Chapter 11

Mogller Scattering

In the last chapter we apply our previous findings in order to calculate the cross section for the

concrete example of an elastic scattering of two electrons:
e e —e e . (11.1)

This represents a paradigmatic scattering process in quantum field theory, which is named after
the Danish physicist Christian Mgller. The interaction between two electrons, that is idealized
in the Mgller scattering, forms the theoretical basis of many familiar physical phenomena such
as, for instance, the repulsion between the two electrons of the helium atom. Furthermore,
Mgller scattering is a fundamental, purely pointlike process in quantum electrodynamics, which
provides an important means to test the standard model of elementary particle physics. In
addition, it is the dominant physical process in low-energy (< 100 MeV) electron scattering
experiments. Thus, it is an important constraint in the design of electron scattering experiments

that search for new physics beyond the standard model.

First we apply the perturbative technique worked out in Chapter 10 and determine the scat-
tering matrix in the leading non-vanishing order, which turns out to be the quadratic one. Due
to an intriguing cancellation of non-covariant terms the result is finally manifestly covariant
and consists of two expressions. Taking into account the Feyman rules these two analytic ex-
pressions can be graphically represented in terms of Feynman diagrams. Secondly, we assume
that the polarization is unknown for both the initial and the final electrons. This allows to
average the square of the scattering matrix with respect to the polarizations of the involved
electrons. The corresponding evaluation is quite technical and relies basically on the Clifford
algebra of the Dirac matrices. Thirdly we analyze in detail the kinematics of such a two-particle
scattering process by introducing the Lorentz-invariant Mandelstam variables. In particular,
we specialize the relativistic scattering problem for two particles to the center of mass reference
frame. This allows to express the Mandelstam variables just in terms of the scattering energy
and the scattering angle. And, finally, we determine the scattering cross section for the Mgller
scattering and discuss both the ultra-relativistic and the non-relativistic limit. In the latter

case we find that the Rutherford scattering formula is recovered for the forward peak.
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232 CHAPTER 11. MOLLER SCATTERING

11.1 Scattering Matrix

In the case of Mgller scattering, one investigates a scattering process, where two electrons in

the initial state

Vi) = [Pirs $ir3 Pias i) (11.2)

change into two electrons in the final state

W]f) = |pf173f1;pf275f2>' (11'3)

In the following we determine the matrix element of the scattering operator (10.186) up to the
second order in the charge ¢ = —e with respect to the initial state (11.2) and the final state
(11.3) according to (10.182). We observe that the zeroth order vanishes, since both states are
orthogonal to each other for different momenta p;,, p,, # Py, Py,

<pf17Sfl;pf278f2|pi178i1;pi27Si2> =0. (11'4)

Furthermore, also the first order disappears, since both the initial and the final state (11.2) and
(11.3) do not contain any photon and the first-order term in the scattering operator (10.186)
involves the operator of the vector potential, whose plane wave decomposition (8.154) contains
the annihilation and the creation of a photon. Therefore, the lowest non-vanishing perturbative

order is the quadratic one, which turns out to consist of two contributions:
(2) _ o(2,inst) (2,rad)
Sy = Sp ° + 55 o, (11.5)

The first contribution stems from the instantaneous Coulomb self-interaction of the Dirac field

. 9 . 70 005! )« b,
S(Z’lnSt) _ e /dt/dgx/d:}x/ <¢f‘ < J (X, t)j (X,t) . ’¢z> 7 (116)

Ji Smhegc?

while the second contribution represents an interaction between the Dirac and the Maxwell
field:

0 = -2ty [ T A < FOA ). (11)
fi 2.2 AT w(@) CORS S 0N :

Note that in (11.6) the time-like and in (11.7) the space-like components of the four-vector
current density operator (10.91) occur, respectively:

~

(@) = p(x)y"(). (11.8)

Here we take into account the plane wave decompositions of the spinor field operators (9.431)

and (9.432), which we rewrite according to

ES M2 ) . N v /b — A
Y(z) = /dgpzz W {emz/h U(p2732>512,52 +e /hU(P2752>dp2,52} , (11.9)
o P2

N M2 . ~ . o
1/1(1’) - /d3p1 Z (71'— {@*me/h u(p17 Sl)bphSl + e're/h U(pla Sl)dl];l,sl} 7(11'10>
s1
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where s = £1/2 denotes the helicity. With this one obtains for the four-vector current density
operator (11.8) the decomposition

Mc? Mc? . .
B c/d3p1 /d & 27rh 3E \/ 2%71)3E {61@2 e (p2 82)7Mu(p1’Sl)bgzﬁszlm
P1 p2

~ ~

+e PP Py, 50)7"0(P1, 51D, ol o, + €T PP TPy, 52)7 u(Dr, 81)dpysabps s
e PGy 5 yPu(pr, 51)dpg sadlh 1’51} , (11.11)

Evaluating the matrix element of the normal ordered operator : j°(x,t)7°(x’, ) : with the states

<pf175f1;pf2a5f2| <O|bpf2,3f2 P Sf 0 (1112)
bl o0, Db 10) (11.13)

’pim Siys Pigs si2> = bpil 181 PigsSig

then only the first summand in (11.11) leads to a non-vanishing contribution. For the instan-

taneous self-interaction of the Dirac field (11.6) this results in

- 2
(2,inst) —te 3 3, 3 3 3 3 }:} :E :}:

S1 52 S3 S4

" Mc? Mc? Mc? Mec? oi(Bpy—Epy )t/h ,~i(p2—p1)x/h
) Ey, \| Gl By, \| @rh By, \| Gl Ey,

xa(Pz,Sz)Vou(phSl)ei(EP‘*_Em)t/he*i(prp‘c’) X /M (py, s4)7 u(ps, s3)

XC(p1, P2, P3, Pa; S1, 52, S3, S4) - (11.14)

Here we have introduced a vacuum expectation value of creation and annihilation operators as

an abbreviation:

C(ph P2, P3, P4; 51, S2, 3, 84) = <O|bpf275f2 bpflvsfl : ler)z S2bp1751bL4784bp3753 : ler)il,Sil bi’igysiz O>
<O|bpf273f2 PS5 bLz 52 bL4 S4bP1781bP3 83b1>,1 10y p22,522 |O> (11-15)

where the evaluation of the normal ordering led to a minus sign due to the anti-commutator
algebra of the fermionic operators (9.405). Afterwards, we evaluate the interaction (11.7)
between the Dirac and the Maxwell fields. Here we use the bosonic definition of the time-
ordering operator (7.124) and note that the operators j*(z) and Ay (z) interchange with each
other. Furthermore, taking into account the initial and the final state defined according to
(11.2), (11.3), (11.12), and (11.13) yields

ray e? ! / o A SN A
Sﬁd’-@#@/ﬁ%/ﬁ%{W#—x%wﬂu%mmwwaﬂM&@nw>

+0( = ) (0| A 55 ) o) o)} =~ [t [t
X{@(xo_x )<O|A (2 ) »(2)[0) (PrisS11iPhas Spl ‘] () : -] (@) 2 [Py Sii Pis Sia)

~

+O(" = ) (1A (1) Au()]0) (P55, Prr sl - 77(8) < 2 J(@') iy i3 Piz i)} - (11.16)
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In the last step, we replaced the summations over the spatial indices k, [ by summations over
the spatio-temporal indices pu, v, since we have Ao(x) = 0 in the radiation gauge. The normal

ordering of the four-current density operator (11.11) leads to

M02 Mc?
= d? a3 11.1
c/ pl/ PQ\/ (2rh)E,, (11.17)

x {ez(P2*p1)$/h ﬂ(pg, 82)’)/“’&(131, Sl)bm 32b o+ ei(p2tp1)z/h ﬂ(pg, 82>’7NU(p1, Sl)bL2 SQdi)l .

+€_i(p1+p2)z/h U(pg, 32)7Hu(p17 Sl)dpz,SprhSl - 6_i(p2_p1)w/h 5(p2, 52)7uv(p1a Sl)di)l,adpz,ﬂ} '

Note that the normal ordering affected only the last term by changing its sign. Evaluating the
matrix element for the product of two normally ordered four-vector current density operators
: j#(x) @ : j¥(z) : with the states (11.12) and (11.13), then only the first summand in (11.17)
leads in both cases to a non-vanishing contribution:

<pf178f1;pf273f2‘ j#(x) : :51/(1./) : ’pi17si1;pi27322 = /dgpl/d p2/d3p3/d3p4
Mc? Mc? Mc? 4
i(p2—p1)z/h
) 3 30 e e

S1 S S3 S4

i(pa—p3)z’ /b =

XU(P2,52)’Y U(Pl,Sl) (p4 84) “U(P3,83) é(P17p2,P3ap4;81,S2,53,54)- (11~18)

The vacuum expectation value introduced here reads

C(pl’ P2, P3; P4; 51, 52, 53, S4> <0’bpf2 Sf2 pfl Sh b;27526p1 51b£4784bp3 SBbLzl,Szl bI)ZQ?'SZQ 0>
<O|bpf275f2 Pf155f1 pr2752bP4»34bp1751bp3753b;r)11 1Siq bLl27sl2 0>
+5(p1 - p4)5s1,s4 <O|bpf2,5f2 bpfl,Sf1 bL2732bp3,53bLi1 Siy bLQ’sQ O> , (1119)

where we have applied the anti-commutator algebra of the fermionic operators (9.405). In
(11.19) the second term disappears due to the different momenta of the initial and the final
state (11.12), and (11.13). Indeed, as (11.19) contains two creation (annihilation) operators
for the initial (final) states but only one annihilation (creation) operator for an intermediate
state, there always remains one creation (annihilation) operator, which finally annihilates the
bra (ket) vacuum. Thus, a comparison with (11.15) yields:

C(P1, P2, P3: Pa; 51, 52, 83, 84) = C(DP1, P2, P, Pu; 51, 52, 53, 54) - (11.20)

We conclude from (11.14), (11.16), (11.18), and (11.20) that both contributions of the scattering

matrix (11.5) depend on the same vacuum expectation value (11.15). We now evaluate the latter
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by iteratively applying the underlying anti-commutator relations (9.405):

. pt 7 pt 7 pt
C(pla P2, P3, P4, 51, S2, 53, 34) <0‘bpf2,5f2 Pf:Sf bp2732bp4 sS4 bpl,sl bpi175i1 bpg,sg Pig»Siy ‘0>

5(p3 p“) 83,81y <0|bpf2 Sfo pf1 »Sf1 bL2,S2bJrr)4,S4 <bp1 S1 Pz27512> |O> <O‘ bpf2 Sfo pf175f1 pr2752bL4754

X W"" o(P1 — Piy)ds, sll} [ W"‘ 6(P1 — Pi)ds sll} 0) = 6(P3 — Piy ) s, 5
X <O‘ bpf275f2 Pf1:5f P2,S2 P4 S4 [M+ 5 P1 — ng 81’522] ‘O> {5(p1 B pil)éshsil

Xd(p?’ o pi2)63375i2 o 6(p1 o pi2)581’si26(p3 o pi1)5537511 } <0|bpf2 Sfa Pf1 Sf1 b;r’2752 P4, 84‘0> (1121)

Here the terms crossed out terms do not contribute as the creation operator of an initial state

annihilates the bra vacuum due to p;,, p;, # Py,, Pf,- The remaining vacuum expectation value
(11.21) results in

<O|bpf2’sf2 P8y bL2 SszM 54|O> - <0|bpf273f2 bi’z,sszh S bL4,S4|O> + (5(132 - pf1>552,8f1 (1122)
X <O’bpf275f2 p4,34|0> ( pfl)55275f16<p4 - pf2)55475f2 - 5(1)2 - pf2)65275f25<p4 - pf1)554,8f1 .
Inserting (11.22) into (11.21) yields in total four terms:

C(P1, P2, P3, P4; 51, 52, 83, 54) = 6(Pf, — P2)0s;, 5,0(P, — P4)0s, 540 (Piy — P1)0s,, 1

Xd(plz - p3)6si2,33 + 5(pf1 ) Sf1-54 (pfz - p2)58f2,$25(pi1 - p3>5$7;1 7835(1325 - p1>5$7;2,$1

—0(Pf — P2)ds;, 50(Pr, — Pa)dsy, 540 (Piy — P3)0s;, 550 (Pin — P1)dsy 0
_5(pf1 - p4)55f1 7845(1)f2 - p4)58f2,845<pi1 - p1)65i1,815<pi2 - p3)65i2,53 . (11'23>

We recognize that the vacuum expectation value (11.23) turns out to have the symmetry
C(P1, P2, P3, Pa; S1, $2, 53, 54) = C(P3, P4, P1, P2; 83, 54, 81, 52) (11.24)

where both the initial and the final momenta as well as the helicities are exchanged with respect
to each other. Therefore, the substitutions py, sy <> ps, S3 and p,, S2 <> Py, sS4 in (11.18) lead

with (11.20) to a corresponding symmetry of the matrix element

<pf175f1;pf275f2| : ( ) : (:L’) [Piys Siy; Piys Siy)
= <pf178f1;pf2?3f2| :jy(l‘/) tJ ( ) |pi178i1;p12?8i2> : (1125)
Using (11.25) in (11.16), the latter reduces to
Lo e ¢ d'z | d*2'(py,, s sp,| " (x) -
fi - 2522 PrisSfisPfasSpal -] :
X j-y(xl> : |pi17 Siys Pigs si2> DMV<x7x,> ) (1126>

where we have introduced as an abbreviation the Maxwell propagator

Dy (,2) = (2" — ") (0] A, (2) A, (2)]0) + O (2" — %) (0|4, (/) A, ()[0) . (11.27)
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Substituting (11.18) and (11.20) into (11.26), we obtain for the interaction between the Dirac
and the Maxwell field:

S(2rad) /d4 /d4 //d3p1/d3pz/d3p3/dmzzzz

s1 S22 83 S84

e ooy WO EL i
(2mh)*Ep, \| (2rh)*Ep, \| (27h)*Ep, || (277)° Ep,

XE(P2,S2)’YMU(P1,S1)€i(p47p3) @'/ (p4734>7 U(P:sass) C(p17p2,P3,P4;31732,S3,84)- (11-28)

Based on the previous results we now establish an intriguing connection between both contri-
butions (11.14) and (11.28) of the scattering matrix (11.5). To this end we first use the Fourier
expansion of the Coulomb potential in (11.14)

1 d3k 47T ik ’
_ AT ix—x) 11.2
= aEee (11.29)

so that the scattering matrix contribution from the instantaneous Coulomb self-interaction of
the Dirac field (11.14) reduces to

. MCQ
(2,1nst) d3 d3 dS / d3
1 = ot [ 0 [ [ [ €0 S S5 S [

S1 52 S3

M2 Mc: 0 _ 0
X (27Th>3E (27T7;L)3E u(p2782)’7 U(pl,sl)u(p4,84)’y U’<p37$3> C(p17p27p37p4;31782783734)
P3 P4

X/d?’k 1 /dtei(Ep2+Ep4_Ep1_Ep3)t/h/d3x€i(hk_p2+p1)x/h/d3$/€i(_hk_p4+p3)x//h, (1130)

2m2k?
where the evaluation of the respective spatial and temporal integrals yields
/dt ¢ FoatBoy oy ~Fa)i/1 - = @5@2 +p — ) — ), (11.31)
/dgx elMk—patpOX/h - — (971)3 §(hk — py + P1) (11.32)
/ A3y e CTRmPatpaX /e — (97 )3 §(hk — py + ps) - (11.33)

Substituting (11.31)—(11.33) into (11.30) and evaluating the k-integral finally leads to

(2,nst) _ —ihe? e /d3 /d3 /d3 Mc? M2
s = oo [ [ @ [ [en XY [ T\ T

s1 S22 83 S84

Mc? Mc? 1
2k e — D) —— 7 0
X\/(Qwh)3Ep3 \/(2wh)3Ep4 ( T ) (Pl +ps—D Ps) (p2 — p1)2 u(pg7 32)7 u(pl, 31)

XU (P4, $4)7 u(P3, S3) C(P1, P2; P3: Pu; 51, S2, 83, S4) - (11.34)

On the other hand, with the help of the four-dimensional Fourier representation of the Maxwell

propagator (8.198)

ih [ d' 1 ik’
D, (z, x/):C—EO/(Q ek k=) p (k) (11.35)



11.1. SCATTERING MATRIX 237

the scattering matrix contribution (11.28) stemming from the interaction between the Dirac
and the Maxwell field yields

Mc? Mc?
(2rad) 3 3 3
S = 27Thceg / P /d pQ/d pg/d p4ZZZ§S; (2mh)3E, \/(27rh)3Ep2

51 52 53

Mc? Mc? d'k 1
m H m v -
X \/(27Th)3Ep3 \/(27Th)3Ep4 u<p27 52)7 u(p17 Sl)u(p4’ 84)’7 u(p3? 83) / (27T)4 kQ P,U,IJ(]{;)

XC<p17p2ap37p4;31,32;33754)/d4SC ei(hk“”pl)’”/h/d‘lx’ei(hk+p4p3)x'/h. (11.36)

The evaluation of the two spatio-temporal integrals results in
/d4x gl (hhtp2—pr)z/h (27rh)4 O(hk 4+ pe — p1)
/ dig ! CTRFPamp)T/h - — (9 ) §(—hk 4 py — ps) (11.37)

so that the k-integral in (11.36) can be evaluated as follows:

) 2 2
(2,rad) _ _Ze h d3 /d3 /d3 /d3 Mc Mc
5 2¢pc / h b2 bs b Z Z Z ; (2rh)3E, \| (2mh)3Ep,

S1 52 S3

Mec? M2 P.(p2 —p1)
27h)A6 o LA s
X\/(27Th)3Ep3 \/(27Th)3Ep4 ( ™ ) (p2 +p4 pl p3> (p2 _ p1)2

XTU(P2, 52) Y u(P1, 51) U(4, 54)7 u(P3, S3) C(P1, P2; P3; P4; 51, 2, 53, 54) - (11.38)

Inserting the polarization sum from (8.203)

bbb 0Ot + )
R — 2 (R~

into (11.38), it turns out that its last term does not contribute. Namely, due to the algebraic

P (k) = —guw — k° ( (11.39)

equations (9.303) and (9.305) determining the Dirac spinor u(p, s) and the Dirac adjoint Dirac

spinor u(p, s), we conclude

ﬂ(PQ, 52)7“u(p1, 81)(p2u —pm) = { p2732 Y pzu} (91731 —u PQ, Sz){W“pmu(Ph 81)}
= —Mecu(ps, s2)u(p1, s1) + Mcu(ps, s2)u(py, s1) =0 (11.40)

and, analogously, we also obtain

d(p2 + pa — p1 — p3) UW(P4, S4)Y u(P3, 53)(P2v — P1v)
= 0(p2 + ps — p1 — p3) UW(P4, S4)7 u(ps, s3)(Pay — P3v) = 0. (11.41)

Note that the identities (11.40) and (11.41) are a consequence of the charge conservation at

a vertex and can be studied in more detail in the framework of the so-called Ward-Takahashi
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identities. From (11.38)—(11.41) we then conclude

(2,rad) _ ihe d3 /d3 /d3 /d3 M2 Mc?
S 2600/ br [ @b [P mzzz; (2nh)3E,, \| (27h)3 By,

S1 52 S3

y Me? Mc*  (2nh)'0(p2+ps—p1—p3) | Gy — (P2 — P1)%6:0
(27Th)3Ep3 (27Th)3Ep4 (p2 —p1)? - (P2 = P1)€]? = (p2 — p1)?

XU(P2, 82)7"u(P1, 51) W(P4, 54)7 u(Ps, 53) C(P1, P2, P3, P4; 51, 52, S3, 54) - (11.42)

Adding now both contributions (11.34) and (11.42) to the scattering matrix element (11.5) and
taking into account the explicit form of the time-like vector ¢ according to (8.200) yields a

manifestly covariant result:

2 _ihe? 3 3 / 3 / 3 Mc? Mc?
d &py | d d
1™ 9ege / b1 / P2 dps [ dpd Y ) Z (2rh)E,, \| (2rh)3 By,

S1 52 53

Mc? Mc? g
onh)s — - _Jur
X\/(Qﬂh)?’Em\/ R, T O A pa =P = p) s

Xu(p2, s2)7"u(p1, $1) W(pa, $4)7 u(ps, s3) C(P1, P2; P3, P4; 51, S2, 53, S4) - (11.43)

Substituting the vacuum expectation value (11.23) into (11.43), the first two and the last two

terms yield the same contribution, respectively, due to the obvious identity

U(pz, s2)7"u(P1, 51) U(P4, 54)7 u(P3, 53) = U(Pa, 54)7 u(P3, 53) U(P2, 52)7"u(p1,51) (11.44)

and the symmetry of the integrand with respect to the substitutions p,, s1 <> ps, s3 and p,, s2 <>
P4, S4. This results in a factor of 2, which just compensates for the factor 1/2 stemming from

the second order in the Taylor expansion of the exponential function:

@ _ ihe? M2 M2 M2 M2
. 27h)*6 — Di; — Dis
e CLORI GRS il U )\/ @rh) By, \| @rh) By, \| @7h) By, \| 27 Ey,

G ~
" {m U(pfl’ sfl),yuu(pil’ Sil) u(pfzv SfQ)’)/Vu(piza Siz)

_LQ a(pfl7 Sfl)f}/#u<pi2a 51’2) ﬂ(pr, SfQ)’YVu(piu Sil)} . (11'45>
(pfl - piz)

This perturbative result for the scattering matrix element of the Mgller scattering can be
represented in the form of two Feynman diagrams, which are depicted in Fig. 11.1. Note that
no momentum integrals occur in (11.45), which would correspond to an internal loops in the
Feynman diagrams. Therefore, one calles the graphs in Fig. 11.1 to be tree-level graphs. The
corresponding manifestly covariant Feynman rules for converting the scattering matrix element
(11.45) into the Feynman diagrams of Fig. 11.1 and vice versa read in momentum space as

follows:
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784, 594 79,582 P32 59, P84, 594
9
=V 94-Pea= P Ti2
—a -
PL4, Ot4

Piz, 902

= V94T :?51“;'1\&

Figure 11.1: Direct (left) and exchange (right) Feynman diagram for the Mgller scattering of

two electrons.

(F1) The prefactor (2nh)*d(ps, + p, — piy, — Piy) guarantees the conservation of energy and

momentum in the scattering process.

Mc?

(F2) An incoming electron corresponds to the factor @rh)iE, uw(p;, Si)-

Mc?

(F3) An outgoing electron leads to the factor 2 E u(py,sy)-
7

(F4) A vertex yields the factor ey*.

(F5) The Maxwell propagator corresponds to the covariant factor hg,,/(eocqg?), where ¢ de-

notes the momentum transfer, see Fig. 11.1.

(F6) The phase of the scatter matrix element is calculated according to the following rule:
(—q)numberof vertices (_jynumberof innerlines - Hepe the minus sign for the number of vertices
comes from the negative charge of the electron, while the minus sign for the inner line

stems from the Maxwell propagator.

The phase rule (F6) leads directly to the correct phase of the direct graph: (—i)%(—i)! = +i.
Due to the indistinguishability of the two incoming and outgoing electrons, apart from the
direct graph also the exchange graph contributes, where in the latter the two outgoing electrons
are swapped. Due to the Fermi-Dirac statistics of the electrons, the exchange graph has an
additional minus sign. Consequently, the entire scattering matrix is anti-symmetric with respect
to the exchange of the two incoming or outgoing electrons. If we had calculated the scattering
of identical bosons, the exchange graph would have the same sign as the direct graph and
the total scattering amplitude would be symmetrical with respect to the exchange of the two
incoming and outgoing bosons. Note that the Feynman diagrams in quantum electrodynamics
always have the multiplicities £1 in contrast to other field theories such as the ¢*-theory of
critical phenomena, where the multiplicities are highly non-trivial as they follow from involved

combinatorial reasons.
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11.2 Polarization Averaging

The second perturbative order of the Mgller scattering matrix element in (11.45) factorises

according to

@ _ ihe? 4 Me? Me?
sz. = — (27‘(71) 5(pf1 + P — Piy _piQ)\/(QWh)SEp. (27Th)3Ep.

€oC
M2 Mc? 2)
x M (11.46)
\/ (2nh)3 Ep \/ (2nh)3E,, !
where we introduced the matrix element
M@ Guv 7 lul(p. s )7 Yol D S
fi ESEY u(pfu Sh )V u(piys iy ) u(pf2> Sf2>7 u(pis; Siz)
(pf1 pu)
g v — — v
_% u(pfl7 Sfl)’yuu(pi27 81'2) u(pr, ng)’Y u(piu Sil) : (11'47)
(pfl - piQ)

Provided that the polarizations of both the incoming and the outgoing electrons are not detected
during the scattering process, we have to calculate the scattering cross section from averaging

the squared matrix element over all these polarisations:

D 35 3D Bp MLV U (11.48)

Sip Sip Sf1 Sfo
Substituting (11.47) into (11.48) leads in total to four terms:

|MJ(‘3) = }l Z Z Z Z {; [ﬂ(pfﬁ Sfl)’yuu(ph? sil)] " [ﬂ<pf27 3f2)7u“(¢27 31'2)] ’

_p. )4
Siy Sig Sf1 Sfo (pfl p“)

Xﬂ(pfu S )’Vyu<pi1a 3i1)ﬂ(pf27 sz)%,u(pig, 3i2)
1

- WDy 557" w(Pirs 501)] [Py 8 1)1t (Pizs 5i2)]
(pﬁ _pil)Q(pfz _pil)Q[ fir°of 17 941 ] [ f235£) 23 Siy ]

Xﬂ(pr, sz)’yuu(piu Siy )ﬂ(pfﬂ ‘Sfl)fyvu(piza Siz) + (pfl A pfz) } . (11'49)

Calculating the expression [u(py, s1)7v*u(py, s2)]", we note that w(py, s1)y"u(p,y, s2) coincides

with its transpose as it is a scalar:
[@(p1, s1)7" u(pa, s2)]" = [ﬂ(plasl)’yuu(anSQ)]T
= ' (pa, 52) (V)1 0" (p1, 51) = W(P2, 52)7° (V)7 u(p1, 51) - (11.50)

From the chiral representation of the Dirac matrices (9.94) follows due to the hermiticity of the

four Pauli matrices o*:

;
i [0 o\ [0 & (V) =7°
: L(ff“ 0 ) _<U“ 0) = e
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With this we conclude

0(~0\TA0 _ A0~,0-,0 _ A0
() =% =7
P = A — oo o (11.52)
VYO == =9 =y
Substituting (11.52) into (11.50) then leads to the result
[u(p1, 51)7"u(p2, 52)]" = (P2, 52)7" u(p1, 51) - (11.53)

Using (11.53) in (11.49) yields

M| = ZZZZ{ Gy TP ) (P55 WP 5 (P51,

Siy Sig Sf1 Sfp

Xu(pfn Sfl)’y u(piu Sil) a(pfw SfQ)/qu(p’Lé? Sig)
1

(pf1 - pil)Q(pfz - pu)

3 U(Piy, Si1)7uu<pflw 5f1) U(Pis, Siz)fyﬂu(pfw sz)

Xﬂ(ph, sz)’yyu(pim Sil) ﬂ(pf17 Sh )fyvu(piw 3i2) + (pf1 s pr)} : (11'54)

As the factors u(py, s1)7*u(p2, s2) are scalars, their order can be changed:

2)12 —
‘M}i) = 4 ZZ { pf1 i) (pf1>3f1>7 Zu(pinsil)u(pimsil) 7uu(pf175f1>

Sfl Sf Sil

Xﬂ(pr, SfQ)’Yl/ Z u(pizv Siz)ﬂ(pim 31'2) ’7;1“(pf27 sz)
51'2

1
(pf1 - pil)Q(pfz - p’Ll)

2 H(pfz’ sz)’yy Z u(Piy, siy JU(Piy s Siy ) ’Vﬂu(pfw Sf1>

Sil

Xﬂ(pfl, Sfl),yV Z U(pizv Siz)ﬂ(pim 31‘2) Vuu(pfzv sz) + (pf1 = pfz)} : (11'55>
Sig

The polarisation sums occurring here with respect to s;,, s;, were already calculated according
0 (9.436) and (9.445). We implement now this result by introducing for the sake of clarity
spinorial indices and by using for notational brevity the Einstein summation convention that

implies summation over identical spinorial indices:

.+ Mc
Ml = 1Ua(Prissn)va (pl—) Vs us(Pris $1)
} f ;; pﬁ pn firSh B IMe . ~3 firSha
= P, + Mc
o <pf2’ ng)’)/uo/,(;/ RrTa Vpry' s U (pfzv 'sz)
2MC /B/,Y/
1 pi, + Mc

- T s s (P E) gl s
(pp — pi)2 (P, — Py )? (Pre: 512) '8( 2Mec )B7 26 Us(Pfis 551

_ pi, + Mc
X’Ua/<pf1a Sfl)fyuo/,(}/ (QQTc) Yury's' ué’(pfzv sz) + (pf1 S pfz) } . (1156)
B
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Paying attention to the respective spinorial indices, the individual terms can be rearranged as
follows

— 1 1 pi, + Me
MP|P =2 Yo ( = ) o us(Pyy, S, )Ua(Ppis Sp)
‘ f 4 (pfl _pi1)4 B IMe . o) Szf: 17201 19 °f1

pi, + Mc _
XYva! B! = Yur' 8 Z U (pf2a sz)ua’(pfw 5f2>
2Mec Gy

sz
1 v pZI+MC> m
N Ta g us(Pyy, g )us (Pris Sp)
(pf1_pi1)2(pf2_pi1)2 B( 2Mec B 7o Z f1rof1 firoh

Sf1

pi, + Mc _
el <22T) Vury'o! Z Us (pfzv Sf2)u04(pf27 5f2) + (pf1 A pf2) } . (1157)
By 55y

Here we take into account that also the polarisation sums with respect to sy, sy, were already
calculated according to (9.436) and (9.445), yielding:

Tz 1 1 . (pi, + Mc u [P+ Mc i, + Mc
il Ty 1 Tap Wi Yo \ Tonze ) e\ Tonrs
(pfl - pll) c B'Y c o C 5/7/

o (5o (), (25
1851 e —— — o
" 2Mec % (pfl _pi1>2(pf2 _pi1)2 A 2Me B e 2Mc Sal

pi2+Mc> (pi2—|—Mc>
X”)/l,a/ﬁ/ (— ”)/ 2 _— —+ (pf < pf ) . (1158)
2Me By W 2Mec S ! 2
The sums with respect to the spinorial indices can be interpreted as traces:

1 pi, +Mc ,pp +Mc Di, + Mc  pys, + Mec
[ IR ——— iy V2 = Tr |, 2 2 11.59
| { (on —pa)* [7 ote | mie | " are v aare | (9

1 yPin + Mc  pp +Mc  pi, +Mc  pyg, + Mc
“on ) on =) {7 e o ¥ abe " aage | T Pn € pe)

The first contribution in (11.59) is called the direct term

v [V (pi, + M)y (py, + Mc)] Tr [y, (ps, + Mc)yu(py, + Mc)]
64M4c4<pf1 - pi1)4 '

It consists of the product of two traces of the same design type

M=

(11.60)

Tr [y (piy + M)y (pg, + Me)] = Tt [v"piy'pp + Mey'piy” + Mey'y py, + MPc*yy”]
= PiPnTr [77"9"7Y] + Mepi Te 19"y ] + MepinTr [y"9"y*] + M?*Tr[y"y"] . (11.61)

11.3 Traces of Product of Dirac Matrices

Thus, according to (11.61), we have now to calculate traces over different products of y-matrices.

Due to the explicit form of the Dirac matrices (9.94), the trace over each individual y-matrix
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disappears:
Tr[y"] =0. (11.62)

The trace over the product of two y-matrices can be calculated by using their property of

representing a Clifford algebra (9.95):
1
Te[yiae] = 5 Tr [y o] = g (1] = 4g. (11.63)

We show now that the trace vanishes over a product of any odd number of y-matrices. To this
end we consider the vs-matrix defined in (9.149) that has the explicit form (9.152) and, thus,
the property to be involutoric according to (9.153) as well as anti-commuting with any Dirac

matrix according to (9.230). With this follows then for the trace of a product of y-matrices:

Tr [’7“1’}/”2 .. ,yﬂn] =Ty hm/y/tz .. ’Yﬂn’7575] — Tr [75,}#17#2 .. ,yun,%}
= (1) Tr [y1y#2 e Atrygys] = (1) T [y g2 - o] (11.64)
so we obtain for n being odd:

Tr [yHahs oo yfzntt] = (11.65)

Thus, only the traces over a product of an even number of v-matrices can be non-vanishing.
Let us consider now the trace over a product of four y-matrices. Successively applying the
Clifford algebra property (9.95) together with (11.63) yields 4!! = 3 terms:

Tr hulfyuz,yus,ylm] = —Tr [fyuz,ym,ym,yM] + 29“1“2 Tr h,u:s,y/m] = Tr [fyuzfyus,},m,ym] + 8gu1uzgusu4
_29#1#3'1‘1« [7#37#4] — —TI"[’YM’Y%’YM’V‘MI] + 29“1“4Tr[’y“2’y“3] + 8gulﬂ2gusﬂ4 — 8g#w3gﬂ2#4
— TI"[’YHI’}/W’YMS’YM] — ) (gﬂlungBIM _ gmuaguzM + gM1M4gM2H3) . (11.66)

With the help of the auxiliary calculations (11.62)—(11.66) we obtain for (11.61) the result
Ty (i, + M) (o + M)l = Apiappalg"™g™ — ¢ g™ + g g™) + 4M>P g™
= A(phph, — pupng™ + PP+ MPGg™) . (11.67)
Using (11.67) the direct term (11.60) yields

v+ Pl + (MPE = pipp) 9" |[DispD ov + PiswP o + (MPE = piypy, ) gy
4M4c4(pf1 _pi1)4 ’

M]3 =

which finally reduces to

(p’ilpiz)(pflpfz) + (pf1pi2)(pi1pf2) — M202pi1pf1 - MQCzpi2pf2 + 2M*c!
2M4C4(pf1 - DPi )4

The exchange term in (11.59) is formally obtained from the direct term (11.60) by interchanging

|M

(11.68)

the final momenta py, and py,:

o _ T (P + MOy (g, + Me)] Tr [y (i, + Me)yu(py, + M)
fl ex 64M4C4(pf2 - p’il )4 ‘

(11.69)
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Therefore, we obtain the result for evaluating the traces in (11.69) from (11.68) by interchanging
the final momenta py, and py,:

<pi1pi2)(pf1pf2) + (pf2pi2)(pi1pf1) - M202pi1pf2 — Mzczp’tépfl + 2M4c! (11 70)
2M4C4(pf2 - pi1>4 . .

Thus, it only remains to consider the interference term between the direct and the exchange
scattering in (11.59):

\ M3

{Trh/u(plé + MC)7V<pf1 + MC)/YM(]”Q + MC)’VV(pfz + MC)] + (pfl <« pfz)
64M4C4(pf1 - pil)Q(pﬁ - pil})2

Let us restrict us for the time being to the evaluation of the first term in (11.71). The corre-

. (11.71)

sponding trace can be simplified due to (11.65) such that only the trace over products of an

even number of y-matrices occurs:

Tr[...] = Te[(V'piu v pr + My pr, + Mey'p v + M?yiy”) (11.72)

< (VP Wl g + Meynpr, + Meyupiy + M2ym)] = Te piuy” provub b,

FMPEV P Py + MY P P + MEEY Y A Pin

M2V iy v, + MEEY Py VbV + MV i1y, + M Y 3]

These traces over products of an even number of y-matrices should actually be calculated
analogously to (11.63) and (11.66). However, the trace over a product of six (eight) y-matrices,
which appear here for the first time, leads in total to 6!! = 15 (8! = 105) terms. Thus
evaluating (11.72) with the previous calculational technique would be too involved. Instead
we use the observation, that the contractions of y-matrices occur in (11.72) within the trace,
to our advantage. Namely it turns out that this circumstance drastically simplifies the trace

calculation. With the help of the Clifford algebra (9.95) the contracted product of two ~-

matrices can be calculated as follows:

1 ) }
VU = 9w = 5 9w (V) = gug =00, = 4 (11.73)

In case of one y-matrix between the two contracted ~-matrices we get by applying the Clifford
algebra (9.95)

VY% = (=YY% + 20" )7 = ="V + 26" = =297 (11.74)
This result can be used to deal with two y-matrices lying in between
VAN Y = (=Y 20" v = = (VY ) + 26"y, = 2107, ")+ = 47" . (11.75)

And, correspondingly, we yield for three y-matrices:

LV Ko A

VA AN = (=P 4 20" )V YAV, = =7 (YY) + 26 Y
— _4,yu KA +2<7ﬂ7/\>7 4,77/ KA +2(_7/\7’€ _1_29»@/\)7V = —2’y ’}/ ’)/ . (1176)



11.4. MANDELSTAM VARIABLES 245

These contraction rules for y-matrices can now be iteratively applied to the respective terms
in the trace (11.72) of the interference term (11.71):

DO ) = =207 = =8, (11.77)
2V PV Pr Ve = PiurPin (VY Y Y )W = PiurP (27N (VY W) = 4piwppiay™y", (11.78)
3V Py Vuia Ve = PiasDioA (VY Y 1) = APissDioad™ VN = 4PissDina " (11.79)
VA PPV = PinsPiox (VY 1) e = APiasPioar Y (11.80)
5V DY Vb s = PiarPsin (VY Y %)Y = ADis kP ord™ 1Y = APinsDpnV Y (11.81)
)Y YV Vi Vol s = Dol e (VY V)V N = =2Diwlpor (VY )Y = APy, (11.82)
VY PVl re = Pasra (Y Y 1) 07 = 4P anpiay™ (11.83)
8V PN PRV ubis Yol ss = PinkPiiaPisoPfar (VY Y)Y 0T (11.84)

VKO na)\r T

= —2Di, kD1 \PioD oV (VY Y V)Y = —8PirkDpPinoP far 0T = —8(DirDia )P APV -

Using the auxiliary calculations (11.77)-(11.84) and taking into account (11.63) we obtain for
(11.72) the following result

Tr[..] = =8(pipi) P Tr Y] 4 AMPE {piycp p A TH VY] + Piyebioa T[] (11.85)
01 wPin TE VY T} 4+ Dk  TE VY 4 DD i TE VY + Digrp pir Tr[y "} — 8M ¢ Tr[1]
= _32(pi1pi2)<pf1pf2) - 32M4C4 + 16M202 (pilpﬁ + DiiPiy + DfiDiy + DiPfs + PPy + pizpfl) .

Substituting (11.84) into (11.71) leads to the final expression for the interference term between

the direct and the exchange scattering:

1
= 2(pi, pi M*ct 11.86
4]\4404(]9}(1 _ pil)Q(pr _ pi1)2 [ (]9 1P 2)(pf1pf2) + c ( )

_M202<pi1pf1 + PiyDis + PfiDis + PisPfa + PP Jrpi2pfl) + (pfl A pfz)] .

We conclude that the direct term (11.68), the exchange term (11.70), and the interference term
(11.86) have the common property of having a manifestly covariant form as they only depend
on the scalar product of momenta. Thus, it only remains to relate these scalar product of
momenta to observable properties of the scattering process. This is achieved by introducing

the Lorentz invariant Mandelstam variables.

11.4 Mandelstam Variables

Let us investigate now the kinematics of a general two-body scattering process
A+ B = C+D, (11.87)

which is described by the four-vector momenta p,, py, pe, and pg with a total of 16 components.
The equivalence principle of special relativity requires that observable quantities, such as the

scattering cross section, can be expressed by Lorentz invariants.
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11.4.1 General Case

With the four-vector momenta p; with ¢ = a, b, ¢, d, one can form ten different scalar products

pip; with 7 < j, four of which are fixed by the relativistic energy-momentum dispersion relations
Pl = M. (11.88)

The remaining six degrees of freedom are still interdependent, as each scattering process must

satisfy the energy-momentum conservation law:

Pa + Db = Pe + Pa - (11.89)

These four additional conditions lead to the fact that, ultimately, two kinematic variables are
sufficient to describe the two-body scattering process (11.87), provided that one can perform an
average over the polarisations of both the initial and the final particles. For historical reasons,
one describes the two-body scattering process (11.87) by the following three Lorentz-invariant

Mandelstam variables

s = (pa+p)° = (pe+pa)°, (11.90)
t = (pc - pa)2 = (pd - pb>2 ) (1191>
u = (pc - pb)2 = (pd - pa)2 : (1192)

Due to (11.88) and (11.90)-(11.91) each of the six scalar products p;p; with i < j can be
expressed by the three Mandelstam variables:

1 1
DaPb = 5 (3 — M2 — szcz) ) DePd = 3 (8 — M?* — Mch) (11.93)
1 1
PaPe = —35 (t = M2c* — M2 Popa = =5 (t = Mjc* — Mjc?) (11.94)
1 1
pbe = —3 (u— Mpc* — M2c?) | PaPi = 3 (u— M2 — Mjc®) . (11.95)

Furthermore, it is possible to derive a restriction for the three Mandelstam variables. At first
we obtain from (11.90)-(11.92)

s+t+u=pa+p)’+ Pa— )+ (pa — pa)® =302+ pj + 2 + D5+ 2pa(ps — e — pa),(11.96)
which reduces then with (11.88) and (11.89) to
s+t+u=p>+p,+p.+p;=(M:+ M + M+ M. (11.97)

Obviously, one of the three Mandelstam variables s, ¢, u can be eliminated with the help of
(11.97). Nevertheless, all the three Mandelstam variables are often used, as the results for

scattering cross sections turn out to acquire then a symmetrical form.
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11.4.2 Equal Masses

Various simplifications occur for two-body scattering processes (11.87), where the involved

particles have an equal mass:
My, =M,=M.=M;=M. (11.98)
With the help of the identifications
Pa=Di, Py=Di, De=DPp, Pi=Dp (11.99)
the relativistic energy-momentum dispersion relations (11.88) go over to
pi, = pi, = v}, =y, = M*¢. (11.100)

Additionally the corresponding scalar products (11.93)—(11.95) read then as follows:

1

Pubia = Pppp =3 (s —2M°¢) (11.101)
1

PuPn = PaPp = 3 (t —2M>c¢?) | (11.102)
1

Pibp = Pabp = =5 (u—=2M7C). (11.103)

And the definitions of the Mandelstam variables (11.90)—(11.92) take now the form

s = (py +pi)’ = (pp +rp)% (11.104)
t = (b —pu)* = (P —Pi)?, (11.105)
u = (pp—pi)* = (P —pi)*, (11.106)

whereby the restriction (11.97) coverts into

s+t+u=4M?c. (11.107)

11.4.3 Matrix Element

Now we return to the polarisation averaged matrix element of the Mgller scattering and ex-
press the individual contributions with the help of (11.101)-(11.107) by the three Mandelstam
variables s, ¢, u. For the direct term (11.68) we obtain

(s —2M?c*)* + (u — 2M3c?)? 4+ 4M?c*t
N 8M*At? '
The exchange term (11.70) follows from the direct term (11.68) by exchanging the final momenta
P, and py,. At the level of the Mandelstam variables (11.101)—(11.107) this corresponds to an

exchange of t and wu:

(2)2
| M|} (11.108)

— 2M?2*)? + (t — 2M?c*)? + 4M>c*u

11.109
SMH4cty? ( )




248 CHAPTER 11. MOLLER SCATTERING

The Feynman diagrams in Fig. 11.1, whose absolute square and a subsequent polarization aver-
age leads to the terms (11.108) and (11.109), are also called after the Mandelstam variable in the
denominator to graphically represent the ¢- and the u-channel, respectively. Correspondingly,
the interference term (11.85) yields

—az 1 1
M = —{5(5—2M202)2 (11.110)

2MActtu

—M? [(s — 2M?c?) — (t — 2M°c?) — (u — 2M>)| + 2M*c* + (u <> t)} :

Both contributions in (11.110) are apparently identical and we obtain

1 1
W 5(8—2M202)2—M202(S—t—U):| . (].]_11].)
ctu

M7,
Taking into account the restriction (11.107) this reduces to

_(s— 2M?c?)(s — 6M3c?)

|M AMAAty

(11.112)

11.5 Center-of-Mass System

Now we specialize the kinematic analysis to the center of mass reference frame for two particles

of equal mass.

11.5.1 Kinematics

Here the four-momentum vectors simplify even further:

Ei C E1Z Cc E. /c E: /c
Di, = 1/ i, = 2/ , pp = fl/  pp = f2/ ' (11113>
Pi, Pi, Pr Pf.

The center of mass system is distinguished from other inertial systems by the fact that the

total momentum of the two incoming particles disappears:
From their respective energy-momentum dispersion relations (11.100)

Lj, = \/Pj c® + M3, Ei, = /P32 + M2t (11.115)

then follows that the energies of the two incoming particles coincide:

E,=E,=E. (11.116)
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From the momentum conservation (11.89) in the center of mass reference frame follows with

(11.99) and (11.114) for the momenta of the two outgoing particles
P +Pp =0 — P,=P, Pp=-P. (11.117)
Thus, the corresponding energy-momentum dispersion relations (11.100)
Ep, = \/P},c2 + M3t B, = \/P7,c? + M3t (11.118)
imply that also the energies of the two outgoing particles are equal:
E,=E,=FE. (11.119)
And from the energy conservation (11.89) in the center of mass reference frame
E,+E,=E, + B, (11.120)

then follows with (11.99), (11.116), and (11.119) that the energy of the incoming and the

outgoing particles F and E’ coincide:
E, + E, :Eﬁ +Ef2 - E=F. (11.121)

We conclude from (11.114), (11.116), (11.117), (11.119), and (11.121) that the four-momentum
vectors (11.113) are given in the center of mass reference frame as follows:

an(E/C), pw:(E/C), pﬁ:(E/,C), pf2=<E/f). (11.122)
p —p p —p

For the Mandelstam variables (11.104)-(11.106) this has due to (11.115), (11.118), (11.121),
and (11.122) the consequence

2
2F/c 4F?
= (pn +pi)° = =— 11.123
5 (Pi, + Pis) ( 0 > R ( )
O 2
t = (pp—pi)’ = ( . > =—(p'—p)* = —-2p*(1 — cosb), (11.124)
p—p
0 2
u = (pp—pn)=1{ = —(p'+p)?=—2p% (1 +cosh).  (11.125)
p' +p

Here 0 denotes the angle between the incoming and the outgoing electrons, which coincides with
the angle between the momenta p and p’ as illustrated in Fig. 11.2. Obviously, the Mandelstam
variables s, ¢, u in the center of mass reference frame (11.123)-(11.125) satisfy the restriction

(11.107) due to the relativistic energy-momentum dispersion relation (11.114)—(11.116):

4F? 4
s+t+u= = 2p*(1 — cos ) — 2p*(1 + cosf) = = (E* — p*c®) = 4M?c*. (11.126)
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VA AS

Figure 11.2: Geometry of the elastic Mgller scattering in the center of mass reference frame

with two incoming (outgoing) electrons of momenta +p (£+p’).

Furthermore, we read off from (11.114)—(11.116) that the two Mandelstam variables (11.124)

and (11.125) can be rewritten as

E2_M2 4
t = —26—20(1—0059), (11.127)
EQ_MQ 4
u = 25— (1+cosh). (11.128)
C

Thus, for a scattering process of two particles with equal masses the Mandelstam variables
(11.123), (11.127), and (11.128) in the center of mass reference frame depend on both the
scattering energy E and the scattering angle 1.

11.5.2 Matrix Element

With the help of (11.123), (11.127), and (11.128) the individual contributions to the polarisation-
averaged squared matrix element for the Mgller scattering can be expressed as follows. The
direct term (11.108) goes over into

1
8]\4404(]52 — M?c*)?(1 — cos6)?
X {(2E2 — M2 4 [(E® — MP¢")(1+ cos 0) + 2M2c"])* — 2M2cH(E? — M2cM) (1 — cos 9)} ,

y M;;

(11.129)

the exchange term (11.109) reads

1
_ 11.130
ex  SMACHE? — M2c4)2(1 4+ cos 6)? ( )

X {(QE2 — M?*c")? + [(E* — M*c")(1 — cosf) + M204]2 —2M*cHE? — M?ch)(1 + 0089)} :

|M(2)

and the interference term (11.112) results in

(2E% — M2c*)(2E% — 3M2cY)

= ) 11.131
| Fili 4 MAA(E? — M2c4)2(1 — cos 0)(1 + cos 6) ( )
These three contributions are now to added:
0

i 8M4c4(E2 — M?c*)%(1 — cos 6)2(1 4 cos 6)?
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Due to straight-forward but lengthy manipulations the angle-dependent numerator results in

f(0) = (1+2cosf+ cos’) [(2E* — M?c*)* + E* + 2E*(E* — M*c") cos 6 (11.133)
+(E* — M?c*) cos® 0 — 2M*c*(E® — M?*c")(1 — cos0)] + (1 — 2cos 6 + cos® 6)
x [(2E® — M?c*)* + E* — 2E*(E* — M?c*) cos 0 + (E* — M*c*) cos® 6
—2M*cH(E® — M?c*)(1+ cos§)] + 2(1 — cos® 0)(2E* — M>c*)(2E* — 3M>c?) .

It turns out to be useful to take into account the trigonometric Pythagoras
sin? @ + cos®§ = 1 (11.134)

in order to further simplify the expression (11.133), yielding after some algebraic manipulations

the concise result:
f(6) =2 [4(2E® — M?c*)* — (8E* — AM*¢*E* — M*c®)sin® 6 + (E* — M*c¢*)*sin* 4] . (11.135)

Inserting (11.135) into (11.132) leads together with (11.134) the following angular dependence
of the polarisation-averaged squared matrix element of the Mgller scattering in the center of
mass reference frame:

4(2E% — M?%c")? — (8E* — AM?**E? — M*c®)sin® 0 + (E? — M?c*)?sin* 0

|M(2)
4MAA(E? — M2c4)? sin* 0

. (11.136)

11.6 Transition Rate Per Volume

Now we return to the perturbative result for the scattering matrix of the Mgller scattering

(11.45) and evaluate its absolute square:

h24

202
e

\5(2) (27h)*6(0)8(ps, + Py, — Piy — i)

y Mc? Mc? Mc? Mc?
(27h)3Ey, (27h)3Ey, (27h)3E,, (2nh)3Ey,

a1

(11.137)

The transition probability (11.137) is formally infinite due to the appearance of the singular
factor §(0). In order to deal with this singularity we reconsider the decomposition of the field
operator zﬁ(m) into plane waves according to (11.10). However, instead we now assume, as is
usual in solid-state physics, that an electron is located in a finite box with volume V. Then we

have instead of (11.10) the following plane wave decomposition:
P s

While the orthonormality relation of the plane waves in the continuum reads

Me* ¢ z/h 7 ipa/h 5
{e PER u(p, s) bps + P 0 (p, s) dp’s} . (11.138)
P

/ d*z PP — (OnB)A 6 (p — ), (11.139)
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it reads in a finite box V' and within a finite observation time 7T

Te/2 ' ,

/ d*x / dzo PP = Vs, . (11.140)
Tec/2

Note that the delta function in (11.139) is substituted by the Kronecker symbol in (11.140).

Therefore, comparing (11.139) and (11.140) yields on formal grounds the following substitution

rule
(2mh)*§(0) = VTc, (11.141)

which suggests an appropriate regularisation for the singular term §(0). We now follow the
calculation strategy that both the initial and the final states of the scattering process are
still considered to be continuous, while the intermediate states are treated as discrete ones
as in (11.138). Thus, we would then have to repeat the whole perturbative calculation for
the Mpller scattering and calculate how the scattering matrix element (11.45) and its absolute
square (11.137) change from this modified point of view. This would yield the result (11.137)
with a regularization by the formal substitution rule (11.141) together with the identification
(27h)® — V. With this we obtain for the transition rate per volume from (11.137) and (11.141):

(2))2 2 4 2\4
‘?T N he?j: () 0ps + pra = i = Pia) (24@; By,

Pi; —Piy

}M}f) . (11.142)

This transition rate per volume is then to be integrated or summed up over all final states:
4 /d Dy / % (11.143)
(22)? ' (2rh)? ’
Sf1 Sfa

and it is to be averaged over the polarizations of the initial states:

1

1 YN (11.144)

Siy  Sig

This yields the averaged transition rate per volume:

Vv 5 |S(2)‘2
42222 QM / Pflw/dpfz T (11.145)

Siy  Sig Sf1 Sfp

Inserting (11.142) into (11.145) as well as taking into account (11.48) then leads to

A M2cA /dgp /d3p Sop + pr— pi. — i }M(Q
772630V2Epi1Ep2-2 f1 fa fi fa i1 zz E E

Pf —Pfy

. (11.146)

where the polarisation average of the squared matrix element (11.48) was already been calcu-

lated in (11.136). The two integrals over the outgoing momenta are of the following form:

[:/ s L S(pp +pp — Pis — Pin) F(PRPP) - (11.147)
2Epf1 2Epf2 1 2 1 2 17 2



11.6. TRANSITION RATE PER VOLUME 253

In order to evaluate (11.147) we perform at first the following auxiliary calculation
/ dp’o(p* — M>c*) = / dp®s((p°)? — p? — M*¢?)
0 0

S ) B Y () Ep\]_ ¢
_/0 dp {2E,,5< C)+2E5( + Cﬂ_QEp. (11.148)

Note that we used here the distributional rule

N=3

g @ T, glw) =0 (11.149)

for the function

g(p°)=(p°)2—E—g:<°—%) (p°+&>, 9’(p°=i&)=i2%~ (11.150)

C C C

Inserting (11.148) into (11.147) leads to
I = dpfl d3 Ood052_M225 o ;.
- Py, Dy, (pf2 c ) (pfl +Pp — Piy pzz)f<pf17pf2)
pfl

dp1
— / P /d4pf2 (0%,)0(05, — M**)o(py, + v, — Piy — i) f (P Pp) - (11.151)

Now the four-dimensional py,-integral can formally be evaluated and we obtain the intermediate
result:

d’p
7 — / B d°py @(p?1 + 0, — p3)0((piy + Py — pp)* — M2 f(Ppy, Pi + Pin — Py) - (11.152)

In view of evaluating also the py -integral we specialise for the center of mass reference frame,
so that we can apply the considerations from the previous section. However, in contrast to
(11.122), we cannot use the conservation of energy, as this is only established due the delta
function in (11.152). Therefore, based on (11.114) and (11.117), we have to generalise the

four-momentum vectors (11.122) accordingly:

Piy = (Ep/c) » Dy = (Ep/c> » b= (Ep///c> , Dfy = <Ep///c> : (11.153)
p P p .

From this we read off

R A (11.154)
Py, +Pi — Py = —P, (11.155)

as well as
(Pir + Pin = P1,)* = (Diy +Din)? = 2(piy + Pin)2py + D5, (11.156)

= 2R, — By) + M2,

_(2E,\" 2B, By By , 4E
=|— 2—= + — 2 -p 3
C C C C

C
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where in the last step the relativistic energy-momentum dispersion
E2 =p*c? + M*c* (11.157)

was used. With this (11.152) reads using (11.149) in the center of mass reference frame

I—l/dgple(QE E)C2 5(E, — Ey)f(p,—D) (11.158)
T o) 2B, e TRy O T Ee )l TR ‘

In view of a further evaluation of the p’-integral, we introduce spherical coordinates for which

we get
d*p = |p'|* d|p'|d$2, dQ) = sin 0dOde . (11.159)

Furthermore, due to a comparison of (11.136), (11.146), and (11.147), we identify f(p’,—p’)
with F(|p’|,0):

o) /|12
[— L/ dp| m/dQ O(2E, — Ey)3(Ey — Ey)F(p],0). (11.160)
8Ey Jo Ey
Due to the relativistic energy-momentum dispersion (11.157) we obtain the following substitu-
tion:
! .2 / Ep’
c
so that (11.160) goes over into
= L/OO g, v PP /dQ@(ZE — E,)8(E, — Ey)F(p],0) (11.162)
SEp Jo 7 0| Ey P T 0 T B TP |

1 oo
- =% /dQ/ dEy\/E2 — M2 ©(2E, — Ep)3(Ep — Ey)F (\/Eg,/c2 — M2, 9) .
" Lp 0

Now the Fy integral can be performed due to the delta function, yielding, finally, the conser-

vation of energy Ey = Ep:

[ VB (B e - e o 11.163
T e

Based on the result (11.163) for the two integrals (11.147) in the center of mass reference frame,

we now obtain for the averaged transition rate per volume (11.146) with identifying F = Ej:

4 B JEZ Z M2 S
S ¢ ¢ /dQ\M}f”. (11.164)

 m2eic V2E2 8cF

Checking the physical units of (11.164) by taking into account (11.136) yields, indeed, as
expected: [W] = 1/(sm?).



11.7. CROSS SECTION 255

11.7 Cross Section

In order to calculate the cross section we still need the number of incoming electrons per time
unit and area. For this purpose, we consider again the normal order of the four current density
operator (11.17), but this time for electrons being confined in a finite volume V. To this end
we apply (11.138) and its Dirac adjoint, yielding instead of (11.17):

Mc? Mc?
_CZZZZ VE, MVE (11.165)

P1 P2 s1

{6 el <p27 32)7 U p17 31>bp2 sszLSl + ez(p2+p1 @/ (p27 SQ)VMU(pla Sl)bi’z 32bL1731
+€_i(p2+p1)z/h @(p% SQ)V”U(ph 51>dp2,82 8p1,$1 - e_i(p2+pl)x/h 6(p27 52)7#1}(1)17 Sl)d:)_z,sg Czpl,sl } '

Evaluating the matrix element of (11.165) with respect to the initial state (11.13) leads to

” Mc? Mc?
) = ST T

w eip2=p1)z/h g u(p2, s2)v*u(p1, s1) C(P1, P2; 51, S2) (11.166)

where we have introduced as an abbreviation the vaccum expectation value
C(ph P2; 51, 52) = <O| bp¢2,s¢2 (bpi173i1 bZ,SQ) (bplvslbi)il,sil) bLiz,SiQ
Applying the anti-commutator algebra (9.405) we obtain from (11.167)

= <O‘ Bpigysig ( bI)Q 3261)11,521 + 6p2'17p265i1,52> <_[;Li173i1 6131751 + 6pi1,p165i1,51> 61),52781‘2 ‘O> (11168>
0)

0).  (11.167)

b bt b b b b b b
<O| (bp127512 bpz,sz)bpil »8iq bpil »Siq (bphSl p12,312> ‘O> pzl P2 6811,82 <O| bpz‘Q,Sz‘Q bpil »Siy bpl,SlbpiZ,siz
2 bt
O> + 5pi17pl(spi17p25si1 782582'1,82 <0‘ bpiQ,SiQ bpiz,siQ O> .

—_ A bt
6pi1 )P1 552'1 »S1 <0‘ bpig »Sig bp2,82 bpil »Siq bpiQ 1Sig

Since it is assumed that the initial momenta p; ,p;, differ from each other, the respective
and b

bl bl
925ig? pil »Sig 105417 pi27522

the second and the thlrd matrix element in (11.168) disappear, so we obtain

fermionic operators b anticommute, respectively. Therefore,

C(p1,Pa; 51, 82) = <0|< P, ssz@ + (5pi2ap265i2752> bpil,SilbLil,sil <_pri2,s,‘2 bp,,s1 + 5Pi27p153i2,31> 10)
0> = 5p1,p2551,52 <5p17pi1 581751'1 + 6p17pi26517512> (11169)

Inserting the vaccum expectation value (11.169) into (11.166) leads to the matrix element

X ~
+6pi1 7p1(5pi27p255i1 »S1 551'1,52 <0‘ 1— bzg Sig bp,‘2,5i2

A Mc? Mc?
N ol — (D, 5 )M g, _
<¢’L| : ] ('r) : |wl> c VE u(pH) Sll)ry u(ph? 811) + & VE

Piy Pigy

U(Piy, 8y )V U(Piys Siz) - (11.170)

Afterwards, we average this current density with respect to the polarizations of both incoming

electrons:

422 Wil Cabs) (11.171)

811 Sl2
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Substituting (11.170) into (11.171) we obtain

Mc? _ i Mc? _ i
= VE Z Uq (pim Sil)’yaguﬁ(pila 31'1) + WE Z ua(piz, Siz)’yaﬂuﬁ(ph, 81'2) . (11172)

Pii g Piy s,

JH

The polarisation sums with respect to s;,, s;, were already calculated according to (9.436) and
(9.445), yielding

Mc? PiY + Mc Mc? PiY’ + Mc
JH = o e | e . 11.173
2V E,, ( e )., 2WEy, 2Mce ), ( )

The sums with respect to the spinorial indices can be interpreted as traces:

C2

T AVE,,

2

" c
AVE,,

{pily Tr[v*+"] + Mc Tr[v“]} + {pizy Tr[v*+"] + Mc Tr[v“]} . (11.174)

Due to the trace rules (11.62) and (11.63) the polarization averaged current density (11.174)

reduces to

no2 no2
b;, € i yune

VE VE,

Piy Piy

JH = (11.175)

In the center of mass reference frame (11.122) applies, so that the polarization averaged current
density (11.175) vanishes:

JE=0. (11.176)

The relative current density, however, turns out to be

2|p|¢?
AJ = ——— 11.177
VE, ( )
and has, indeed, the correct physics unit [AJ] = 1/(sm?). The cross section follows now from
the quotient of the averaged transition rate per volume W and the averaged current density

AJ per volume:

44
= . 11.178
T ATV ( )
Substituting (11.164) and (11.177) into (11.178) yields the total cross section in the form of
do
= [ dQ)— 11.1

so that the differential cross section is definied by

@2
M

do et Mt
dQ 1672 E?

(11.180)

Inserting the polarisation-averaged matrix element (11.136) therein then yields

do  o?h’c? | BEY—AMPAE? — MY 1 L ARE? - M2c? 1 (11.181)
dQ  4E? (B2 — M2c*)2 sin?f (B2 — M2c%)? sintf] '
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Here we have introduced the Sommerfeld fine-structure constant

62

= 11.182
@ 4rephe’ ( )

which quantifies the strength of the electromagnetic interaction between elementary charged
particles. It is a dimensionless quantity related to the elementary charge e, which denotes the
strength of the coupling of an elementary charged particle with the electromagnetic field. As a

dimensionless quantity, its numerical value is approximately given by

!
=137

The result (11.181) predicts the differential cross section for the elastic scattering of two un-

(11.183)

polarized electrons on the basis of quantum electrodynamics. It was first calculated in the
ultra-relativistic regime by Christian Mgller in 1932 based on some guesses and consistency
requirements, not using quantunm electrodynamics. The full quantum electrodynamical calcu-
lation was provided only a few years later by Bethe and Fermi. Note that the indistinguishability
of the two electrons involved in the scattering is represented by the forward-backward symme-
try, i.e. the differential cross section is invariant with respect to the substitution 6 — 7 — 6.
Within a classic experiment at the Laboratory of Nuclear Studies (Cornell University, Ithaca,
New York) the Mgller scattering formula (11.181) was checked in detail [Phys. Rev. 94, 357
(1954)]. To this end the absolute differential electron-electron scattering cross section was mea-
sured for the incident electron energy in the laboratory frame varying in the interval from 0.6
to 1.2 Mev, which has to be compared with the rest energy of the electron of 0.513 MeV. The
technique of measurement combined good resolution with large energy transfers between the
particles, so this experiment allowed a sensitive test of the Mgller scattering formula (11.181) in
the relativistic regime. The results verified the theoretical predictions within a 7% experimental

error.
In the ultra-relativistic limit £ > Mc? the differential cross section (11.181) reduces to:

232 2
_ahe (1 i +1—6) . (11.184)

w | AE?  sin?2f | sinté

do
dQ)

With the help of the trigonometric formulae

/0 0\ 1 L0\ 1 2 (0 _ 1
sin (5) oS (5) —ism@, sin (§> —5(1 cosf), cos (§> = 2(1—|—cos<9) (11.185)

follows the trigonometric side calculation

1 + cos? (g) 2 1 + sin® (g) _y <1 B 8 16

sin? (g) + sin? (9) cos? (g) + cos? (g)

z sin? @ sin49) - (11.186)
2

Inserting (11.186) into (11.184) leads to

1 + cos? (g) 2 1 — sin? (g)]

sin? (g) sin® (g) cos? (g) + cos? (g)

2
a’h*c?

awr SE?

do
ds?

(11.187)
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In the opposite non-relativistic limit £ = Mc? + € we obtain with € < M¢? from (11.181)

2%2 2
do| _ o’h’c (‘4 B ‘3 ) (11.188)

dQ

o 16e2 \sin*@  sin?@
With the trigonometric formulae (11.185) follows the trigonometric side calculation

L 1 R S
sin? (g) sin (9) cos2 g) cost (g) ~ sint6

3 4 3
1—=sin’0) =4 ———) . (11.189
~ sine ( T ) (sin49 sin29) ( )

{1(1+COSG) i(1—0089>2

1
_Z(l —cosf)(1 + cosf)

With this (11.188) goes over into

do a?h?c?

aQ

1 1 1
o 64€2 [sjn4 (%) - cost (&) ~ sin? (%) cos? (g)] ' (11.190)

With the non-relativistic dispersion relation € = p*/(2M) it follows finally

a?h?c M2

do) L 1 ! (11.191)
w 16p? sin? (g) cos?t (g) sin? (g) cos? (g) ’ '

dQ

The first term in (11.191) just corresponds to the cross section of the Rutherford scattering

do|  o*R°AM?Z% 1 (11.192)
Qv 4pt sin' (§)° ‘

with the nuclear charge number Z = 1 and the mass M being substituted by the reduced mass
M /2. This means that the forward peak of the non-relativistic Mgller scattering at 6 =~ 0 agrees
with the prediction of Rutherford prediction. Beyond that, however, there is another significant
backward peak at # = 7 that stems from interferences. Note that the latter must occur due
to above mentioned forward-backward symmetry following from the indistinguishability of the

electrons.

While formerly many particle colliders were designed specifically for electron-electron collisions,
recently electron-positron colliders have become more common. Here one uses the so-called
crossing symmetry, one of the useful tricks often used in quantum field theory to evaluate
Feynman diagrams. Namely, from the Feynman rules follows directly that the unpolarized
scattering matrix for any process involving a particle with momentum p in the initial state can
be converted into the unpolarized scattering matrix for an otherwise identical process but with
an anti-particle of momentum —p in the final state. This implies that the Mgller scattering
between two electrons (11.1) goes over into the corresponding unpolarized cross section of the

Bhabha scattering, i.e. the electron-positron scattering:

e et —se et (11.193)
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Applying this crossing symmetry to the unpolarized Mgller cross section turns out to have the
consequence that the unpolarized Bhabha cross section follows by interchaging the Mandelstam
parameter s and « in (11.108), (11.109), and (11.112):

S4>u. (11.194)

We refrain here from discussing the respective energy and angle dependence of the Bhabha
differential cross section. Instead we refer to the above mentioned classic experiment at the
Laboratory of Nuclear Studies, where the absolute differential positron-electron scattering cross
section was checked in the energy interval from 0.6 to 1.0 Mev, which verified the Bhabha for-
mula within the 10% experimental error. Furthermore, the ratio of the Mgller and the Bhabha
cross sections was also measured with somewhat increased accuracy, yielding a verification

within about 8% experimental error.

In the last three decades Bhabha scattering has been used as a luminosity monitor in a number
of e~e™ collider physics experiments. The accurate measurement of luminosity is necessary for
accurate measurements of cross sections. Small-angle Bhabha scattering was used to measure
the luminosity of the 1993 run of the Stanford Large Detector (SLD), with a relative uncertainty
of less than 0.5%. Electron-positron colliders operating in the region of the low-lying hadronic
resonances (about 1 GeV to 10 GeV), such as the Beijing Electron Synchrotron (BES) and the
Belle and BaBar ”B-factory” experiments, use large-angle Bhabha scattering as a luminosity
monitor. To achieve the desired precision at the 0.1% level, the experimental measurements
must be compared to a theoretical calculation including next-to-leading-order radiative correc-
tions. The high-precision measurement of the total hadronic cross section at these low energies
is, for instance, a crucial input into the theoretical calculation of the anomalous magnetic dipole

moment of the muon, which is used to constrain supersymmetry and other models of physics
beyond the Standard Model.






