
Chapter 6

Poincaré Group

According to special relativity the space-time in the absence of gravity has a flat Minkowskian

structure. The group of symmetries, which leaves distances between events in this Minkowskian

space-time invariant, is named after the mathematician Henri Poincaré as the Poincaré group.

In the following we work out its properties as a Lie group, which unifies mathematical structures

of a group and a manifold as its group elements depend continuously and differentiably on

certain parameters. In fact, the Poincaré group turns out to be a ten-parametric, non-abelian

Lie group, which contains rotations in space, boosts between inertial systems, and translations

in space-time. Thus, the elements of the Poincaré group depend continuously and differentiably

on the rotation angles, the boost velocities and the translations. Furthermore, we discuss the

Poincaré algebra, which amounts to restricting the Poincaré group to the tangent plane at the

identity element, yielding the generators of rotations, boosts, and translations. And, conversely,

the Lie theorem turns out to allow to reconstruct the full Poincaré group by evaluating an

exponential function involving both the generators, i.e. the elements of the Lie algebra, and

the group parameters. And, finally, we determine the Casimir operators of the Poincaré group,

i.e. those operators commuting with all elements of the Poincaré algebra. Their eigenvalues

turn out to characterize all irreducible representations of the Poincaré group, to one of which

each elementary particle of the standard model has to belong. In this way, the Poincaré group

characterizes the underlying symmetry of relativistic quantum field theory and, thus, represents

its very backbone.

6.1 Special Relativity

Albert Einstein formulated the special relativity in 1905, which has changed since then the very

concept of space and time in the absence of gravity. It is based on two basic postulates:

1. Postulate: The velocity of light is the same in all inertial systems.

2. Postulate: The fundamental laws of physics have the same form in all inertial systems.
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On the one hand, this implies concrete physical consequences for fast moving particles, which

are nowadays confirmed, for instance, in the Large Hadron Collider (LHC) at Cern on a daily

basis. A prominent example is provided by the time dilatation, i.e. for an observer in an inertial

frame of reference, a clock that is moving relative to it in another inertial frame of reference will

be measured to tick slower than a clock that is at rest in its frame of reference. On the other

hand, special relativity also unifies the fundamental description of space and time. In view of

formalising the second postulate, a point in space-time, which is also called the Minskowski

space, is characterized by the contravariant space-time four-vector

(xµ) =
�
x0, x1, x2, x3

�
=

�
ct, xi

�
= (ct,x) . (6.1)

Here we use the convention that Greek (Latin) indices run from 0 to 3 (from 1 to 3). Further-

more, from the first postulate follows for a light ray in two different inertial systems:

(ct)2 − x2 = (ct�)
2 − x�2 . (6.2)

This condition can be reformulated with the help of the covariant Minkowski metric

(gµν) =




1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1


 (6.3)

sas the invariance of the scalar product of the space-time four-vectors xµ and x�µ in the respec-

tive inertial systems:

gµν x
µxν = gµν x

�µx�ν . (6.4)

Note that we use here the Einstein summation convention that one has to sum over all indices,

which appear twice, i.e. once in form of an upper or contravariant index and once in form of

a lower or covariant index. Apart from the contravariant space-time four-vector (6.1) we also

introduce the covariant space-time four-vector

xµ = gµν x
ν . (6.5)

Thus, the contravariant space-time four-vector xν is transformed via contraction with the co-

variant metric gµν to the corresponding covariant space-time four-vector xµ. Inserting (6.1) and

(6.3) in (6.6) the respective components of the covariant space-time four-vector turn out to be

(xµ) = (x0, x1, x2, x3) =
�
ct,−xi

�
= (ct,−x) . (6.6)

With this the invariance of the scalar product (6.4) reduces to

xµxµ = x�µx�
µ . (6.7)
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Furthermore, the obvious identity

gµν δ
ν
κ = gµκ (6.8)

with the Kronecker symbol δνκ means that the latter can be identified with the Minkowski

metric gνκ, which consists of both the contravariant index ν and the covariant index κ:

(gνκ) = (δνκ) =




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


 . (6.9)

In addition we also define

(gµν) =




1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1


 , (6.10)

for which we read off with (6.3) and (6.9) the obvious identity

gµν gνκ = δµκ = gµκ . (6.11)

Thus, (6.10) represents the contravariant Minkoswki metric. Due to (6.5) and (6.11) the co-

variant space-time four-vector xν is transformed via contraction with the contravariant metric

gµν to the corresponding contravariant space-time four-vector xµ:

gµν xν = gµν gνκ x
κ = δµκ x

κ = xµ (6.12)

Thus, we can summarize that the co- and contravariant Minkowski metrices allow to pull down

and up indices according to (6.5) and (6.12).

But the concept of four-vectors is much more general than the mere description of space-time

four-vectors. Namely, a four-vector represents objects whose scalar products coincide in all

inertial systems. Let us consider in view of another example the seminal energy-momentum

dispersion relation of a relativistic particle, see Fig. 6.1, in two different inertial systems:

E2 = M2c4 + p2c2 , E �2 = M �2c�4 + p�2c2 . (6.13)

Due to the equality of the rest masses M and M � in both inertial systems

M = M � (6.14)

the energy-momentum dispersion relations (6.13) reduce to the identity

�
E

c

�2

− p2 =

�
E �

c

�2

− p�2 . (6.15)
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Figure 6.1: A relativistic energy-momentum dispersion (6.13) for massive (red) and massless

(blue) particles in comparison with the non-relativistic limit (black).

Thus, introducing the contravariant momentum four-vector

(pµ) =
�
p0, p1, p2, p3

�
=

�
E

c
, pi

�
=

�
E

c
,p

�
(6.16)

allows to formulate the identity (6.15) as the invariance of the scalar products of the contravari-

ant momentum four-vectors pµ and p�µ:

gµν p
µpν = gµν p

�µp�
ν
. (6.17)

Defining in analogy to (6.5)

pµ = gµν p
ν (6.18)

also the components of the covariant momentum four-vector

(pµ) = (p0, p1, p2, p3) =

�
E

c
,−pi

�
=

�
E

c
,−p

�
. (6.19)

the invariance of the scalar product (6.17) can also be formulated as

pµpµ = p�
µ
p�µ . (6.20)

Furthermore, we conclude from (6.13), (6.14), and (6.19) that the scalar product of the four-

momentum vector with itself is given by the rest mass M of the particle:

pµpµ = M2c2 . (6.21)
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6.2 Defining Representation of Lorentz Group

Now we study the consequences of the invariance of the scalar product of four-vectors with

respect to a change from one inertial system to another. To this end we consider that the two

inertial systems are connected via a linear coordinate transformation, which is mediated by a

4× 4 matrix Λµ
ν :

x�µ = Λµ
ν x

ν . (6.22)

The invariance (6.4) then reads explicitly

gµν x
µxν = gµν x

�µx�ν = gµν Λ
µ
σΛ

ν
ρ x

σxρ = gσρ Λ
σ
µΛ

ρ
ν x

µxν . (6.23)

As (6.23) holds for arbitrary components xµ of a space-time four-vector, we conclude the identity

gµν = Λσ
µ gσρ Λ

ρ
ν . (6.24)

This represents the defining relation for Lorentz transformations Λ, which can be interpreted

in two different ways. At first we write (6.24) in matrix notation

g = ΛT gΛ , (6.25)

where we have introduced the elements of the transposed matrix ΛT according to

�
ΛT

� σ

µ
= gµκ

�
ΛT

�κσ
= gµκΛ

σκ = Λσκgκµ = Λσ
µ . (6.26)

Note that a left (right) index denotes the respective row (column) of the matrix, so we have

concretely




ΛT 0
0 ΛT 1

0 ΛT 2
0 ΛT 3

0

ΛT 0
1 ΛT 1

1 ΛT 2
1 ΛT 3

1

ΛT 0
2 ΛT 1

2 ΛT 2
2 ΛT 3

2

ΛT 0
3 ΛT 1

3 ΛT 2
3 ΛT 3

3


 =




Λ0
0 Λ1

0 Λ2
0 Λ3

0

Λ0
1 Λ1

1 Λ2
1 Λ3

1

Λ0
2 Λ1

2 Λ2
2 Λ3

2

Λ0
3 Λ1

3 Λ2
3 Λ3

3


 . (6.27)

The set L of all 4× 4 matrices Λ, which transform the Minkowski matrix g according to (6.25)

into the Minkowski metric g, defines the so-called Lorentz transformations. Note that another

equivalent way to interpret the invariance (6.24) follows from contracting it with gνκ. Taking

into account (6.11) and (6.26) yields

δκµ = δ κ
µ =

�
ΛT

�κ
σ
Λσ

µ =
�
ΛTΛ

�κ
µ
. (6.28)

Thus, we conclude that Lorentz transformations Λ are also defined by the identity

ΛT = Λ−1 ⇐⇒
�
ΛT

�µ
ν
= Λ µ

ν =
�
Λ−1

�µ
ν
. (6.29)

By inspection we find that the set L fulfills all group axioms:
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• At first we show that the closedness axiom is valid. Provided that Λ1, Λ2 belong to L we

obtain from (6.25) that also Λ1Λ2 belongs to L:

(Λ1Λ2)
T g (Λ1Λ2) = ΛT

2

�
ΛT

1 gΛ1

�
Λ2 = ΛT

2 gΛ2 = g . (6.30)

• Then we take advantage of the associativity of matrix multiplication. For Λ1, Λ2, and Λ3

belonging to L we conclude (Λ1Λ2)Λ3 = Λ1 (Λ2Λ3) from (6.25):

[(Λ1Λ2)Λ3]
T g [(Λ1Λ2)Λ3] = ΛT

3

�
ΛT

2

�
ΛT

1 gΛ1

�
Λ2

�
Λ3 = g = [Λ1 (Λ2Λ3)]

T g [Λ1 (Λ2Λ3)] . (6.31)

• The identity element is represented by the Kronecker symbol from (6.9):

Λe = I = (gνκ) . (6.32)

On the one hand we conclude that Λe belongs to L because of the identity

g = ΛT
e gΛe . (6.33)

On the other hand we observe for any Λ belonging to L:

ΛeΛ = ΛΛe = Λ . (6.34)

• And, finally, for each Λ from L we obtain for its determinant from (6.25):

Det g = DetΛT ·Det g ·DetΛ =⇒ (DetΛ)2 = 1 . (6.35)

We conclude then that Λ from L has a non-vanishing determinant, i.e. DetΛ �= 0, so

there exists an inverse transformation Λ−1. Furthermore, from (6.25) we yield:

�
ΛT

�−1
gΛ−1 = g =⇒

�
Λ−1

�T
gΛ−1 = g . (6.36)

Thus, there exists an inverse Λ−1 from L.

One denotes the set L of all Lorentz transformation as the Lorentz group or, more concretely,

as the pseudo-orthogonal group O(1, 3) due to the concrete form of the covariant Minkowski

metric (6.3). The Lorentz group L can be classified with respect to the following two properties:

• Due to (6.35) we read off that DetΛ = ±1. A Lorentz transformation with DetΛ = +1

(DetΛ = −1) is denoted to be special (non-special).

• From (6.24) we conclude for µ = ν = 0 due to (6.3):

1 = g00 = Λσ
0 gσρ Λ

ρ
0 =

�
Λ0

0

�2 −
�
Λi

0

�2
=⇒

�
Λ0

0

�2
= 1 +

�
Λi

0

�2 ≥ 1 . (6.37)

A Lorentz transformation Λ with Λ0
0 ≥ 1 (Λ0

0 ≤ −1) is called orthochronous (non-

orthochronous).
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branch DetΛ Λ0
0 example

L1 +1 > 0 identity: diag (1,1,1,1)

L2 -1 > 0 space inversion: diag (1,-1,-1,-1)

L3 -1 < 0 time inversion: diag (-1,1,1,1)

L4 +1 < 0 space-time inversion: diag (-1,-1,-1,-1)

Table 6.1: Overview of the four branches of the Lorentz group.

Thus, we conclude that the Lorentz group consists of four different branches as indicated in

Tab. 6.1. As the Lorentz transformations from the different branches can not be transformed

into each other, the Lorentz group is not connected. Only the branch L1 of the special or-

thochronous Lorentz transformations represents a subgroup of the Lorentz group as performing

consecutively two transformations from this branch does not allow to leave this branch. There-

fore, in the following we deal with only this branch L1 and call these special orthochronous

Lorentz transformations for the sake of simplicity as the Lorentz group.

6.3 Defining Representation of Lorentz Algebra

The set of all 4 × 4 matrices Λ is described in total by 4 · 4 = 16 degrees of freedom, where

the invariance (6.24) leads to 4 · 5/2 = 10 restrictions. Therefore the dimension of the Lorentz

group is

16− 10 = 6 . (6.38)

Here we investigate, in particular, the elements of the Lorentz group in the vicinity of the unity

element (6.32). All elements of the Lorentz group, which deviate infinitesimally from the unity

element, can be represented as

Λµ
ν = gµν + ωµ

ν . (6.39)

Inserting (6.39) into the defining identity for Lorentz transformations (6.24), we obtain up to

first order of the deviations ωµ
ν :

Λσ
µΛ

ρ
ν gσρ =

�
gσµ + ωσ

µ

� �
gρν + ωρ

ν

�
gσρ ≈ gσµg

ρ
νgσρ + ωσ

µg
ρ
νgσρ + gσµω

ρ
νgσρ

= gσµgσν + ωσ
µgσν + ωρ

νgµρ = gµν + ωνµ + ωµν = gµν . (6.40)

Thus we conclude that the deviations of the Lorentz transformation from the unity element are

represented by anti-symmetric 4× 4 matrices:

ωµν + ωνµ = 0 . (6.41)

The set of all anti-symmetric 4×4 matrices are called the Lorentz algebra of the Lorentz group.

The dimension of the Lorentz algebra is 6, which coincides with the dimension of the Lorentz
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group determined in (6.38). Using the anti-symmetry (6.41) the elements ωµ
ν of the Lorentz

algebra can be represented as

ωµ
ν = gαµgβνωαβ =

1

2

�
gαµgβν − gβµgαν

�
ωαβ . (6.42)

Thus, all elements ωµ
ν of the Lorentz algebra can be expanded with respect to basis elements

as follows:

ωµ
ν = − i

2

�
Lαβ

�µ
ν
ωαβ . (6.43)

Here ωαβ represent expansion coefficients and the representation matrices of the basis elements

Lαβ read:

�
Lαβ

�µ
ν
= i

�
gαµgβν − gβµgαν

�
. (6.44)

The indices α, β characterize the respective basis elements Lαβ, whereas the indices µ, ν indicate

the components
�
Lαβ

�µ
ν
of their respective 4× 4 representation matrices. One calls (6.44) the

defining representation of the Lorentz algebra as it was derived via (6.39) and (6.43) from the

elements Λ of the Lorentz group acting on space-time. Its representation matrices (6.44) have

obviously the properties to be anti-symmetric with respect to both pairs of indices α, β and µ,

ν:

�
Lβα

�µ
ν

= −
�
Lαβ

�µ
ν
, (6.45)

�
Lαβ

� µ

ν
= −

�
Lαβ

�µ
ν
. (6.46)

And now we determine the commutator between two basis elements Lαβ and Lγδ. After a

lengthy but straight-forward calculation, which we have relegated to the exercises, one obtains

�
Lαβ, Lγδ

�
− = i

�
gαδLβγ + gβγLαδ − gαγLβδ − gβδLαγ

�
. (6.47)

This means that the Lorentz algebra is closed with respect to performing the commutator

between two of its basis elements. Furthermore, the result (6.47) can be summarized according

to

�
Lαβ, Lγδ

�
− = iCαβγδ

�ξ L�ξ , (6.48)

where the structure constants of the Lorentz algebra are given by

Cαβγδ
�ξ = gαδgβ�g

γ
ξ + gβγgα�g

δ
ξ − gαγgβ�g

δ
ξ − gβδgα�g

γ
ξ . (6.49)

6.4 Classification of Basis Elements

The basis elements Lαβ of the Lorentz algebra can be sorted into two classes by specializing

the indices α, β into spatial and spatio-temporal indices, respectively:

Lk =
1

2
�klmL

lm , (6.50)

Mk = L0k . (6.51)
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Here �klm denotes the three-dimensional Levi-Cività tensor, which has the value �123 = 1 and

is anti-symmetric with respect to two of its three indices:

�klm = −�lkm = −�mlk = −�kml . (6.52)

According to (6.44) we obtain by taking into account (6.9) and (6.10) the following explicit

representations for the basis elements (6.50):

L1 = L23 = −i




0 0 0 0

0 0 0 0

0 0 0 −g22g33
0 0 g33g22 0


 = −i




0 0 0 0

0 0 0 0

0 0 0 +1

0 0 −1 0


 ,

L2 = L31 = −i




0 0 0 0

0 0 0 g11g33
0 0 0 0

0 −g33g11 0 0


 = −i




0 0 0 0

0 0 0 −1

0 0 0 0

0 +1 0 0


 ,

L3 = L12 = −i




0 0 0 0

0 0 −g11g22 0

0 g22g11 0 0

0 0 0 0


 = −i




0 0 0 0

0 0 +1 0

0 −1 0 0

0 0 0 0


 . (6.53)

Correspondingly, we yield for the basis elements (6.51):

M1 = L01 = i




0 g00g11 0 0

−g11g00 0 0 0

0 0 0 0

0 0 0 0


 = i




0 +1 0 0

+1 0 0 0

0 0 0 0

0 0 0 0


 ,

M2 = L02 = i




0 0 g00g22 0

0 0 0 0

−g22g00 0 0 0

0 0 0 0


 = i




0 0 +1 0

0 0 0 0

+1 0 0 0

0 0 0 0


 ,

M3 = L03 = i




0 0 0 g00g33
0 0 0 0

0 0 0 0

−g33g00 0 0 0


 = i




0 0 0 +1

0 0 0 0

0 0 0 0

+1 0 0 0


 . (6.54)

Specializing the commutator (6.47) to the respective spatial and temporal indices, we obtain

corresponding commutator relations for the two classes of basis elements (6.50) and (6.51). To

this end, however, one has to take into account the inversion of (6.50)

Lij = �ijkLk , (6.55)

which can be proven with the help of the contraction rule of the three-dimensional Levi-Cività

symbol �ijk:

�ijk�lmk = δilδjm − δimδjl . (6.56)
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With this we yield

[Lk, Ll]− = i�klmLm , (6.57)

[Lk,Ml]− = i�klmMm , (6.58)

[Mk,Ml]− = −i�klmLm . (6.59)

From the commutator (6.57) we read off that the basis elements (6.50) represent a subalgebra

of the Lorentz algebra.

6.5 Lie Theorem

Considering the Lorentz group in the vicinity of the unity element (6.32), we recognize from

(6.39) and (6.43) that there the basis elements Lαβ appear:

Λµ
ν = gµν −

i

2

�
Lαβ

�µ
ν
ωαβ . (6.60)

Conversely, the Lie theorem states that the knowledge of the basis elements Lαβ of the Lorentz

algebra allows to determine each element of the Lorentz group by evaluating a matrix expo-

nential function:

Λ = exp

�
− i

2
Lαβ ωαβ

�
. (6.61)

The statement of the Lie theorem suggests that the (basis) elements of the Lorentz algebra are

called to be the (basis) generators of the Lorentz group. Corresponding to the decomposition

of the basis generators Lαβ into the two classes (6.50) and (6.51) also the expansion coefficients

ωαβ are decomposed into

ϕk =
1

2
�klm ωlm , (6.62)

ξk = ω0k . (6.63)

By taking into account the anti-symmetric properties (6.41) and (6.45) as well as the definitions

(6.51) and (6.55) the Lie theorem (6.61) reads

Λ = exp

�
− i

2
Lklωkl −

i

2
L0kω0k

�
= exp

�
− iϕL− iξM

�
. (6.64)

In the following we investigate further the Lie theorem (6.64) and show that ξ = 0 corresponds

to rotations and ϕ = 0 to boosts, respectively. Thus, ϕ (ξ) denote the vector of rotation angles

(rapidities) and L (M) represent the generators for the rotations (boosts).
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6.6 Rotations

According to the Lie theorem (6.64) a general rotation with the vector of rotation angles ϕ is

defined by the matrix exponential function

R(ϕ) = exp
�
− iϕL

�
, (6.65)

where the explicit representation matrices for the basis generators of rotations L are defined in

(6.53). In the exercises (6.65) is evaluated, yielding the representation matrix of a rotation in

the form

R00 = 1 , R0j = Rj0 = 0 , Rjk(ϕ) =
ϕi

|ϕ| �ikj sin |ϕ|+
ϕjϕk

|ϕ|2 (1− cos |ϕ|) + δjk cos |ϕ| .(6.66)

Note that the 4× 4 matrix defined by (6.66) fulfills two properties, which are characteristic for

describing a rotation along the axis ϕ with the angle |ϕ|. On the one hand the rotation axis

ϕ is an eigenvalue of the rotation matrix R(ϕ) with eigenvalue 1:

R(ϕ)

�
0

ϕ

�
=

�
0

ϕ

�
. (6.67)

On other hand the trace of the rotation matrix R(ϕ) is related to the rotation angle |ϕ| via

TrR(ϕ) = 2 + 2 cos |ϕ| . (6.68)

Furthermore, we note that the spatial components of a representation matrix of a rotation obey

the orthonormality relation

Rkl(ϕ)Rkm(ϕ) = δlm , (6.69)

which follows from (6.28) and (6.29) but can also be proven by using the explicit expression

(6.66).

Now we apply the rotation matrix (6.66) to a vector x, which has a component parallel to the

rotation axis

x� =
ϕ · x
|ϕ|

ϕ

|ϕ| (6.70)

and another one perpendicular to the rotation axis: x⊥ = x− x�. For the rotated vector

x�
j = Rjk xk (6.71)

we then obtain the decomposition

x� = x� + x⊥ cos |ϕ|+ ϕ

|ϕ| × x⊥ sin |ϕ| . (6.72)
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passive rotation active rotation

vector is fixed vector is rotated

coordinate system is rotated coordinate system is fixed

Table 6.2: Passive and active rotations act in opposite directions.

Figure 6.2: Inertial system S � moves with the velocity v relative to inertial system S.

Specializing (6.72) to a rotation around the axis ϕ = ϕ ez yields



x�
1

x�
2

x�
3


 =




cosϕ − sinϕ 0

sinϕ cosϕ 0

0 0 1







x1

x2

x3


 . (6.73)

Note that a coordinate transformation like the rotation in (6.73) allows for both a passive and

an active interpretation, see Tab. 6.2. For instance, the transformation

x =




1

0

0


 =⇒ x� =




cosϕ

sinϕ

0


 (6.74)

can be interpreted either as the description of a fixed vector under the clockwise rotation of the

coordinate system or an anti-clockwise rotation of the vector for a fixed coordinate system.

6.7 Boosts

According to the Lie theorem (6.64) a general boost with the vector of rapidities ξ is defined

by the matrix exponential function

B(ξ) = exp
�
− iξM

�
, (6.75)
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where the explicit representation matrices for the basis generators of boosts M are defined in

(6.54). In the exercises (6.75) is evaluated, yielding the representation matrix of a boost in the

form

B(ξ) =




cosh |ξ| ξj
|ξ| sinh |ξ|

ξi
|ξ| sinh |ξ| δij +

ξiξj
|ξ|2 (cosh |ξ|− 1)


 . (6.76)

We interpret the boost (6.76) passively in order to determine a relation between the rapidity

ξ and the velocity v, with which the inertial system S� is moving with respect to the inertial

system S, see Fig. 6.2. To this end we observe that the coordinate origin of S� is described in

both inertial systems S and S� with the following space-time four-vectors:

(xµ) =

�
ct

vt

�
, =⇒

�
x�µ� =

�
ct�

0

�
. (6.77)

Thus, mapping the four-vector (xµ) to (x�µ) via the boost (6.77) according to

x�µ = Bµ
ν(ξ) x

ν (6.78)

we obtain from taking to account (6.76):

t� = t cosh |ξ|+ ξvt

|ξ|c sinh |ξ| , (6.79)

0 =
ξ

|ξ| sinh |ξ|+
v

c
+

ξv

|ξ|c
ξ

|ξ| (cosh |ξ|− 1) . (6.80)

At first, we conclude from (6.80) that rapidity ξ and velocity v are anti-parallel with respect

to each other:

ξ

|ξ| = − v

|v| . (6.81)

Inserting (6.81) into (6.80) we conclude how the amounts of both the rapidity vector and the

velocity vector are related:

|v|
c

= sinh |ξ|− |v|
c

(cosh |ξ|− 1) =⇒ |v|
c

= tanh |ξ| . (6.82)

Thus, due to hyperbolic relations we obtain

cosh |ξ| =
1�

1− tanh2 |ξ|
= γ , (6.83)

sinh |ξ| =
tanh |ξ|�

1− tanh2 |ξ|
=

|v|
c

γ , (6.84)

where we have introduced the Lorentz factor of special relativity as an abbreviation:

γ =
1�

1− |v|2/c2
. (6.85)
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With (6.76) and (6.81)–(6.85) the representation matrix of a boost turns out to be

B(v) =




γ −vj
c
γ

−vi
c
γ δij +

vivj
|v|2 (γ − 1)


 . (6.86)

Note that the components of a representation matrix of a boost obey the relation

Bµ
ν(v)Bµ

κ(v) = δν
κ , (6.87)

which follows from (6.28) and (6.29) but can also be proven by using the explicit expression

(6.76). And finally, as a concrete example, we read off from (6.79) and (6.81)–(6.85) the time

dilatation

t� = t γ

�
1− v2

c2

�
= t

�
1− v2

c2
, (6.88)

i.e. an observer in the inertial system S detects that the clock in the moving inertial system S�

goes slower than the clock in S.

6.8 Scalar Field Representation

Let us consider a scalar field φ(xµ), which represents a tensor field of rank n = 0 as it is

invariant with respect to any Lorentz transformation Λ. Within a passive interpretation of the

Lorentz transformation

x�µ = Λµ
ν x

ν ⇐⇒ xµ =
�
Λ−1

�µ
ν
x�ν (6.89)

the four-vectors xµ and x�µ denote one and the same space-time point at the original and the

transformed coordinate system S and S�, respectively. Due to the invariance of the scalar field

the original scalar field φ(xµ) in S must coincide with the transformed scalar field φ�(x�µ) in S �:

φ�(x�µ) = φ(xµ) . (6.90)

Expressing the original scalar field φ via the transformed coordinate system S� we obtain from

(6.89) and (6.90):

φ�(x�µ) = φ
��

Λ−1
�µ

ν
x�ν

�
. (6.91)

In order to simplify our notation in view of the following considerations, we omit from now on

the prime � at the respective four-vectors:

φ�(xµ) = φ
��

Λ−1
�µ

ν
xν
�
. (6.92)
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Specializing (6.92) with the help of (6.39) and (6.42) to infinitesimal Lorentz transformations,

we obtain up to first order in the expansion coefficients ωαβ:

φ�(xµ) = φ

�
xµ +

i

2
ωαβ

�
Lαβ

�µ
ν
xν

�
=

�
1− i

2
ωαβ L̂

αβ

�
φ(xµ) , (6.93)

where the differential operators L̂αβ are given by

L̂αβ = −
�
Lαβ

�µ
ν
xν ∂µ . (6.94)

Due to the representation matrices (6.44) the differential operators turn out to be of the form

L̂αβ = i
�
xα∂β − xβ∂α

�
. (6.95)

Taking into account the definition of the four-momentum operator in quantum mechanics

p̂α = ih̄ ∂α (6.96)

Eq. (6.95) reduces to dimensionless angular momentum operators

L̂αβ =
1

h̄

�
xαp̂β − xβ p̂α

�
. (6.97)

Note that the components of the space-time four-vector and the momentum four-vector operator

fulfill

�
p̂α, xβ

�
− = ih̄ gαγ

�
∂γ, x

β
�
− = ih̄ gαβ . (6.98)

Here we have taken into account that differentiating with respect to the components of a

contravariant four-vector yields the components of a covariant four-vector:

∂α =
∂

∂xα
. (6.99)

From (3.10) and (6.98) we get the following set of commutation relations:
�
L̂αβ, xγ

�
−

= −
�
Lαβ

�γ
δ
xδ , (6.100)

�
L̂αβ, p̂γ

�
−

= −
�
Lαβ

�γ
δ
p̂δ . (6.101)

Due to the commutation relations (6.100) and (6.101) one denotes the space-time four-vector xλ

and the momentum four-vector operator p̂λ as vector operators. Correspondingly one considers

an operator Ôλ1...λn as a tensor operator of rank n if it transforms in each index λ1, . . . ,λn as

a vector:

�
L̂µν , Ôλ1...λn

�
−
= −

n�

k=1

(Lµν)λk

κ Ôλ1...λk−1κλk+1...λn . (6.102)

The commutation relations (6.100) and (6.101) now allow to determine the commutation rela-

tions between the angular momentum operators (6.97) by taking into account (3.43):
�
L̂αβ, L̂γδ

�
−
= i

�
gαδ L̂βγ + gβγ L̂αδ − gαγ L̂βδ − gβδ L̂αγ

�
. (6.103)
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Comparing (6.47) with (6.103) we conclude that also the angular momentum operators L̂αβ

fulfill the commutation relations of the Lorentz algebra. Therefore, the angular momentum

operators L̂αβ are considered as a representation of the Lorentz algebra in the Hilbert space of

scalar fields. Furthermore, with the help of the representation matrices (6.43) we can rewrite

(6.103) according to
�
L̂αβ, L̂γδ

�
−
= −

�
Lαβ

�γ
σ
L̂σδ −

�
Lαβ

�δ
σ
L̂γσ . (6.104)

Thus, the angular momentum operators L̂αβ represent in the sense of (6.102) tensor operators

of rank 2.

6.9 Tensor/Spinor Field Representation

Now we consider a tensor or a spinor field ψσ(xµ), where the index σ stands for the respective

tensor or spinor indices. Performing a Lorentz transformation one has to take into account

that this affects both the space-time four-vector xµ and the tensor or spinor components ψσ.

Let us consider at first the concrete example of a four-vector Aσ(xµ), which represents a tensor

field of rank n = 1 as one Lorentz matrix Λ is involved in transforming the tensor or spinor

components ψσ:

A�σ(x�µ) = Λσ
τ A

τ (xµ) . (6.105)

Reexpressing the space-time components of the original four-vector Aτ in S via the transformed

coordinate system S �, one yields

A�σ(xµ) = Λσ
τ A

τ
��

Λ−1
�µ

ν
xν
�
, (6.106)

where again the prime � at the space-time four-vector has been omitted in order to simplify the

notation. Afterwards we specialize (6.106) with the help of (6.39) and (6.42) to infinitesimal

Lorentz transformations and obtain up to first order in the expansion coefficients ωαβ:

A�σ(xµ) =

�
gστ −

i

2

�
Lαβ

�σ
τ
ωαβ

� �
Aτ (xµ) +

i

2

�
Lαβ

�µ
ν
ωαβ x

ν ∂µ A
τ (xµ)

�

=⇒ A�σ(xµ) =

�
gστ −

i

2

�
M̂αβ

�σ

τ
ωαβ

�
Aτ (xµ) . (6.107)

Here the operator M̂αβ turns out to be additive in the representation matrices (6.43) and the

angular momentum operator (6.97):

M̂αβ = L̂αβ + Lαβ . (6.108)

Thus, from (6.45) and (6.97) we read off the anti-symmetry

M̂αβ = −M̂βα . (6.109)
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As both the representation matrices Lαβ and the angular momentum operators L̂αβ fulfill

according to (6.47) and (6.103) the Lorentz algebra as well as they commute with each other
�
Lαβ, L̂γδ

�
−
= 0 , (6.110)

we conclude that also the operators M̂αβ fulfill the Lorentz algebra:
�
M̂αβ, M̂γδ

�
−
= i

�
gαδ M̂βγ + gβγ M̂αδ − gαγ M̂βδ − gβδ M̂αγ

�
. (6.111)

Now we return back to the general case of a tensor or spinor field ψσ(xµ). Performing an

infinitesimal Lorentz transformation we have then in analogy to (6.107)

ψ�σ(xµ) =

�
gστ −

i

2

�
M̂αβ

�σ

τ
ωαβ

�
ψτ (xµ) , (6.112)

where the operator M̂αβ has a decomposition similar to (6.108):

M̂αβ = L̂αβ +Nαβ . (6.113)

Here the matrices Nαβ are a tensor or spinor representation of the Lorentz algebra and, there-

fore, they must fulfill the commutator relation

�
Nαβ, Nγδ

�
− = i

�
gαδ Nβγ + gβγ Nαδ − gαγ Nβδ − gβδ Nαγ

�
. (6.114)

Furthermore, both representations L̂αβ and Nαβ of the Lorentz algebra in Minkowski space and

in the space of the tensor or spinor components are independent from each other, implying
�
Nαβ, L̂γδ

�
−
= 0 . (6.115)

From this we then read off that also the operators M̂αβ defined in (6.113) fulfill the commutation

relation (6.111) of the Lorentz algebra. They are a representation of the Lorentz algebra in the

Hilbert space of tensor or spinor fields. In addition, as L̂αβ coincides with the orbital angular

momentum (6.97), one can identify the representation Nαβ of the Lorentz algebra in the space

of the tensor or spinor components with the spin angular momentum and, thus, M̂αβ with the

total angular momentum.

6.10 Defining Representation of Poincaré Group

Poincaré transformations in Minkowski space are put together from a Lorentz transformation

Λµ
ν and a shift aµ:

x�µ = Λµ
ν x

ν + aµ . (6.116)

Whereas Lorentz transformations do not change the scalar product of four-vectors due to (6.4)

and (6.17), Poincaré transformations (6.116) only leave distances between four-vectors invariant:

gµν (xµ − yµ) (xν − yν) = gµν
�
x�µ − y�

µ� �
x�ν − y�

ν�
. (6.117)



80 CHAPTER 6. POINCARÉ GROUP

Therefore, Poincaré transformations are also called to be inhomogeneous Lorentz transforma-

tions.

We show now that the set P of all Poincaré transformations is a group. To this end we

characterize an element from P with (Λ, a):

• At first we prove the closedness and assume, to this end, that both (Λ1, a1) and (Λ2, a2)

belong to P . Taking into account (6.116) we then conclude

xµ
2 = Λ µ

2 ν x
ν
1 + aµ2 = Λ µ

2 ν

�
Λ ν

1 κ x
κ + aν1

�
+ aµ2 = Λ µ

2 ν Λ
ν

1 κ x
κ + Λ µ

2 ν a
ν
1 + aµ2

=⇒ Λµ
ν = Λ µ

2 ν Λ
ν

1 κ , aµ = Λ µ
2 ν a

ν
1 + aµ2 . (6.118)

Thus, also

(Λ2, a2)(Λ1, a1) = (Λ, a) = (Λ2Λ1,Λ2a1 + a2) (6.119)

belongs to P . One calls the multiplication rule (6.119) a semi-direct product of the

Lorentz group L and the translation group T . In case of a direct product one would have

had the simpler multiplication rule:

(Λ2, a2)(Λ1, a1) = (Λ, a) = (Λ2Λ1, a1 + a2) . (6.120)

• In the next step we consider the associativity, so we consider that (Λ1, a1), (Λ2, a2) and

(Λ3, a3) belong to P . Thus, we obtain from (6.119)

(Λ1, a1) ((Λ2, a2)(Λ3, a3)) = (Λ1, a1)(Λ2Λ3,Λ2a3 + a2) = (Λ1Λ2Λ3,Λ1Λ2a3 + Λ1a2 + a1)(6.121)

((Λ1, a1)(Λ2, a2)) (Λ3, a3) = (Λ1Λ2,Λ1a2 + a1)(Λ3, a3) = (Λ1Λ2Λ3,Λ1Λ2a3 + Λ1a2 + a1)(6.122)

and deduce with this the associativity

(Λ1, a1) ((Λ2, a2)(Λ3, a3)) = ((Λ1, a1)(Λ2, a2)) (Λ3, a3) . (6.123)

• Then we identify the unity element of P with (Λe, ae) = (I, 0) due to (6.32). Namely,

with (Λ, a) from P we read off from (6.119)

(I, 0)(Λ, a) = (Λ, a) = (Λ, a)(I, 0) . (6.124)

• And, finally, the inverse element of some element (Λ, a) belonging to P is given by

(Λ, a)−1 = (Λ−1,−Λ−1a) from P as taking into account (6.119) leads to

(Λ, a)−1(Λ, a) = (Λ−1,−Λ−1a)(Λ, a) = (Λ−1Λ,Λ−1a− Λ−1a) = (I, 0) . (6.125)

Similar to the Lorentz group also the Poincaré group is divided with the help of the values

DetΛ and Λ0
0 into the four branches Pi with i = 1, 2, 3, 4, see Tab. 6.1. In the following we

restrict ourselves to consider the subgroup P1 of the Poincaré group P , which is characterized

by DetΛ > 0 and Λ0
0 > 0.
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6.11 Tensor/Spinor Representation of Poincaré Algebra

Let us analyse a tensor or spinor field ψσ(xµ), which is invariant with respect to a translation

with an arbitrary four-vector aµ. Within a passive interpretation of the translation

x�µ = xµ + aµ ⇐⇒ xµ = x�µ − aµ (6.126)

both xµ and x�µ denote one and the same space-time point with respect to the original and the

translated coordinate system S and S�. Due to the invariance of the tensor or spinor field its

descriptions ψσ(xµ) and ψ�σ(x�µ) in S and S � must coincide:

ψ�σ(x�µ) = ψσ(xµ) . (6.127)

Considering in (6.127) the original tensor or spinor field ψσ with respect to the transformed

coordinate system S �, we obtain from (6.126) and (6.127)

ψ�σ(xµ) = ψσ(xµ − aµ) , (6.128)

where we have omitted again the prime � at the four-vectors in order to simplify the notation.

For an infinitesimal translation aµ = �µ we then have

ψ�σ(xµ) = ψσ(xµ)− �α ∂α ψ
σ(xµ) . (6.129)

Taking into account the momentum operator (6.96) this reduces to

ψ�σ(xµ) =

�
1 +

i

h̄
�α p̂

α

�
ψσ(xµ) . (6.130)

Thus, the basis generators of the translations can be identified with the components of the

momentum operator (6.96). Together with the basis generators of the Lorentz transformations,

which are given by the total momentum operators (6.113), they span the Poincaré algebra. In

order to characterize the Poincaré algebra completely, it remains to deduce the commutation re-

lations between its basis generators p̂α and M̂αβ, which can be accomplished straight-forwardly.

To this end we read off from (6.96) that the commutator between two basis generators of trans-

lations vanishes:

�
p̂α, p̂β

�
− = 0 . (6.131)

Thus, the momentum operators p̂α represent a commutative subalgebra of the Poincaré algebra,

which implies via the Lie theorem that the translations form an abelian subgroup of the Poincaré

group. Afterwards, we consider the commutator between the generators p̂α and M̂αβ themselves.

Here we use that the representation of the basis generators of translations (6.96) and the

representation Nαβ of the Lorentz algebra in the space of the tensor or spinor components are

independent from each other, implying

�
p̂α, Nβγ

�
− = 0 . (6.132)
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With this as well as (6.44), (6.101), and (6.113) we then obtain

�
M̂αβ, p̂γ

�
−

= i
�
gβγ p̂α − gαγ p̂β

�
. (6.133)

And we remark that the commutator relations between the total momentum (6.113) were

already obtained in (6.111) and are characteristic of the Lorentz algebra. From (6.113) we read

off due to the Lie theorem that the Lorentz algebra is a non-abelian subgroup of the Poincaré

group.

Finally, the definition (6.102) of a tensor operators Ôλ1,...,λn of rank n for the Lorentz algebra

is straight-forwardly extended to the Poincaré algebra according to

�
M̂µν , Ôλ1...λn

�
−
= −

n�

k=1

(Lµν)λk

κ Ôλ1...λk−1κλk+1...λn . (6.134)

With the help of the representation matrices (6.44) the commutator relations (6.113) and (6.133)

can then be rewritten as

�
M̂αβ, p̂γ

�
−

= −
�
Lαβ

�γ
δ
p̂δ , (6.135)

�
M̂αβ, M̂γδ

�
−

= −
�
Lαβ

�γ
σ
M̂σδ −

�
Lαβ

�δ
σ
M̂γσ . (6.136)

Thus, according to (6.134), p̂α and M̂αβ represent tensor operators of rank n = 1 and n = 2,

respectively.

6.12 Casimir Operators of Poincaré Algebra

Those operators, which commute with all basis generators of a Lie algebra, are called Casimir

operators. The first Casimir operator of the Poincaré algebra is given by the scalar product of

the momentum operator with itself:

p̂2 = gαβ p̂
αp̂β . (6.137)

Taking into account (3.10) and (6.131) one can directly show that p̂2 commutes with all mo-

mentum operators:

�
p̂2, p̂α

�
− = gβγ

�
p̂β p̂γ, p̂α

�
− = gβγ

�
p̂β [p̂γ, p̂α]− +

�
p̂β, p̂α

�
− p̂γ

�
= 0 . (6.138)

Furthermore, p̂2 is per construction a Lorentz scalar and, thus, commutes with all generators

of the Lorentz algebra M̂αβ due to (3.10), (6.133), and (6.137):

�
p̂2, M̂αβ

�
−

= gγδ

�
p̂γ p̂δ, M̂αβ

�
−
= gγδ

�
p̂γ

�
p̂δ, M̂αβ

�
−
+
�
p̂γ, M̂αβ

�
−
p̂δ
�

= igγδ

�
p̂γ

�
gαδp̂β − gβδp̂α

�
+
�
gαγ p̂β − gβγ p̂δ

�
p̂δ
�
= 0 . (6.139)



6.12. CASIMIR OPERATORS OF POINCARÉ ALGEBRA 83

In order to construct a second Casimir operator, we define now the Pauli-Lubanski operator

Ŵα =
1

2
�αβγδ p̂

βM̂γδ . (6.140)

Here �αβγδ denotes the four-dimensional, totally anti-symmetric unity tensor, which is a rela-

tivistic extension of the three-dimensional Levi-Cività symbol used in (6.50). It has the value

�1234 = 1 and is anti-symmetric with respect to two of its four indices:

�αβγδ = −�αβδγ = −�αδγβ = −�αγβδ = −�δβγα = −�γβαδ = −�βαγδ . (6.141)

The scalar product of the Pauli-Lubanski operator Ŵα with the four-momentum operator p̂α

vanishes due to (6.140) and (6.141):

Ŵα p̂
α =

1

2
�αβγδ p̂

βM̂γδp̂α = 0 . (6.142)

Furthermore, we read off from (3.102), (6.131), (6.133), (6.140), and (6.141) that the Pauli-

Lubanski vector commutes with the four-momentum operator:

�
Ŵ α, p̂σ

�
−

= gαα
�
�
Ŵα� , p̂σ

�
−
=

1

2
gαα

�
�α�βγδ

�
p̂βM̂γδ, p̂σ

�
−
=

1

2
gαα

�
�α�βγδ

�
p̂β

�
M̂γδ, p̂σ

�
−

+
�
p̂β, p̂σ

�
− M̂γδ

�
=

i

2
gαα

�
�α�βγδ

�
gδσp̂β p̂γ − gγσp̂β p̂δ

�
= 0 . (6.143)

Now we determine the commutator of the Pauli-Lubanski operator with the basis generators

of the Lorentz algebra. To this end we use (3.43), (6.113), (6.133), (6.140), and (6.141) and

obtain at first:

�
M̂αβ, Ŵ γ

�
−
= gγδ

�
M̂αβ, Ŵδ

�
−
=

1

2
gγδ�δρστ

�
M̂αβ, p̂ρM̂στ

�
−

=
1

2
gγδ�δρστ

��
M̂αβ, p̂ρ

�
−
M̂στ + p̂ρ

�
M̂αβ, M̂στ

�
−

�

=
i

2
gγδ

�
gβρ�δρστ

�
p̂αM̂στ − 2p̂σMατ

�
− gαρ�δρστ

�
p̂βM̂στ − 2p̂σMβτ

��
. (6.144)

In order to identify the right-hand side of (6.144) with known operators, several additional

calculations are necessary. At first we apply the contraction rule for the �-tensor

�αβγδ �
α�β�γ�δ = δ α�

α δ β�

β δ γ�
γ + δ β�

α δ γ�

β δ α�
γ + δ γ�

α δ α�
β δ β�

γ

−δ β�
α δ α�

β δ γ�
γ − δ α�

α δ γ�

β δ β�
γ − δ γ�

α δ β�

β δ α�
γ , (6.145)

which is similar to (6.56), so that the relation (6.140) can be inverted in analogy to (6.50) and

(6.55) due to the anti-symmetry (6.109):

Ŵα �
αβγδ = p̂βM̂γδ + p̂γM̂ δβ + p̂δM̂βγ . (6.146)

Furthermore, we conclude from the contraction rule (6.145) the special case

�αβγδ �
α�β�γδ = 2

�
δ α�
α δ β�

β − δ β�
α δ α�

β

�
, (6.147)
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so that (6.146) can be contracted with the �-tensor. On the one hand we then obtain

Ŵα �
αβγδ �στγδ = 2

�
Ŵσ δ

β
τ − Ŵτ δ

β
σ

�
, (6.148)

whereas we read off from (6.146)

Ŵα �
αβγδ �στγδ = p̂βM̂γδ �στγδ + p̂γM̂ δβ �στγδ + p̂δM̂βγ �στγδ . (6.149)

Thus, taking into account (6.109) and (6.141) we result in

�στγδ

�
p̂βM̂γδ − 2p̂γM̂βδ

�
= 2

�
Ŵσ δ

β
τ − Ŵτ δ

β
σ

�
. (6.150)

Inserting then (6.150) into (6.144) determines the commutator of the Lubanski operator with

the basis generators of the Lorentz algebra in the following form:

�
M̂αβ, Ŵ γ

�
−
= i

�
gβγW α − gαγW β

�
. (6.151)

With the help of the representation matrices (6.44) one recognizes that the Pauli-Lubaski

operator represents a tensor operator of rank n = 1:

�
M̂αβ, Ŵ γ

�
−
= −

�
Lαβ

�γ
δ
Ŵ δ . (6.152)

We consider now the scalar product of the Pauli-Lubanski operator with itself

Ŵ 2 = gαβŴ
αŴ β (6.153)

and show that it represents the second Casimir operator of the Poincaré algebra. At first, we

yield for the commutator of Ŵ 2 and p̂α due to (3.10) and (6.143)

�
Ŵ 2, p̂α

�
−
= 0 . (6.154)

In addition, we obtain that Ŵ 2 also commutes with M̂αβ by taking into account (3.43) and

(6.151)

�
Ŵ 2, M̂αβ

�
−
= 0 . (6.155)

Finally, the question arises how to physically interpret both Casimir operators of the Poincaré

group. To this end we describe a particle with fixed four-momentum p = (pµ) via a tensor or

spinor field ψσ(x) and the eigenvalue problem

p̂µψσ(x) = pµψσ(x) . (6.156)

Then the first Casimir operator (6.137) has an eigenvalue, which is determined by the rest

mass M due to (6.21). Thus, in view of the second Casmir operator Ŵ 2 it remains to interpret

physically also the Pauli-Lubanski operator Ŵα. To this end we insert the decomposition

(6.113) of the representation M̂αβ of the Lorentz algebra in the Hilbert space of the tensor
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or spinor fields in the representation L̂αβ of the Lorentz algebra in Minskowski space and the

representation Nαβ of the Lorentz algebra in the space of the tensor or spinor components into

(6.140). Due to the anti-symmetry of the �-tensor (6.141) this yields:

Ŵα =
1

6
�αβγδ

�
p̂βL̂γδ + p̂γL̂δβ + p̂δL̂βγ

�
+

1

2
�αβγδN

γδ . (6.157)

Taking into account the definition of the orbital angular momentum operators (6.97) as well as

the commutation relations (6.98) and (6.131) we observe that (6.157) reduces to

Ŵα =
1

2
�αβγδ p̂

β Nγδ . (6.158)

Thus, it turns out that the orbital angular momentum operator L̂αβ does not contribute to the

Pauli-Lubanski operator Wα. Describing again a particle with fixed four-momentum p = (pµ)

via a tensor or spinor field ψσ(x), the eigenvalue problem with respect to the Pauli-Lubanski

operator reads

Ŵαψ
σ(x) = Wαψ

σ(x) , (6.159)

where the eigenvector is given by the Pauli-Lubanski four-vector

Wα =
1

2
�αβγδ p

βNγδ . (6.160)

Decomposing the basis generators Nαβ of the Lorentz algebra in the space of tensor or spinor

components in analogy to (6.50), (6.51) into two classes

Sk =
1

2
�klmN

lm , (6.161)

Kk = N0k , (6.162)

we introduce the two vectors

S = (S1, S2, S3) =
�
N23, N31, N12

�
, (6.163)

K = (K1, K2, K3) =
�
N01, N02, N03

�
. (6.164)

With this the covariant components of the Pauli-Lubanski four-vector (6.160) are defined similar

to (6.6) and (6.19)

(Wα) = (W0,W1,W2,W3) =
�
W0,−W i

�
= (W0,−W) , (6.165)

where the temporal and spatial components read

W0 = p · S , (6.166)

W = p0 S+ S×K , (6.167)

respectively. In the rest frame of the particle we have p0 = Mc and p = 0, so that the temporal

and spatial components of the Pauli-Lubanski vector (6.166) and (6.167) reduce to

W0 = 0 , (6.168)

W = McS . (6.169)
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Analogously to the calculation of (6.57) we obtain from the commutation relation (6.114) a

corresponding commutation relation for the vector components Sk:

[Sk, Sl]− = i�klmSm . (6.170)

Thus, we conclude that in the rest frame of the particle the Pauli-Lubanski four-vector rep-

resents the spin angular momentum of the particle. Therefore, Ŵα in (6.140) is a relativistic

generalization of the spin angular momentum.

6.13 Irreducible Representations of Poincaré Group

With the help of the eigenvalues of the Casimir operators (6.137) and (6.140) of the Poincaré

algebra one can classify the irreducible representations of the Poincaré group. Note that they

are infinite dimensional as they describe particles with an unbounded momentum. In contrast

to that the defining representation of the Lorentz group was finite dimensional. The eigenvalue

of the first Casimir operator (6.137) is characterized due to (6.21) by the rest mass M of the

particle:

p2 = M2c2 . (6.171)

Depending whether the rest mass M is non-zero or vanishes one distinguishes two different

classes of representations.

6.13.1 Massive Representations

Let us consider first the case that the rest mass is non-zero, i.e. M > 0, which defines the

massive representations. Then we remark that the second Casimir operator (6.140) has an

eigenvalue, which is a Lorentz scalar, so it has in each inertial system the same value. In

particular in the rest frame the eigenvalue of (6.140) reduces due to (6.168) to

W 2 = −W2 = −M2c2 S2 . (6.172)

As the components of the vector S obey the commutation relations (6.170) of the angular

momentum algebra, the eigenvalues of (6.172) are given by

W 2 = −M2c2 S(S + 1) ; S = 0, 1/2, 1, 3/2, . . . . (6.173)

Such a massive representation is, thus, characterized by both the mass M and the spin S. As

these are the fundamental properties of elementary particles, we have obtained the result that

the elementary particles themselves can be identified with the irreducible representations of the

Poincaré group. States within such a representation only differ in the third component of the

spin vector, where 2S + 1 different eigenvalues can occur.
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6.13.2 Massless Representations

For a particle with a vanishing rest mass, i.e. M = 0, it is not possible to reach its rest frame by

applying any Lorentz transformation. If this was possible, then this would have the unphysical

consequence that the energy of the particle would vanish due to p0 = 0. Therefore, massless

particles need as a basic principle a different treatment.

Within a massless representation both four-vectors pα and W α have a vanishing scalar product

with respect to each other due to (6.142):

pα W
α = 0 . (6.174)

Furthermore, due to (6.171) and (6.172), they represent light-like four-vectors, i.e. they obey

pαp
α = 0 , WαW

α = 0 , (6.175)

Decomposing (6.175) into its temporal and spatial components

�
p0
�2

= p2 ,
�
W 0

�2
= W2 , (6.176)

then we directly conclude from pα �= 0 and W α �= 0:

p0 �= 0 , W 0 �= 0 . (6.177)

Let us consider now the linear combination

Apα + BW α = 0 . (6.178)

Obviously, (6.178) does not only have the trivial solution A = B = 0 as we obtain from α = 0

and from taking into account (6.177)

B = − p0

W 0
A . (6.179)

Thus, both light-like four-vectors pα and Wα are linear dependent. Therefore, for their re-

spective operators p̂α and Ŵ α there must exist a proportionality factor operator ĥ with the

property

Ŵα = ĥ p̂α . (6.180)

Now we determine for this proportionality factor ĥ the commutator relations with the generators

of the Poincaré algebra. At first we get from (3.10), (6.131), (6.143), and (6.180)

�
Ŵα, p̂β

�
−
=

�
ĥ p̂α, p̂β

�
−
= ĥ

�
p̂α, p̂β

�
− +

�
ĥ, p̂β

�
−
p̂α =⇒

�
ĥ, p̂α

�
−
= 0 . (6.181)

In a similar way we determine from (3.43), (6.133), (6.151), and (6.180):

�
M̂αβ, Ŵ γ

�
−
=

�
M̂αβ, ĥp̂γ

�
−
=

�
M̂αβ, ĥ

�
−
p̂γ + ĥ

�
M̂αβ, p̂γ

�
−

=⇒
�
M̂αβ, ĥ

�
−
= 0 . (6.182)
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This means that the proportionality factor ĥ represents an additional Casimir operator. For

the corresponding eigenvalues of Ŵ α, ĥ, and p̂ we then obtain from (6.180)

Wα = h pα , (6.183)

so we read off for the zeroth component α = 0

h =
W 0

p0
. (6.184)

Thus, taking into account (6.166) and (6.176) the eigenvalue h of this additional Casimir

operator ĥ is given by

h =
pS

|p| , (6.185)

which is intuitively accessible as the projection of the particle spin upon the direction of motion.

Therefore, one calls ĥ as the helicity operator. For a given spin S and momentum p the

eigenvalue (6.185) of the helicity operator ĥ has a fixed sign, i.e. either positive or negative,

which is the same in all inertial systems.

One can define the helicity operator ĥ also for massive particles, but then it does not represent

a Casimir operator. This means, for instance, that then an appropriate Lorentz transformation

can convert a state of positive helicity into another state with negative helicity. Thus, the

helicity describes for a massive particle its state but not the massive particle itself. The latter

is only possible for massless particles as they always move with light velocity.

6.13.3 Other Representations

From a mathematical point of view the Poincaré group does allow also for other classes of

unitary representations. Among them is one with the constraint pµp
µ = 0 and a continuous

spin. Another one obeys the constraint pµp
µ < 0 for particles moving with a velocity larger

than the light velocity, which are known hypothetically as tachyons. But so far there is no

experimental indication that these other representations of the Poincaré group are realised in

nature by any elementary particle. But, although this is purely speculative, one of these other

representations of the Poincaré group might indicate a solution for the virulent problem of our

time that the physical nature of dark matter is yet unknown.


