
Chapter 3

Second Quantization

The formulation of quantum many-body systems introduced so far dealt first with distinguish-

able particles and necessitated then to perform afterwards a(n) (anti-)symmetrization of wave

functions in order to describe indistinguishable particles in form of bosons (fermions). Usually

this procedure turns out to be quite cumbersome due the huge number of particles involved in a

quantum many-body system. Therefore, one has worked out second quantization as an alterna-

tive formulation for describing quantum many-body systems, which has the advantage that it

automatically takes into account the (anti-)symmetrization of wave functions. It is based on the

ladder formalism, which allows an algebraic treatment of the first quantized harmonic oscillator

and is therefore initially reviewed. Afterwards, we heuristically formulate second quantization,

which represents the technical basis for non-relativistic quantum many-body theory. Due to

the introduction of creation and annihilation operators for identical particles we are able to

describe interacting bosonic and fermionic systems involving an arbitrary number of particles.

This is relevant for concrete applications in the realm of solid-state physics like the descrip-

tion of Bose-Einstein condensation and superfluidity as well as the Bardeen-Cooper-Schrieffer

theory of superconductivity, which is not the content of this lecture. But, a similar second

quantization formalism is later on used to quantize relativistic fields like the Maxwell and the

Dirac field and, thus, represents the very basis for quantum electrodynamics.

3.1 Harmonic Oscillator

The harmonic oscillator represents a standard quantum mechanical model with which it is

possible to describe quite successfully, for instance, collective oscillations in molecules or in

solids. The Hamilton operator of a one-dimensional harmonic oscillator with mass M and

frequency ω reads

Ĥ =
p̂2

2M
+

M

2
ω2x̂2 , (3.1)
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where one demands non-trivial commutation relations between the coordinate operator q̂ and

the momentum operator p̂ analogous to (2.12):

�
x̂, x̂

�
− =

�
p̂, p̂

�
− = 0 ,

�
p̂, x̂

�
− =

h̄

i
. (3.2)

The problem is now to solve the eigenvalue problem of the Hamilton operator

Ĥ|α� = Eα|α� , (3.3)

i.e. to determine how the energy eigenvalues Eα and the energy eigenfunctions |α� depend

on the quantum number α. Usually this representation-free eigenvalue problem (3.3) is trans-

formed into the coordinate representation, so it amounts to solve the corresponding Schrödinger

equation by taking into account the appropriate Dirichlet boundary condition. In the follow-

ing, however, we proceed differently by solving the representation-free eigenvalue problem (3.3)

directly by taking into account the cummator relations (3.2).

At first, the two hermitian operators x̂ and p̂ are transformed into two new operators â† and

â, which are adjoint with respect to each other:

â† =

�
Mω

2h̄

�
x̂− i

Mω
p̂

�
, â =

�
Mω

2h̄

�
x̂+

i

Mω
p̂

�
. (3.4)

The inverse transformation reads correspondingly

x̂ =

�
h̄

2Mω

�
â† + â

�
, p̂ =

�
h̄Mω

2
i
�
â† − â

�
. (3.5)

Here the physical dimension of the coordinate operator x̂ is provided by the oscillator length�
h̄/(2Mω), whereas the corresponding one

�
h̄Mω/2 of the momentum operator p̂ is related

to the oscillator length via the Heisenberg uncertainty relation. Inserting (3.5) into (3.1), the

Hamilton operator of the harmonic oscillator can be expressed in terms of the new operators

â† and â, yielding

Ĥ =
h̄ω

2

�
â†â+ ââ†

�
. (3.6)

Furthermore, the transformation (3.4) allows to deduce from (3.2) the commutation relations

between the new operators â† and â:

�
â, â

�
− =

�
â†, â†

�
− = 0 ,

�
â, â†

�
− = 1 . (3.7)

Using (3.7) the Hamilton operator of the harmonic oscillator (3.6) reduces to

Ĥ = h̄ω

�
n̂+

1

2

�
, (3.8)

where the zero-point energy h̄ω/2 and the operator

n̂ = â†â (3.9)
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appear. In order to calculate commutators the following identity turns out to be quite useful

�
ÂB̂, Ĉ

�
− = Â

�
B̂, Ĉ

�
− +

�
Â, Ĉ

�
− B̂ , (3.10)

which follows immediately from the definition of the commutator (2.13). Indeed, applying

(3.10) we obtain the commutation relations for the operator (3.9):

�
n̂, â†

�
− = â† , (3.11)

�
n̂, â

�
− = −â . (3.12)

Let us now consider the eigenvalue problem of the operator (3.9):

n̂|λ� = λ|λ� (3.13)

As the operator (3.9) is hermitian, its eigenvalues λ must be real. Furthermore, the commuta-

tion relations (3.11) and (3.12) allow to investigate which consequences occur once the operators

â† and â are applied to the eigenfunctions |λ�. On the one hand we read off from (3.11) and

(3.13)

n̂â†|λ� =
�
â†n̂+ â†

�
|λ� = (λ+ 1)â†|λ� =⇒ â†|λ� ∼ |λ+ 1� , (3.14)

on the other hand we conclude from (3.12) and (3.13)

n̂â|λ� =
�
ân̂− â

�
= (λ− 1)â|λ� =⇒ â|λ� ∼ |λ− 1� . (3.15)

Thus, the operators â† and â can be considered as ladder operators, which allow to climb up or

down the ladder of eigenfunctions |λ�. Applying the raising (lowering) ladder operator â† (â)

to |λ� yields an eigenfunction corresponding to an eigenvalue which is increased (decreased) by

one, see Fig. 3.1

Furthermore, one can show that the eigenvalues λ of the operator N̂ are always positive by

taking into account (3.9) and (3.13) and by assuming without loss of generality that the eigen-

functions |λ� are normalized:

0 ≤ �âλ|âλ� = �λ|â†â|λ� = �λ|n̂|λ� = λ�λ|λ� = λ . (3.16)

From (3.15) and (3.16) we conclude that the eigenvalues λ are given by positive integer number

including zero:

λ = n = 0, 1, 2, . . . . (3.17)

If there were a positive, non-integer eigenvalue λ, one could apply iteratively the lowering ladder

operator â and reduce in this way the eigenvalue due to (3.15) until it would become negative.

But this would then contradict the inequality (3.16). Thus, due to this contradiction proof,

there must be a ground state |0� with the property

â|0� = 0 ⇐⇒ �0|â† = 0 . (3.18)
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Figure 3.1: Raising (lowering) operator â† (â) increases (decreases) the quantum number λ of

the harmonic oscillator by one.

Normalized eigenfunctions |n� can then be constructed as follows. At first, we deduce from

(3.7), (3.9), (3.13), and (3.17):

�â†n|â†n� = �n|ââ†|n� = �n|
�
â†â+ 1

�
|n� = �n|

�
n̂+ 1

�
|n� = n+ 1 . (3.19)

From (3.14), (3.17), and (3.19) follows a rule how applying the raising ladder operator â† upon

the normalized eigenfunction |n� yields the next normalized eigenfunction |n+ 1�:

â†|n� = Cn|n+ 1� =⇒ C2
n�n+ 1|n+ 1� = (n+ 1) =⇒ â†|n� =

√
n+ 1 |n+ 1� . (3.20)

And then iterating (3.20) yields a prescription how the eigenfunctions |n� can be constructed

from the ground state |0� defined by (3.18):

|n� = 1√
n
â†|n− 1� = 1�

n(n− 1)

�
â2
�2|n− 2� = . . . =⇒ |n� = 1√

n!

�
â†
�n|0� . (3.21)

For the sake of completeness we also determine the action of the lowering ladder operator â

upon the eigenfunction |n�. At first we obtain from (2.68), (3.13), and (3.17)

�ân|ân� = �n|â†â|n� = �n|n̂|n� = n . (3.22)

Thus, we conclude from (3.15) and (3.22)

â|n� = Dn|n− 1� =⇒ D2
n�n− 1|n− 1� = n =⇒ â|n� = √

n |n− 1� . (3.23)

Furthermore, we read off from (3.8), (3.9), (3.13), and (3.17) the energy eigenvalues of the

harmonic oscillator

En = h̄ω

�
n+

1

2

�
. (3.24)
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3.2 Creation and Annihilation Operators for Bosons

This ladder formalism for the algebraic treatment of the first quantized harmonic oscillator is

now used in the realm of second quantization for describing indistinguishable identical bosons.

We outline heuristically this basic idea by working out the analogy step by step:

• Whereas n describes the quantum number of the 1-particle system, we denote from now

on with nx the number of bosons at space point x.

• The ladder operators â† and â, which are defined by the commutator relations (3.7), allow

to increase and decrease the quantum number n of the harmonic oscillator. Correspond-

ingly we introduce operators â†x and âx via the commutator relations

�
âx, âx�

�
− =

�
â†x, â

†
x�
�
− = 0 ,

�
âx, â

†
x�
�
− = δ(x− x�) . (3.25)

With these commutator relations at hand, we can now proceed and deduce similar con-

clusions for the second quantized description of many bosons as we have just obtained for

the first quantized harmonic oscillator. In particular, this allows to determine a concrete

physical interpretation for the operators â†x and âx.

• The operator n̂ = â†â has turned out to have the eigenvalues n, which follows ultimately

from the commutator relations (3.11) and (3.12). Analogously we define the particle

number operator

N̂ =

�
d3x� â†x� âx� (3.26)

which obeys due to (3.10), (3.25), and (3.26) the commutator relations

�
N̂ , â†x

�
− = â†x , (3.27)

�
N̂ , âx

�
− = −âx . (3.28)

Note that we have deliberately introduced in the commutator relations (3.25) a delta

function in order to obtain for the particle number operator (3.26) commutator relations

(3.27), (3.28) in analogy to (3.11) and (3.12). This has the consequence that the operators

â†x and âx can be interpreted as a creation and annihilator operator as they create and

annihilate a boson at space point x, respectively.

• The first quantized harmonic oscillator has a ground state |0�, which is introduced ac-

cording to (3.18). In a similar way we define in second quantization a vacuum state |0�
via

âx|0� = 0 ⇐⇒ �0|â†x = 0 . (3.29)
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• Similar to (3.21) an iterative application of creation operators to the vacuum state yields

the basis states of the underlying Hilbert space for describing bosons

|x1, . . . ,xn�+1 = â†x1
· · · â†xn

|0� , (3.30)

where we assume that the space coordinates differ pairwise, i.e. xi �= xj for all i �= j. For

the sake of illustration we exemplary verify the identity of (2.73) and (3.30) for n = 1 and

n = 2 bosons in the coordinate representation. From (2.72), (3.25), (3.29), and (3.30) we

obtain at first

+1�x1|x�
1�+1 = �â†x1

0|â†x�
1
0� = �0|âx1 â

†
x�
1
|0�

= �0|â†x�
1
âx1 + δ(x1 − x�

1)|0� = δ(x1 − x�
1) = δ+1(x1;x

�
1) . (3.31)

Correspondingly, we get then

+1�x1,x2|x�
1,x

�
2�+1 = �â†x1

â†x2
0|â†x�

1
â†x�

2
0� = �0|âx2 âx1 â

†
x�
1
â†x�

2
|0�

= �0|âx2

�
â†x�

1
âx1 + δ(x1 − x�

1)
�
â†x�

2
|0� = δ(x1 − x�

1)�0|â†x�
2
âx2 + δ(x2 − x�

2)|0�

+�0|
�
â†x�

1
âx2 + δ(x�

1 − x2)
� �

â†x�
2
âx1 + δ(x1 − x�

2)
�
|0� = δ(x1 − x�

1)δ(x2 − x�
2)

+δ(x1 − x�
2)δ(x2 − x�

1) = δ+1(x1,x2;x
�
1,x

�
2) . (3.32)

3.3 Schrödinger Equation for Interacting Bosons

Introducing local creation and annihilation operators â†x and âx has not only the advantage of

constructing many-particle states, which automatically have the correct symmetry. In addition

one obtains a universal form of the time-dependent Schrödinger equation, which turns out to

be independent of the particle number n. In its representation-independent form it reads

ih̄
∂

∂t
|ψ(t)� = Ĥ|ψ(t)� . (3.33)

Here |ψ(t)� denotes some many-particle state in the second-quantized Hilbert space, which is

spanned by the basis states (3.30). The second-quantized Hamilton operator Ĥ consists of two

terms:

Ĥ = Ĥ1 + Ĥ2 . (3.34)

The local Hamilton operator Ĥ1 is determined the 1-particle Hamilton operator of non-interacting

bosons

− h̄2

2M
Δ+ V1(x) . (3.35)

Due to the sandwich principle the first-quantized Hamilton operator (3.35) is multiplied with

the local creation and annihilation operators â†x and âx to the left and to the right, respectively,
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so a subsequent integration over the coordinate x yields the corresponding second-quantized

1-particle Hamilton operator:

Ĥ1 =

�
d3x â†x

�
− h̄2

2M
Δ+ V1(x)

�
âx . (3.36)

Correspondingly the bi-local Hamilton operator Ĥ2 is constructed with the help of the 2-particle

interaction V2(x− x�):

Ĥ2 =
1

2

�
d3x

�
d3x� â†xâ

†
x� V2(x− x�)âx� âx . (3.37)

Note that in both terms (3.36) and (3.37) the creation and annihilation operators appear at

the left and at the right, respectively. This particular ordering of second-quantized operators

is called normal ordering. It has the consequence that the vacuum energy of the Hamilton

operator defined by (3.34), (3.36), and (3.37) vanishes due to the definition of the vacuum state

in (3.29):

Ĥ|0� = 0 ⇐⇒ �0|Ĥ = 0 . (3.38)

In the following we demonstrate that the operator character of â†x and âx is essential for the fact

that the Schrödinger equation (3.33) describes a many-body problem. To this end we multiply

(3.33) from the left with the adjoint of the basis state (3.30)

+1�x1, . . . ,xn| = �0|âxn · · · âx1 . (3.39)

With this we get at first

ih̄
∂

∂t
�0|âxn · · · âx1 |ψ(t)� = �0|âxn · · · âx1Ĥ|ψ(t)� . (3.40)

Due to (3.38) we can express the right-hand side of (3.40) in terms of a commutator

ih̄
∂

∂t
�0|âxn · · · âx1 |ψ(t)� = �0|

�
âxn · · · âx1 , Ĥ

�
−
|ψ(t)� . (3.41)

Taking into account both contributions (3.36) and (3.37) of the Hamilton operator this leads

to the expression

�
d3y

�
d3z δ(y − z)

�
− h̄2

2M
Δz + V1(z)

�
�0|

�
âxn · · · âx1 , â

†
yâz

�
− |ψ(t)�+ 1

2

�
d3y1

�
d3y2

·
�

d3z1

�
d3z2 δ(y1 − z1)δ(y2 − z2)V2(z1 − z2)�0|

�
âxn · · · âx1 , â

†
y1
â†y2

âz2 âz1
�
− |ψ(t)� . (3.42)

In order to evaluate the first commutator in (3.42) we use an identity similar to (3.10)

�
Â, B̂Ĉ

�
− =

�
Â, B̂

�
−Ĉ + B̂

�
Â, Ĉ

�
− , (3.43)

which yields

�
âxn · · · âx1 , â

†
yâz

�
− =

�
âxn · · · âx1 , â

†
y

�
− âz + â†y [âxn · · · âx1 , âz]− . (3.44)
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Note that here the second term vanishes as the annihilation operators commute with respect

to each other due to (3.25). Applying now recursively the identity (3.10), we get

�
âxn · · · âx1 , â

†
y

�
− =

n�

ν=1

âxn · · · âxν+1

�
âxν , â

†
y

�
− âxν−1 · · · âx1 , (3.45)

where the remaining commutators yield a delta function δ(xν − y) due to (3.25):

�
âxn · · · âx1 , â

†
y

�
− =

n�

ν=1

δ(y − xν) âxn · · · âxν+1 âxν−1 · · · âx1 . (3.46)

Thus, the first expectation value in (3.42) yields

�0|
�
âxn · · · âx1 , â

†
yâz

�
− |ψ(t)� =

n�

ν=1

δ(xν − y)�0|âxn · · · âxν+1 âzâxν−1 · · · âx1 |ψ(t)� . (3.47)

In a similar manner we proceed also for the second commutator in (3.42) by applying the

identity (3.43) twice, yielding
�
âxn · · · âx1 ,

�
â†y1

â†y2

�
(âz2 âz1)

�
− =

�
âxn · · · âx1 , â

†
y1
â†y2

�
− âz2 âz1

=
�
âxn · · · âx1 , â

†
y1

�
− â†y2

âz2 âz1 + â†y1

�
âxn · · · âx1 , â

†
y2

�
− âz2 âz1 (3.48)

Thus, taking into account (3.46) reduces (3.48) to

�
âxn · · · âx1 , â

†
y1
â†y2

âz2 âz1
�
− =

n�

ν=1

δ(xν − y1) âxn · · · âxν+1 âxν−1 · · · âx1 â
†
y2
âz2 âz1

+
n�

ν=1

δ(xν − y2) â
†
y1
âxn · · · âxν+1 âxν−1 · · · âx1 âz2 âz1 . (3.49)

Now we determine the second expectation value in (3.42) from (3.49). Due to (3.29) we ob-

serve that the second term in (3.49) then vanishes and the first term can be rewritten as a

commutator:

�0|
�
âxn · · · âx1 , â

†
y1
â†y2

âz2 âz1
�
− |ψ(t)�

=
n�

ν=1

δ(xν − y1)
�
âxn · · · âxν+1 âxν−1 · · · âx1 , â

†
y2

�
− âz2 âz1 |ψ(t)� . (3.50)

Using again (3.46) we can then evaluate (3.50):

�0|
�
âxn · · · âx1 , â

†
y1
â†y2

âz2 âz1
�
− |ψ(t)� (3.51)

=
n�

ν=1

n�

µ=1

δ(xν − y1)δ(xµ − y2)�0|âxn âxν+1 âz1 âxν−1 · · · âxµ+1 âz2 âxµ−1 · · · âx1 |ψ(t)� .

Finally, inserting the intermediate results (3.47) and (3.51) into the projected Schrödinger

equation (3.40) and the expectation value of the Hamilton operator (3.42) as well as performing

the integrations over the delta functions yields the n-particle Schrödinger equation (2.21) with

(2.23). Here we take into account that the n-particle wave function ψ(x1, . . .xn; t) follows from

projecting the state |ψ(t)� upon the basis state (3.30) similar to (2.20):

ψ+1(x1, . . .xn; t) =
+1�x1, . . . ,xn|ψ(t)� . (3.52)
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3.4 Field Operators in Heisenberg Picture

So far the non-relativistic many-body theory was formulated in the Schrödinger picture as the

local particle creation and annihilation operators â†x and âx were time-independent, whereas

the many-body state |ψ(t)� from the second quantized Hilbert space was time-dependent. Now

we perform the transformation to the Heisenberg picture, where the many-body state is time-

independent and the whole time dependence is carried by so-called field operators.

At first we repeat the general procedure in first quantization. To this end we start with the

Schrödinger picture and restrict ourselves for the sake of simplicity to the case of a time-

independent Hamilton operator ĤS. The corresponding equations of motion for both the time-

dependent state |ψS(t)� and a time-independent operator ÔS read

ih̄
∂

∂t
|ψS(t)� = ĤS |ψS(t)� , (3.53)

ih̄
∂

∂t
ÔS = 0 . (3.54)

The formal solution of the Schrödinger equation (3.53) is given by

|ψS(t)� = e−iĤSt/h̄ |ψS(0)� . (3.55)

Here we identify the initial state |ψS(0)� in the Schrödinger picture with the state |ψH� in the

Heisenberg picture:

|ψS(0) = |ψH� . (3.56)

Thus, the transformations from the Schrödinger to the Heisenberg picture and vice versa are

defined according to the relations

|ψS(t)� = e−iĤSt/h̄ |ψH� ⇐⇒ |ψH� = eiĤSt/h̄ |ψS(t)� . (3.57)

From (3.53) and (3.57) we then read off that the state in the Heisenberg picture |ψH� is time-

independent:

ih̄
∂

∂t
|ψH� = −ĤS e

iĤSt/h̄ |ψS(t)�+ eiĤSt/h̄ ih̄
∂

∂t
|ψS(t)� = 0 . (3.58)

In order to determine the operator ÔH(t) in the Heisenberg picture, we demand that the ex-

pectation values do not change once we perform a transformation from the Schrödinger to the

Heisenberg picture:

�ψS(t)|ÔS|ψS(t)� = �ψH|ÔH(t)|ψH� . (3.59)

Inserting (3.57) into (3.59) we determine, indeed, formally the time dependence of the operator

ÔH(t) in the Heisenberg picture:

�e−iĤSt/h̄ ψH|ÔS|e−iĤSt/h̄ ψH� = �ψH|eiĤSt/h̄ ÔSe
−iĤSt/h̄|ψH� = �ψH|ÔH(t)|ψH� .

=⇒ ÔH(t) = eiĤSt/h̄ ÔS e
−iĤSt/h̄ . (3.60)
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For instance, for the Hamilton operator ÔS = ĤS we obtain from (3.60) the result that it

does not change its form when we perform the transformation from the Schrödinger to the

Heisenberg picture:

ĤH(t) = eiĤSt/h̄ ĤS e
−iĤSt/h̄ = ĤS . (3.61)

Furthermore, for the operator in the Heisenberg picture ÔH(t) we determine from (3.54), (3.60),

and (3.61) the Heisenberg equation of motion:

ih̄
∂

∂t
ÔH(t) = eiĤSt/h̄

�
−ĤSÔS + ÔSĤS

�
e−iĤSt/h̄ + eiĤSt/h̄ ih̄

∂

∂t
ÔS e

−iĤSt/h̄

=⇒ ih̄
∂

∂t
ÔH(t) =

�
ÔH(t), ĤS

�
−
=

�
ÔH(t), ĤH(t)

�
−
. (3.62)

Now we transfer this procedure to the second quantization. To this end we assign analogous

to (3.60) to the local particle creation and annihilation operators â†x and âx in the Schrödinger

picture corresponding time-dependent fields operators in the Heisenberg picture:

ψ̂†(x, t) = â†xH(t) = eiĤt/h̄ â†x e
−iĤt/h̄ , ψ̂(x, t) = âxH(t) = eiĤt/h̄ âx e

−iĤt/h̄ . (3.63)

At first we determine from (3.25) and (3.63) the equal-time commutator relations of these field

operators:
�
ψ̂(x, t), ψ̂(x�, t)

�
−
=

�
ψ̂†(x, t), ψ̂†(x�, t)

�
−
= 0 ,

�
ψ̂(x, t), ψ̂†(x�, t)

�
−
= δ(x− x�) . (3.64)

Thus, the field operators ψ̂†(x, t), ψ̂(x, t) in the Heisenberg picture fulfill at each time instant t

the same commutator relations (3.25) as the local creation and annihilation operators â†x, âx in

the Schrödinger picture. This means that ψ̂†(x, t) and ψ̂(x, t) have the physical interpretation

to create and annihilate a boson at space point x at time t.

Now we transform the Hamilton operator (3.34), (3.36), and (3.37) from the Schrödinger to the

Heisenberg picture. Analogous to (3.60) we multiply the Hamilton operator

Ĥ =

�
d3x â†x

�
− h̄2

2M
Δ+ V1(x)

�
âx +

1

2

�
d3x

�
d3x� â†xâ

†
x� V2(x− x�)âx� âx (3.65)

from the left with eiĤt/h̄ and from the right with e−iĤt/h̄:

ĤH(t) =

�
d3x eiĤt/h̄ â†x e

−iĤt/h̄

�
− h̄2

2M
Δ+ V1(x)

�
eiĤt/h̄ âx e

−iĤt/h̄ (3.66)

+
1

2

�
d3x

�
d3x� eiĤt/h̄ â†xe

−iĤt/h̄ eiĤt/h̄ â†x�e
−iĤt/h̄ V2(x− x�)eiĤt/h̄ âx� e−iĤt/h̄ eiĤt/h̄ âxe

−iĤt/h̄ .

Using the field operators (3.63) the Hamilton operator reads in the Heisenberg picture:

ĤH(t) =

�
d3x ψ̂†(x, t)

�
− h̄2

2M
Δ+ V1(x)

�
ψ̂(x, t)

+
1

2

�
d3x

�
d3x� ψ̂†(x, t)ψ̂†(x�, t)V2(x− x�)ψ̂(x�, t) ψ̂(x, t) . (3.67)
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With this Hamilton operator in the Heisenberg picture we can determine from (3.62) the Heisen-

berg equation of motion of the field operator ψ̂(x, t):

ih̄
∂ψ̂(x, t)

∂t
=

�
ψ̂(x, t), ĤH(t)

�
−
. (3.68)

At first we get

ih̄
∂ψ̂(x, t)

∂t
=

�
d3x�

�
d3x�� δ(x− x�)

�
− h̄2

2M
Δ�� + V1(x

��)

��
ψ̂(x, t), ψ̂†(x�, t)ψ̂(x��, t)

�
−

+
1

2

�
d3x�

�
d3x�� V2(x

� − x��)
�
ψ̂(x, t), ψ̂†(x�, t)ψ̂†(x��, t)ψ̂(x��, t)ψ̂(x�, t)

�
−
. (3.69)

Here the respective commutators can be evaluated with the help of the identity (3.43) and the

commutator relations (3.64), yielding

�
ψ̂(x, t), ψ̂†(x�, t)ψ̂(x��, t)

�
−
= δ(x− x�) ψ̂(x��, t) (3.70)

and, correspondingly,

�
ψ̂(x, t), ψ̂†(x�, t)ψ̂†(x��, t)ψ̂(x��, t)ψ̂(x�, t)

�
−

=
�
δ(x− x�) ψ̂†(x��, t) + δ(x− x��) ψ̂†(x�, t)

�
ψ̂(x��, t)ψ̂(x�, t) . (3.71)

Inserting (3.70) and (3.71) in (3.69) we finally obtain

ih̄
∂ψ̂(x, t)

∂t
=

�
− h̄2

2M
Δ+ V1(x)

�
ψ̂(x, t) +

�
d3x� V2(x− x�) ψ̂†(x�, t)ψ̂(x�, t)ψ̂(x, t) . (3.72)

In the same way also the Heisenberg equation of motion of the adjoint field operator

ih̄
∂ψ̂†(x, t)

∂t
=

�
ψ̂†(x, t), ĤH(t)

�
−

(3.73)

is evaluated:

−ih̄
∂ψ̂†(x, t)

∂t
=

�
− h̄2

2M
Δ+ V1(x)

�
ψ̂†(x, t) + ψ̂†(x, t)

�
d3x� V2(x− x�) ψ̂†(x�, t)ψ̂(x�, t) . (3.74)

This is, indeed, the adjoint of the Heisenberg equation of motion (3.72). The operator-valued

integro-differential equations (3.72) and (3.74) are nonlinear. Due to their complexity it is not

possible to obtain exact analytic solutions. Therefore, one has to reside to develop physically

reasonable approximate solutions.

3.5 Creation and Annihilation Operators for Fermions

So far we have shown that the symmetric many-body states for bosons can be practically realized

with the help of local creation and annihilation operators â†x and âx in the Schrödinger picture.
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Here the symmetry of the many-body states of bosons was ultimately a direct consequence of

the commutation relations (3.25). Therefore, the question arises whether there exists a similar

formalism also in view of the anti-symmetric many-body states for fermions. To this end we

aim for creating an anti-symmetric many-body state for fermions similar to (3.30) via

|x1, . . . ,xn�−1 = â†x1
· · · â†xn

|0� . (3.75)

But then we have to demand instead of the commutation relations (3.25) corresponding anti-

commutation relations

�
âx, âx�

�
+
=

�
â†x, â

†
x�
�
+
= 0 ,

�
âx, â

†
x�
�
+
= δ(x− x�) . (3.76)

where the anti-commutator between two quantum mechanical operators Â and B̂ is defined by

�
Â, B̂

�
+
= ÂB̂ + B̂Â . (3.77)

As in the bosonic case in (3.29) we define in addition the vacuum state |0� by the condition

that it does not contain any particles:

âx|0� = 0 ⇐⇒ �0|â†x = 0 . (3.78)

Indeed, (3.77) and (3.78) turn out to guarantee for the anti-symmetric many-body states (3.75)

the orthonormality relations (2.74) for n = 1 and n = 2 fermions, which are characterized by

� = −1. From (2.72), (3.75), (3.76), and (3.78) we obtain at first

−1�x1|x�
1�−1 = �â†x1

0|â†x�
1
0� = �0|âx1 â

†
x�
1
|0�

= �0|− â†x�
1
âx1 + δ(x1 − x�

1)|0� = δ(x1 − x�
1) = δ−1(x1;x

�
1) . (3.79)

Correspondingly, we get then

−1�x1,x2|x�
1,x

�
2�−1 = �â†x1

â†x2
0|â†x�

1
â†x�

2
0� = �0|âx2 âx1 â

†
x�
1
â†x�

2
|0�

= �0|âx2

�
− â†x�

1
âx1 + δ(x1 − x�

1)
�
â†x�

2
|0� = δ(x1 − x�

1)�0|− â†x�
2
âx2 + δ(x2 − x�

2)|0�
−�0|

�
− â†x�

1
âx2 + δ(x�

1 − x2)
��

− â†x�
2
âx1 + δ(x1 − x�

2)
�
|0� = δ(x1 − x�

1)δ(x2 − x�
2)

−δ(x1 − x�
2)δ(x2 − x�

1) = δ−1(x1,x2;x
�
1,x

�
2) . (3.80)

As two local creation operators â†x and â†x� anti-commute due to (3.76), we conclude that then

the square of the fermionic creation operator â†x vanishes:

�
â†x
�2

= 0 . (3.81)

For the anti-symmetric many-body state (3.75) this has the consequence that it vanishes pro-

vided that two space coordinates xi and xj for i �= j coincide:

|x1, . . . ,xn�−1 = 0 , if xi = xj for i �= j . (3.82)
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Thus, the anti-commutation relations (3.76) contain automatically the Pauli exclusion principle

that two fermions can not be at the same space point.

The properties (3.75) and (3.76) are also sufficient in order to formulate with the help of the

second quantized Hamilton operator

Ĥ =

�
d3x â†x

�
− h̄2

2M
Δ+ V1(x)

�
âx +

1

2

�
d3x

�
d3x� â†xâ

†
x� V2(x− x�)âx� âx (3.83)

the second quantized Schrödinger equation for a fermionic many-body state |ψ(t)�:

ih̄
∂

∂t
|ψ(t)� = Ĥ|ψ(t)� . (3.84)

Projecting (3.84) to the anti-symmetric basis states (3.75) yields, like in the bosonic case, the

corresponding n-body Schrödinger equation (2.21) with (2.23) for the n-particle wave function

ψ−1(x1, . . .xn; t) =
−1�x1, . . . ,xn|ψ(t)� . (3.85)

We leave the detailed proof to the reader, which follows a consideration similar to Section 3.3.

Furthermore, transforming the fermionic creation and annihilation operators â†x and âx from

the Schrödinger to the Heisenberg picture yields fermionic field operators

ψ̂†(x, t) = eiĤt/h̄ â†x e
−iĤt/h̄ , ψ̂(x, t) = eiĤt/h̄ âx e

−iĤt/h̄ , (3.86)

which fulfill due to (3.76) equal-time anti-commutation relations:

�
ψ̂(x, t), ψ̂(x�, t)

�
+
=

�
ψ̂†(x, t), ψ̂†(x�, t)

�
+
= 0 ,

�
ψ̂(x, t), ψ̂†(x�, t)

�
+
= δ(x− x�) . (3.87)

Furthermore, we remark that the Hamilton operator in the Heisenberg picture

ĤH(t) =

�
d3x eiĤt/h̄ â†x e

−iĤt/h̄

�
− h̄2

2M
Δ+ V1(x)

�
eiĤt/h̄ âx e

−iĤt/h̄ (3.88)

+
1

2

�
d3x

�
d3x� eiĤt/h̄ â†xe

−iĤt/h̄ eiĤt/h̄ â†x�e
−iĤt/h̄ V2(x− x�)eiĤt/h̄ âx� e−iĤt/h̄ eiĤt/h̄ âxe

−iĤt/h̄ .

turns out to have the same form as in the bosonic case, see (3.67):

ĤH(t) =

�
d3x ψ̂†(x, t)

�
− h̄2

2M
Δ+ V1(x)

�
ψ̂(x, t)

+
1

2

�
d3x

�
d3x� ψ̂†(x, t)ψ̂†(x�, t)V2(x− x�)ψ̂(x�, t) ψ̂(x, t) . (3.89)

With this the Heisenberg equations of motion of the field operators ψ̂(x, t) and ψ̂†(x, t)

ih̄
∂ψ̂(x, t)

∂t
=

�
ψ̂(x, t), ĤH(t)

�
−
, (3.90)

ih̄
∂ψ̂†(x, t)

∂t
=

�
ψ̂†(x, t), ĤH(t)

�
−

(3.91)
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are evaluated and yield

ih̄
∂ψ̂(x, t)

∂t
=

�
− h̄2

2M
Δ+ V1(x)

�
ψ̂(x, t) +

�
d3x� V2(x− x�) ψ̂†(x�, t)ψ̂(x�, t)ψ̂(x, t) (3.92)

as well as its adjoint

−ih̄
∂ψ̂†(x, t)

∂t
=

�
− h̄2

2M
Δ+ V1(x)

�
ψ̂†(x, t) + ψ̂†(x, t)

�
d3x� V2(x− x�) ψ̂†(x�, t)ψ̂(x�, t) (3.93)

corresponding to the bosonic case, see (3.72) and (3.74). Note that obtaining (3.92) and (3.93)

necessitates the operator identity (3.43) and the complementary one

�
Â, B̂Ĉ

�
− =

�
Â, B̂

�
+
Ĉ − B̂

�
Â, Ĉ

�
+
, (3.94)

which directly follows from the definitions of both the commutator (2.13) and the anti-commutator

(3.77).

3.6 Occupation Number Representation

Let us finally consider the case that the 2-particle interaction vanishes, i.e. V2(x−x�) = 0, from

the point of view of second quantization. We show in this section that then identical particles

are described within the so-called occupation number representation. To this end we start with

the second quantized Hamilton operator in the Schrödinger picture for non-interacting identical

particles

Ĥ =

�
d3x â†x

�
− h̄2

2M
Δ+ V1(x)

�
âx . (3.95)

As we deal at the same time with bosons and fermions, the creation and annihilation operators

â†x, âx fulfill either canonical commutation or canonical anti-commutation relations:

�
âx, âx�

�
∓ =

�
â†x, â

†
x�
�
∓ = 0 ,

�
âx, â

†
x�
�
∓ = δ(x− x�) . (3.96)

In the following we assume again that the 1-particle wavefunctions ψEα(x) with the quantum

numbers α are known as solutions of the time-independent 1-particle Schrödinger equation

(2.48), obeying both the orthonormality relation (2.49) and the completeness relation (2.50).

Due to the latter the creation and annihilation operators â†x, âx can be expanded in the 1-

particle basis:

âx =
�

α

ψEα(x) âα ⇐⇒ â†x =
�

α

ψ∗
Eα

(x) â†α . (3.97)

Both expansions are inverted with the help of the orthonormality relation (2.49), yielding

âα =

�
d3xψ∗

Eα
(x) âx ⇐⇒ â†α =

�
d3xψEα(x) â

†
x . (3.98)
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With this we deduce the commutation and anti-commutation relations for the operator-valued

expansion coefficients â†α, âα by taking into account (3.96):

�
âα, âα�

�
∓ =

�
â†α, â

†
α�
�
∓ = 0 ,

�
âα, â

†
α�
�
∓ = δα,α� . (3.99)

Inserting the expansions of the creation and annihilation operators (3.97) in the second quan-

tized Hamilton operator (3.95), we can express it via the operator-valued expansion coefficients

â†α, âα due to (2.48) and (2.49) and end up with

Ĥ =
�

α

Eα n̂α , (3.100)

where we have introduced the particle number operator

n̂α = â†αâα . (3.101)

Note that the useful operator identity

�
ÂB̂, Ĉ

�
− = Â

�
B̂, Ĉ

�
∓ ±

�
Â, Ĉ

�
∓ B̂ , (3.102)

which follows from the definitions of both the commutator (2.13) and the anti-commutator

(3.77), complements the bosonic version (3.10) with a corresponding fermionic one. With

(3.43) and (3.102) we can then show that the particle operators n̂α and n̂α� for two quantum

numbers α and α� commute:

[n̂α, n̂α� ]− =
�
n̂α, â

†
α� âα�

�
−
=

�
â†αâα, â

†
α�

�
−
âα� + â†α�

�
â†αâα, âα�

�
− (3.103)

=

�
â†α

�
âα, â

†
α�

�
∓
±

�
â†α, â

†
α�

�
∓
âα

�
âα� + â†α�

�
â†α [âα, âα� ]∓ ±

�
â†α, âα�

�
∓ âα

�
= 0 .

Thus, we conclude that the particle number operator (3.101) commutes with the Hamilton

operator (3.100):

�
n̂α, Ĥ

�
− =

�

α�

Eα�
�
n̂α, n̂α�

�
− = 0 . (3.104)

Due to (3.103) and (3.104) we know that there must exist a set of states, which are eigenstates

for both all particle number operators (3.101 )and the Hamilton operator (3.100):

n̂α| . . . , nα, . . .� = nα | . . . , nα, . . .� , (3.105)

Ĥ| . . . , nα, . . .� =
�

α

Eαnα | . . . , nα, . . .� . (3.106)

In the case of bosons we already know from Section 3.2 that the commutation relations for the

operators â†α, âα imply that the eigenvalues of the particle operator n̂α can have any integer

value including zero:

bosons: nα = 0, 1, 2, . . . . (3.107)
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But for fermions it turns out that the anti-commutation relations for the operators â†α, âα lead

to an essential restriction for the eigenvalues of the particle operators. Namely we read off from

(3.81) and (3.101):

(n̂α)
2 = â†αâαâ

†
αâα = â†αâα −

�
â†α

�2
(âα)

2 = n̂α . (3.108)

Applying (3.108) to the eigenstates | . . . , nα, . . .� we conclude due to the eigenvalue problem

(3.105):

n2
α = nα , (3.109)

which yields straightforwardly

fermions: nα = 0, 1 . (3.110)

Thus, each state characterized by the quantum number α can be occupied with at most one

fermion in accordance with the Pauli exclusion principle.


