
Chapter 2

Identical Particles

Here we deal with identical particles, thus they have exactly the same properties like mass, spin

or charge. From all experiments performed so far in the realm of quantum mechanics one can

deduce that such identical particles are indistinguishable. Nevertheless we start with describing

a quantum many-particle system in Section 2.1 as if their identical particles would be distin-

guishable. Based on that we investigate then in Section 2.2 the consequences for postulating

the indistinguishability of identical particles. Namely, it turns out in three spatial dimensions

that identical particles are either bosons or fermions, which are characterized by a symmetric

and anti-symmetric many-body wave function, respectively. We illustrate the corresponding

complications in concrete calculations by the illustrative example of non-interacting identical

particles in Section 2.3.

2.1 Distinguishable Particles

A many-body system of identical nonrelativistic particles of mass M is classically described by

the Lagrange function

L(x1, . . . ,xn; ẋ1, . . . , ẋn) =
n�

ν=1

M

2
ẋ2
ν − V (x1, . . . ,xn) . (2.1)

The n-particle potential V (x1, . . . ,xn) is usually additive in both the 1-particle potentials V1(xν)

and the 2-particle potentials V2(xν − xµ):

V (x1, . . . ,xn) =
n�

ν=1

V1(xν) +
1

2

n�

ν=1

n�

µ=1

V2(xν − xµ) . (2.2)

Note that the latter must obey the symmetry

V2(xν − xµ) = V2(xµ − xν) (2.3)

due to the Newton axiom ”action = - reactio”. The Euler-Lagrange equations

∂L

∂xν

− d

dt

∂L

∂ẋν

= 0 (2.4)
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corresponding to the Lagrange function (2.1), (2.2) lead to the Newton equations of motion:

M ẍν = −∂V1(xν)

∂xν

−
n�

µ=1

∂V2(xν − xµ)

∂xν

. (2.5)

The transition to the Hamilton formalism is implemented by introducing the canonically con-

jugated momenta

pν =
∂L

∂ẋν

= M ẋν (2.6)

and by performing the Legendre transformation

H(p1, . . . ,pn;x1, . . . ,xn) =
n�

ν=1

pνẋν − L(x1, . . . ,xn; ẋ1, . . . , ẋn) (2.7)

which yields the Hamilton function

H(p1, . . . ,pn;x1, . . . ,xn) =
n�

ν=1

p2
ν

2M
+

n�

ν=1

V1(xν) +
1

2

n�

ν=1

n�

µ=1

V2(xν − xµ) . (2.8)

The corresponding Hamilton equations

ẋν =
∂H

∂pν

=
pν

M
, (2.9)

ṗν = − ∂H

∂xν

= −∂V1(xν)

∂xν

−
n�

µ=1

∂V2(xν − xµ)

∂xν

(2.10)

turn out to be equivalent to the Newton equations of motion (2.5).

The transition from classical mechanics to quantum mechanics is achieved by assigning opera-

tors to observables:

xν → x̂ν , pν → p̂ν , H(p1, . . . ,pn;x1, . . . ,xn) → H(p̂1, . . . , p̂n; x̂1, . . . , x̂n) . (2.11)

In order to obey the Heisenberg uncertainty relation, we postulate here the following canonical

commutation relations

�
x̂jν , x̂kµ

�
− =

�
p̂jν , p̂kµ

�
− = 0 ,

�
p̂jν , x̂kµ

�
− =

h̄

i
δjk δνµ , (2.12)

where the commutator between two quantum mechanical operators Â and B̂ is defined by

�
Â, B̂

�
− = ÂB̂ − B̂Â . (2.13)

The time evolution of a quantum mechanical state vector |ψ(t)� is described by the Schrödinger

equation:

ih̄
∂

∂t
|ψ(t)� = Ĥ|ψ(t)� . (2.14)
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In order to convert this representation independent formulation of quantum mechanics to the

spatial representation, one chooses as a basis the eigenstates |x1, . . . ,xn� of the coordinate

operators x̂ν . They fulfill the eigenvalue problem

x̂ν |x1, . . . ,xn� = xν |x1, . . . ,xn� (2.15)

as well as the orthonormality relation

�x1, . . . ,xn|x�
1, . . . ,x

�
n� = δ(x1 − x�

1) · . . . · δ(xn − x�
n) (2.16)

and the completeness relation
�

d3x1 · . . . ·
�

d3xn |x1, . . . ,xn��x1, . . . ,xn| = 1 . (2.17)

The spatial representation of the momentum operators p̂ν is given by the Jordan rule:

�x1, . . . ,xn|p̂ν =
h̄

i

∂

∂xν

�x1, . . . ,xn| . (2.18)

Evolving the quantum mechanical state vector |ψ(t)� with respect to this basis yields due to

the completeness relation (2.17)

|ψ(t)� =
�

d3x1 · . . . ·
�

d3xn ψ(x1, . . . ,xn; t) |x1, . . . ,xn� , (2.19)

where the expansion coefficients represent the n-particle wave function

ψ(x1, . . . ,xn; t) = �x1, . . . ,xn|ψ(t)� . (2.20)

Multiplying (2.14) from the left with the bra-vector �x1, . . . ,xn| leads for the n-particle wave

function (2.20) to the n-particle Schrödinger equation

ih̄
∂

∂t
ψ(x1, . . . ,xn; t) = Ĥψ(x1, . . . ,xn; t) . (2.21)

Here the spatial representation of the Hamilton operator Ĥ follows due to (2.11), (2.15), and

(2.18) from the Hamilton function H as follows:

Ĥ = H

�
h̄

i

∂

∂x1

, . . . ,
h̄

i

∂

∂xn

;x1, . . . ,xn

�
. (2.22)

In case of the standard Hamilton function (2.8) we get

Ĥ =
n�

ν=1

�
− h̄2

2M
Δν + V1(xν)

�
+

1

2

n�

ν=1

n�

µ=1

V2(xν − xµ) . (2.23)

As we have assumed here that both the 1- and the 2-particle potential V1 and V2 do not explicitly

depend on time, one can perform for the n-particle wave function the separation ansatz

ψ(x1, . . . ,xn; t) = ψE(x1, . . . ,xn) e
−iEt/h̄ . (2.24)

This reduces the time-dependent Schrödinger equation (2.21) to the time-independent Schrödinger

equation:

ĤψE(x1, . . . ,xn) = EψE(x1, . . . ,xn) , (2.25)

where E denotes the energy eigenvalue.
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2.2 Bosons and Fermions

The quantum mechanical laws summarized in the last section are only valid for identical par-

ticles, which are assumed to be distinguishable. But experimentally it has turned out that

identical particles always happen to behave in the same way so that no objective measurement

allows to distinguish one from the other. Thus, in the realm of quantum many-body theory

the fundamental principle of the indistinguishability of identical particles has to be taken into

account.

Physically relevant are only expectation values of observables. The principle of the indistin-

guishability of identical particles means in this context concretely that the expectation value

of any operator Â must not change when the enumeration of two particles is swapped within

the n-particle wave function:
�

d3x1 · . . . ·
�

d3xn ψ
∗(x1, . . . ,xj, . . . ,xk, . . . ,xn)Âψ(x1, . . . ,xj, . . . ,xk, . . . ,xn)

=

�
d3x1 · . . . ·

�
d3xn ψ

∗(x1, . . . ,xk, . . . ,xj, . . . ,xn)Âψ(x1, . . . ,xk, . . . ,xj, . . . ,xn) . (2.26)

From this definition of indistinguishability of identical particles we now derive various charac-

teristic properties for both the operators Â and the n-particle wave functions ψ(x1, . . . ,xn).

Note that restricting the equality of expectation values (2.26) to just two particles is not a

principle limitation as any permutation P̂ can always be represented as a certain product of

transpositions P̂jk

P̂ =
�

P̂jk . (2.27)

Here the action of P̂jk is defined by exchanging the particle coordinates j and k in the n-particle

wave function:

P̂jkψ(x1, . . . ,xj, . . . ,xk, . . . ,xn) = ψ(x1, . . . ,xk, . . . ,xj, . . . ,xn) . (2.28)

From (2.28) it is self-evident that the transposition P̂jk is involutoric, i.e. applying it twice

yields back the original n-particle wave function:

P̂jk P̂jk = 1 =⇒ P̂jk = P̂−1
jk . (2.29)

With the help of the transposition operator P̂jk the defining equation (2.26) of the indistin-

guishability of identical particles can be converted from the spatial representation into the

representation-free formulation:

�ψ|Â|ψ� = �P̂jkψ|Â|P̂jkψ� = �ψ|P̂ †
jkÂP̂jk|ψ� . (2.30)

From the trivial decomposition

�φ|Â|ψ� =
1

4

�
�φ+ ψ|Â|φ+ ψ� − �φ− ψ|Â|φ− ψ�

+i�φ+ iψ|Â|φ+ iψ� − i�φ− iψ|Â|φ− iψ�
�

(2.31)



2.2. BOSONS AND FERMIONS 13

follows then together with (2.30) a useful identity for any matrix element:

�φ|Â|ψ� = �φ|P̂ †
jkÂP̂jk|ψ� . (2.32)

Due to the arbitrariness of the states |φ� and |ψ� we thus conclude the operator identity

Â = P̂ †
jkÂP̂jk . (2.33)

Evaluating (2.33) for the special case Â = P̂jk we read off due to (2.29) that the transposition

operator P̂jk turns out to be both hermitian

P̂jk = P̂ †
jk (2.34)

and unitary

P̂−1
jk = P̂ †

jk . (2.35)

Furthermore, we conclude from (2.33) and (2.35) that any operator Â commutes with a trans-

position P̂jk:

�
P̂jk, Â

�
−
= P̂jkÂ− ÂP̂jk = 0 . (2.36)

As the latter identity holds in particular for the Hamilton operator Â = Ĥ we know that there

exist states, which are at the same time eigenstates of both the Hamilton operator Ĥ and all

transposition operators P̂jk:

Ĥ|ψ� = E|ψ� , P̂jk|ψ� = pjk|ψ� . (2.37)

Due to the hermiticity (2.34) of the transposition operators P̂jk their respective eigenvalues pjk

must be real. And from the involutoric property (2.29) follows furthermore

p2jk = 1 (2.38)

Thus, the eigenvalues of the transposition operators P̂jk are either pjk = 1 or pjk = −1. More-

over, it is reasonable that an n-particle wave function ψ(x1, . . . ,xn), which is an eigenfunction

of all transposition operators P̂jk, must always have one and the same eigenvalue. In order to

show this we consider the following identity:

P̂1jP̂2kP̂12P̂2kP̂1jψ(x1,x2, . . . ,xj, . . . ,xk, . . . ,xn)

= P̂1jP̂2kP̂12ψ(xj,xk, . . . ,x1, . . . ,x2, . . . ,xn)P̂1jP̂2kψ(xk,xj, . . . ,x1, . . . ,x2, . . . ,xn)

= ψ(x1,x2, . . . ,xk, . . . ,xj, . . . ,xn) = P̂jkψ(x1,x2, . . . ,xj, . . . ,xk, . . . ,xn) . (2.39)

From this we conclude the operator identity:

P̂jk = P̂1jP̂2kP̂12P̂2kP̂1j , (2.40)
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so we obtain for the corresponding eigenvalues due to (2.38)

pjk = (p1j)
2 (p2k)

2 p12 =⇒ pjk = p12 . (2.41)

Therefore, identical particle possess either a symmetric (� = +1) or an anti-symmetric (� = −1)

wave function with the property

P̂jk|ψ�� = �|ψ�� . (2.42)

Using (2.34) and (2.42) we get that symmetric and anti-symmetric wave function are always

orthogonal with respect to each other:

�ψ−|ψ+� = �ψ−|P̂jkψ
+� = �ψ−|P̂ †

jkψ
+� = �P̂jkψ

−|ψ+� = −�ψ−|ψ+�
=⇒ �ψ−|ψ+� = 0 . (2.43)

Furthermore, it turns out that identical particles maintain their symmetry character for all

times. To this end we state that the time evolution operator Û(t2, t1) transforms an initial

state of definite symmetry |ψ�1(t1)� into a final state of definite symmetry |ψ�2(t2)� via

|ψ�2(t2)� = Û(t2, t1)|ψ�1(t1)� . (2.44)

Thus, taking (2.36) and (2.42) into account we conclude

�2|ψ�2(t2)� = P̂jk|ψ�2(t2)� = P̂jkÛ(t2, t1)|ψ�1(t1)� = Û(t2, t1)P̂jk|ψ�1(t1)� = �1|ψ�1(t2)�
=⇒ �1 = �2 . (2.45)

As a result we state that the Hilbert space of identical particles consists of either only symmetric

or only anti-symmetric wave functions. In relativistic quantum field theory it is shown which

Hilbert space is appropriate for which sort of particles. According to the spin-statistic theorem

of Pauli identical particles with integer (half-integer) spin are bosons (fermions) and have

symmetric (anti-symmetric) wave functions, see Tab. 1.2.

2.3 Non-Interacting Identical Particles

In general it is quite cumbersome to calculate n-particle wave functions by taking into account

the symmetry property. We illustrate this by the example of non-interacting identical particles.

According to (2.23), (2.25) and a vanishing 2-particle potential V2(xν − xµ) = 0 the following

time-independent Schrödinger equation has to be solved:

n�

ν=1

�
− h̄2

2M
Δν + V1(xν)

�
ψE(x1, . . . ,xn) = E ψE(x1, . . . ,xn) . (2.46)

In the following we assume that the 1-particle wave functions ψEα(x) with the vector of quantum

numbers α are known as solutions of the time-independent 1-particle Schrödinger equation
�
− h̄2

2M
Δ+ V1(x)

�
ψEα(x) = Eα ψEα(x) . (2.47)
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Thus they represent an orthonormal basis obeying both the orthonormality relation
�

d3xψ∗
Eα

(x)ψEα� (x) = δα,α� (2.48)

and the completeness relation

�

α

ψ∗
Eα

(x)ψEα(x
�) = δ(x− x�) . (2.49)

In case that the particles would be distinguishable, then a solution of the time-independent

n-particle Schrödinger equation (2.46) factorizes into 1-particle wave functions:

ψE(x1, . . . ,xn) = ψEα1 ,...,Eαn
(x1, . . . ,xn) =

n�

ν=1

ψEαν
(xν) (2.50)

and the total energy is the sum of the respective 1-particle energies

E =
n�

ν=1

Eαν . (2.51)

Furthermore, the orthonormality and completeness relations of the 1-particle wave functions

(2.48) and (2.49) imply corresponding relations for the n-particle wave functions

�
d3x1 · · ·

�
d3xn ψ

∗
Eα1 ,...,Eαn

(x1, . . . ,xn)ψEα�
1
,...,Eα�

n
(x1, . . . ,xn) =

n�

ν=1

δαν ,α�
ν
, (2.52)

�

α1

· · ·
�

αn

ψ∗
Eα1 ,...,Eαn

(x1, . . . ,xn)ψEα1 ,...,Eαn
(x�

1, . . . ,x
�
n) =

n�

ν=1

δ(xν − x�
ν) . (2.53)

But, as identical particles are indistinguishable, the n-particle wave functions must either be

symmetric or anti-symmetric. To this end we introduce the (anti-)symmetrization operator

Ŝ� =
�

P̂

�pP̂ , (2.54)

which consists of a sum over all permutation operators P̂ and p denotes the number of trans-

positions of a certain permutation corresponding to the decomposition (2.27). Multiplying a

permutation P̂ in the sum (2.54) with a single transposition P̂jk, one obtains another permu-

tation P̂ � = P̂jkP̂ with p� = p± 1. This has due to � = ±1 the following consequence:

P̂jkŜ
� =

�

P̂

�pP̂jkP̂ =
�

P̂ �

�p
�∓1P̂ � = �

�

P̂ �

�p
�
P̂ � = �Ŝ� . (2.55)

With the prescription

ψ�
{Eα}(x1, . . . ,xn) = N �

{Eα}Ŝ
�

n�

ν=1

ψEαν
(xν) (2.56)

we construct for each wave function (2.50) of n distinguishable particles a corresponding sym-

metric (� = 1) or anti-symmetric � = −1 n-particle wave function, which obeys (2.42) by taking
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(2.55) into account. Due to the indistinguishability property the (anti-)symmetrized n-particle

wave function (2.56) turns out to be independent of the concrete order of the 1-particle energies

Eα1 , . . . , Eα1 . In order to emphasize that within our notation, we have introduced in (2.56) the

index {Eα}.
At first, we remark that the (anti-)symmetrized n-particle wave function (2.56) obeys the time-

independent Schrödinger equation (2.46) with the energy eigenvalue (2.51). This follows from

(2.36) as well as the circumstance (2.27) that each permutation operator P̂ in the sum (2.54)

can be represented as a product of transposition operators:

Ĥ|ψE� = E|ψE� =⇒ ĤŜ�|ψE� = Ŝ�Ĥ|ψE� = EŜ�|ψE� . (2.57)

Furthermore, we read off from (2.54) and (2.56) an important observation for the anti-symmetric

n-particle wave function, which is characterized by � = −1:

ψ−
{Eα}(x1, . . . ,xn) = N−

{Eα}
�

P̂

(−1)p ψEα1
(xP (1)) · · ·ψEαn

(xP (n)) . (2.58)

Thus, the anti-symmetric n-particle wave function can be represented in form of a Slater de-

terminant:

ψ−
{Eα}(x1, . . . ,xn) = N−

{Eα}

�������

ψEα1
(x1) ψEα1

(x2) · · · ψEα1
(xn)

...
...

...

ψEαn
(x1) ψEαn

(x2) · · · ψEαn
(xn)

�������
. (2.59)

In the case of an equality of two rows, i.e. αj = αk, or two columns, i.e. xj = xk, the anti-

symmetric n-particle wave function (2.59) vanishes and with this the probability to have such a

wave function. This just represents the fundamental Pauli exclusion principle that two fermions

can not be neither in the same state nor at the same space point. A corresponding restriction

does not exist for bosons. This means that there can be more than one boson in one state

or at one space point. In order not to overload the following combinatorial considerations,

we consider from now on only those bosonic wavefunctions, where a state or a space point is

occupied at most by one boson.

It remains to determine the normalization constant N �
{Eα} in (2.56). To this end we apply (2.27),

that each permutation operator P̂ can be represented by transpositions P̂jk, and conclude that

iterating (2.55) yields

P̂ Ŝ� = �pŜ� . (2.60)

Taking into account (2.54) the scalar product between two (anti-)symmetric n-particle wave

functions (2.56) reads at first

�ψ�
{Eα}|ψ�

{Eα�}� = N �
{Eα}

�

P̂

�p�ψEα1
· · ·ψEαn

|P̂ †ψ�
{Eα�}� . (2.61)
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Due to (2.27) and (2.34) as well as (2.56) and (2.60) this reduces to

�ψ�
{Eα}|ψ�

{Eα�}� = N �
{Eα}

�

P̂

�2p�ψEα1
· · ·ψEαn

|ψ�
{Eα�}� . (2.62)

As we have � = ±1, the summand turns out to be independent of the respective permutations

P̂ , so the sum reduces to the factor n!, which is the number of all possible permutations. Taking

into account again (2.56) and (2.60) we get

�ψ�
{Eα}|ψ�

{Eα�}� = N �
{Eα}N

�
{Eα�}n!

�

P̂ �

�p
��ψEα1

· · ·ψEαn
|P̂ �ψEα�

1
· · ·ψEα�

n
� . (2.63)

And with the orthonormality (2.52) of the 1-particle wavefunctions we finally obtain for the

scalar product the expression

�ψ�
{Eα}|ψ�

{Eα�}� = N �
{Eα}N

�
{Eα�}n!

�

P̂ �

�p
�
δα1,α�

P �(1)
· · · δα1,α�

P �(n)
. (2.64)

We now demand the orthonormality relation

�ψ�
{Eα}|ψ�

{Eα�}� = δ�α1,...,αn;α�
1,...α

�
n

(2.65)

with the (anti-)symmetrized Kronecker symbol

δ�α1,...,αn;α�
1,...α

�
n
=

�

P̂

�p δα1,α�
P (1)

· · · δα1,α�
P (n)

. (2.66)

As we restrict ourselves both for bosons and fermions to the case that all single-particle states

differ from each other, i.e. αµ �= αν for µ �= ν, in (2.65) and (2.66) only the identity permutation

P̂ = 1 survives, which fixes the normalization constant N �
{Eα} according to

N �
{Eα} =

1√
n!

. (2.67)

Finally, we show that one can span the whole Hilbert space of (anti-)symmetrized n-particle

wave functions with (2.56). To this end we start from the completeness relation (2.53) of the

n-particle wave function and apply twice the (anti-)symmetrization operator (2.54), once upon

the space coordinates x1, . . . ,xn and once upon the space coordinates x�
1, . . . ,x

�
n:

�

P̂

�

P̂ �

�p+p�
�

α1

· · ·
�

αn

ψ∗
Eα1

(xP (1)) · · ·ψ∗
Eαn

(xP (n))ψEα1
(x�

P �(1)) · · ·ψEαn
(x�

P �(n))

=
�

P̂

�

P̂ �

�p+p�δ(xP (1) − x�
P �(1)) · · · δ(xP (n) − x�

P �(n)) . (2.68)

At the left-hand side the space coordinates xP (1), . . . ,xP (n) and x�
P �(1), . . . ,x

�
P �(n) are rearranged

in their respective standard order x1, . . . ,xn and x�
1, . . . ,x

�
n. As a consequence the quantum
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numbers α1, . . .αn are rearranged to αP (1), . . .αP (n) and αP �(1), . . .αP �(n), respectively. A corre-

sponding reordering on the right-hand side from xP (1), . . . ,xP (n) to x1, . . . ,xn rearranges then

x�
P �(1), . . . ,x

�
P �(n) to x�

P �(P (1)), . . . ,x
�
P �(P (n)), yielding

�

α1

· · ·
�

αn

��

P̂

�pψ∗
EαP (1)

(x1) · · ·ψ∗
EαP (n)

(xn)
���

P̂ �

�p
�
ψ∗
EαP �(1)

(x�
1) · · ·ψ∗

EαP �(n)
(x�

n)
�

=
�

P̂

�

P̂ �

�p+p�δ(x1 − x�
P �(P (1))) · · · δ(xn − x�

P �(P (n))) . (2.69)

At the left-hand side we now use (2.54), (2.56), and (2.67), whereas at the right-hand side the

sum over all permutations P̂ � is substituted by an equivalent sum over all permutations Q̂ = P̂ �P̂

with q = p� + p, so that afterwards the sum over P̂ can straight-forwardly be performed. With

this we finally obtain the completeness relation

�

α1

· · ·
�

αn

ψ�∗
{Eα}(x1, . . . ,xn)ψ

�
{Eα}(x

�
1, . . . ,x

�
n) = δ�(x1, . . . ,xn;x

�
1, . . . ,x

�
n) , (2.70)

where we have introduced analogous to (2.66) the (anti-)symmetrized delta function

δ�(x1, . . . ,xn;x
�
1, . . . ,x

�
n) =

�

Q̂

�qδ(x1 − x�
Q(1)) · · · δ(xn − x�

Q(n)) . (2.71)

The considerations of the present section have the purpose to generate a basis of the Hilbert

space of indistinguishable identical particles via a(n) (anti-)symmetrization of the known basis

of the Hilbert space of distinguishable identical particles. So far the starting point has been

the eigenvalue problem (2.46) of the underlying Hamilton operator. But another basis results

from considering the eigenvalue problem (2.15) of the coordinate operators as the starting

point. Then the eigenfunctions |x1, . . . ,xn� with the continuous eigenvalues x1, . . . ,xn span

the Hilbert space of distinguishable identical particles. The subsequent (anti-)symmetrization

is performed analogous to (2.54), (2.56), and (2.67), yielding another basis in the Hilbert space

of indistinguishable identical particles:

|x1, . . . ,xn�� =
1√
n!

�

P̂

�p|xP (1), . . . ,xP (n)� . (2.72)

Both the orthonormality relation and the completeness relation corresponding to (2.65) and

(2.70) read then

��x1, . . . ,xn|x�
1, . . . ,x

�
n�� = δ�(x1, . . . ,xn;x

�
1, . . . ,x

�
n) , (2.73)�

d3x1 · · ·
�

d3xn |x1, . . . ,xn�� ��x1, . . . ,xn| = 1 . (2.74)

For the purpose of illustration we consider the spatial representation for two particles. The

basis for two distinguishable identical particles reads in coordinate representation according to

(2.16) and (2.20)

ψx1,x2(z1, z2) = �z1, z2|x1,x2� = δ(z1 − x1)δ(z2 − x2) . (2.75)
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Correspondingly, the coordinate representation for two indistinguishable particles follows from

(2.20):

ψ�
x1,x2

(z1, z2) = �z1, z2|x1,x2�� , (2.76)

which reduces due to (2.16) and (2.72) to

ψ�
x1,x2

(z1, z2) =
1√
2

�
δ(z1 − x1)δ(z2 − x2) + �δ(z1 − x2)δ(z2 − x1)

�
. (2.77)

Note that (2.77) also follows from an (anti-)symmetrization (2.72) from (2.75) as defined by

(2.54), (2.56), and (2.67). With this one obtains for the orthonormality relation (2.73) by taking

into account (2.71)

�
d3z1

�
d3z2 ψ

�∗
x1,x2

(z1, z2)ψ
�
x�
1,x

�
2
(z1, z2) = δ�(x1,x2;x

�
1,x

�
2) (2.78)

and correspondingly the completeness relation (2.74) reads together with (2.73) and (2.75)

�
d3x1

�
d3x2 ψ

�∗
x1,x2

(z1, z2)ψ
�
x1,x2

(z�1, z
�
2) = δ�(z1, z2; z

�
1, z

�
2) . (2.79)




