U} = c\vec{\alpha} \left(\hat{\vec{p}} - q\vec{A} \right) \tag{12}$$

and determine the coefficients a_1, \ldots, a_9 . (4 points)

c) Perform further successive unitary transformations

$$\hat{T}' = e^{i\hat{S}'}, \qquad \hat{S}' = \frac{-i}{m^2 c^4} \beta \hat{O}',$$
 (13)

$$\hat{T}'' = e^{i\hat{S}''}, \qquad \hat{S}'' = \frac{-i}{m^3 c^6} \beta \hat{O}'',$$
 (14)

$$\hat{T}'' = e^{i\hat{S}''}, \qquad \hat{S}'' = \frac{-i}{m^3 c^6} \beta \hat{O}'', \qquad (14)$$

$$\hat{T}''' = e^{i\hat{S}'''}, \qquad \hat{S}''' = \frac{-i}{m^4 c^8} \beta \hat{O}''', \qquad (15)$$

so that the transformed Hamilton operators \hat{H}'' , \hat{H}''' , \hat{H}'''' up to the orders $(1/mc^2)^1$, $(1/mc^2)^2$, $(1/mc^2)^3$ consist only of even operators. Determine how the transformed Hamilton operators \hat{H}'' , \hat{H}''' , \hat{H}'''' depend on the odd operators \hat{U} up to the order $(1/mc^2)^3$. (4 points)

d) Specialize your result for $\hat{H}^{\prime\prime\prime\prime}$ by substituting \hat{U} according to (12) and by introducing the electromagnetic fields $\vec{E} = -\operatorname{grad} \phi - \dot{\vec{A}}$ and $\vec{B} = \operatorname{rot} \vec{A}$. How can you physically interpret the respective terms in \hat{H}'''' ? (4 points)

Hint: Show at first $(\vec{\alpha}\vec{A})(\vec{\alpha}\vec{B}) = \vec{A}\vec{B} + i\vec{\Sigma}(\vec{A}\times\vec{B})$, where the vector of the 4×4 spin matrices Σ is given by

$$\Sigma_j = \begin{pmatrix} \sigma_j & \mathbf{0} \\ \mathbf{0} & \sigma_j \end{pmatrix} . \tag{16}$$

Drop the solutions in the post box on the 5th floor of building 46 or send them via email to radonjic@physik.uni-kl.de until January 14, 2021 at 12.00!