
Chapter 9

Dirac Field

In particle physics, the Dirac equation is a relativistic wave equation, which was derived by

the British physicist Paul Dirac in 1928 by unifying the principles of both the quantum theory

and the theory of special relativity. It describes massive spin-1/2 particles such as electrons

and quarks. Historically, it was validated by accounting for the fine details of the hydrogen

spectrum in a rigorous way. The equation also implies the existence of a new form of matter,

the so-called anti-matter, previously unsuspected as well as unobserved. In 1932 the positron as

the anti-particle of the electron was the first anti-matter to be detected in the cosmic radiation

by Carl David Anderson.

The wave function in the Dirac theory consists of four complex fields, which are called a spinor

as it transforms differently with respect to Lorentz transformations than a vector. For instance,

one needs a rotation around a fixed axis by 720◦ in order to recover the original spinor instead

of 360◦ for a vector. In the non-relativistic limit one obtains the Pauli two-component wave

function, whereas the Schrödinger equation deals only with a wave function of one complex

field. Moreover, in the limit of zero mass, the Dirac equation reduces to the Weyl equation,

which was supposed to describe massless neutrinos for decades.

In the following we derive at first the Dirac theory group theoretically by systematically work-

ing out the spinor representation of the Lorentz group. Although this derivation does not

correspond to the historic one of Paul Dirac and is technically more involved, it has several

advantages. On the one hand it emphasizes the Lorentz invariance as one of the fundamental

building blocks of any quantum field theory and explains as a side effect why a four-component

Dirac spinor is needed to describe a massive spin 1/2 particle. On the other hand it enables

to construct plane wave solutions by boosting trivial plane wave solutions in the rest frame to

a uniformly moving reference frame as an elegant alternative to plainly solving the underlying

Dirac equation.

Then we show the invariance of the Dirac theory with respect to discrete symmetries like

charge conjugation, parity transformation, and time inversion. With this we prove exemplarily

the seminal CPT theorem, which represents a fundamental property of physical laws. It states
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Figure 9.1: Set-up of the Stern-Gerlach experiment: a beam of silver or hydrogen atoms is split

into two parts due to an inhomogeneous magnetic field .

that a mirror universe, where also all matter is replaced by anti-matter, would evolve under

exactly the same physical laws. As a consequence the masses and life-times of particles and

antiparticles are exactly equal.

Afterwards, we discuss how to quantize the Dirac theory within the realm of the canonical

field quantization. With this we are able to deal with many massive spin 1/2 particles, whose

description naturally also contains their respective antiparticles. And, finally, we determine the

Dirac propagator, which describes the free motion of massive spin 1/2 particles and becomes

important for a perturbative treatment of the light-matter interaction in terms of Feynman

diagrams.

9.1 Pauli Matrices

The Stern-Gerlach experiment from 1922 involves sending a beam of silver or hydrogen atoms

through an inhomogeneous magnetic field and observing their deflection. As each silver or

hydrogen atom is in the ground state, its valence electron is in the 5s1 or the 1s1 state. Although

the atoms should then not have any angular momentum, the beam is split into two parts, see

Fig. 9.1. The reason for this is the spin angular momentum s = 1/2 of the valence electron,

which leads to a residual magnetic moment of the atom and, thus, to a deflection in the applied

inhomogeneous magnetic field. In order to mathematically describe the multiplicity of 2s+1 = 2

spin degrees of freedom, Wolfgang Pauli introduced three complex 2× 2 matrices:

σ1 =

�
0 1

1 0

�
, σ2 =

�
0 −i

i 0

�
, σ3 =

�
1 0

0 −1

�
. (9.1)

It is straight-forward to prove that the three Pauli matrices fulfill the following anti-commutators:

�
σk, σl

�
+
= 2 δkl I , (9.2)

where I denotes the 2× 2 unit matrix:

I =

�
1 0

0 1

�
. (9.3)
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Here (9.2) means that the Pauli matrices represent a Clifford algebra with N = 3. Namely, a

Clifford algebra with N generators ξ1, . . . , ξN is defined by the anti-commutators

�
ξk, ξl

�
+
= 2 δkl . (9.4)

But one can also convince oneself that the Pauli matrices additionally obey the commutators

�
σk, σl

�
− = 2i �klm σm . (9.5)

Here (9.5) means that the Pauli matrices also represent a Lie algebra with N = 3 generators.

Namely, a Lie algebra with N generators ξ1, . . . , ξN is defined by the commutators

�
ξk, ξl

�
− = i Cklm ξm , (9.6)

where Cklm denote the structure constants of the Lie algebra. By adding (9.2) and (9.5) we

result in the important calculation rule

σkσl = δklI + i�klm σm , (9.7)

which allows to simplify products of Pauli matrices.

9.2 Spinor Representation of Lorentz Algebra

With the help of the Pauli matrices can construct two different representations of the Lorentz

algebra. At first, we remark that the matrices

Lk =
1

2
σk (9.8)

obey the cummutator relations (2.44) of the generators of rotations. Furthermore, one can

identify the generators of boosts via

Mk = ± i

2
σk , (9.9)

where both signs are possible. In fact with the identifications (9.8), (9.9) both commutator

relations (2.45), (2.46) are valid. With this we define the following two representations of the

Lorentz algebra:

D(1/2,0) : (Lk,Mk) =

�
1

2
σk,− i

2
σk

�
, (9.10)

D(0,1/2) : (Lk,Mk) =

�
1

2
σk,

i

2
σk

�
. (9.11)

A general representation of the Lorentz algebra is characterized byD(s1,s2), where both quantum

numbers s1, s2 can have all possible half-integer or integer values 0, 1/2, 1, 3/2, 2, . . .. It turns

out that the space corresponding to the representation D(s1,s2) contains particles, whose spin
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lies in the interval [|s1 − s2|, s1 + s2]. In particular, particles with a single fixed spin s therefore

belong to the representation D(s,0) or D(0,s). The trivial representation D(0,0) for a spinless

particle assigns to each generator of the Lorentz algebra the number 1.

According to the Lie theorem of Section 6.5 the evaluation of the matrix-valued exponential

function

D(Λ) = e−iLϕ−iMξ (9.12)

yields a representation of the Lorentz group, which corresponds to the representation of the

Lorentz algebra. In both cases (9.10) and (9.11) we obtain from (9.12):

D(1/2,0)(Λ) = exp

�
− i

2
σϕ− 1

2
σξ

�
, (9.13)

D(0,1/2)(Λ) = exp

�
− i

2
σϕ+

1

2
σξ

�
. (9.14)

In the following we evaluate the respective matrix-valued exponential functions (9.13), (9.14)

both for rotations ξ = 0 and for boosts ϕ = 0.

9.3 Spinor Representation of Rotations

According to (9.13) and (9.14) the spinor representation of rotations is given in both cases by

D (R(ϕ)) = exp

�
− i

2
σϕ

�
. (9.15)

Due to the hermiticity of the Pauli matrices (9.1)

�
σk
�†

= σk (9.16)

the representation matrices of the rotations are unitary:

D (R(ϕ))† = D (R(ϕ))−1 . (9.17)

Considering the Taylor series of the exponential function in (9.15) we evaluate separately the

even and the odd terms:

D (R(ϕ)) =
∞�

n=0

(−1)n

(2n)!

(σϕ)2n

22n
− i

∞�

n=0

(−1)n

(2n+ 1)!

(σϕ)2n+1

22n+1
. (9.18)

Applying the calculational rule (9.7) we obtain

(σϕ)2 = ϕkϕlσ
kσl = ϕkϕl (δkl I + i�klm σm) = ϕ2 I , (9.19)

so that (9.18) leads to

D (R(ϕ)) =

� ∞�

n=0

(−1)n

(2n)!

� |ϕ|
2

�2n
�

I − i

� ∞�

n=0

(−1)n

(2n+ 1)!

� |ϕ|
2

�2n+1
�

σϕ

|ϕ| . (9.20)
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Taking into account the Taylor series of the trigonometric functions, one finally yields the spinor

representation matrices for rotations

D (R(ϕ)) = I cos

� |ϕ|
2

�
− i

σϕ

|ϕ| sin

� |ϕ|
2

�
, (9.21)

which are, indeed, unitary (9.17) due to (9.16). Note that both representations D(1/2,0) and

D(0,1/2) yield the same representation matrices for rotations. Furthermore, we observe that

one needs in (9.21) a rotation of 4π in order to recover the identity, which is a characteristic

property for a spinor representation.

9.4 Spinor Representation of Boosts

According to (9.13) and (9.14) the representation of the boosts reads

D (B(ξ)) = exp

�
∓ 1

2
σξ

�
. (9.22)

Due to the hermiticity of the Pauli matrices in (9.16) also the representation matrices of the

boosts are hermitian:

D (B(ξ))† = D (B(ξ)) . (9.23)

The Taylor series of the matrix exponential function (9.22) is evaluated separately for even and

odd terms:

D (B(ξ)) =
∞�

n=0

1

(2n)!

(σξ)2n

22n
∓

∞�

n=0

1

(2n+ 1)!

(σξ)2n+1

22n+1
. (9.24)

With the help of (9.19) this changes to

D (B(ξ)) =

� ∞�

n=0

1

(2n)!

� |ξ|
2

�2n
�

I ∓
� ∞�

n=0

1

(2n+ 1)!

� |ξ|
2

�2n+1
�

σξ

|ξ| . (9.25)

Taking into account the Taylor series of hyperbolic functions, one gets from (9.25) for the

representation matrices (9.22) of the boosts

D (B(ξ)) = exp

�
∓1

2
σξ

�
= I cosh

� |ξ|
2

�
∓ σξ

|ξ| sinh

� |ξ|
2

�
. (9.26)

As a reminder we note again that the upper and the lower sign stands for the representation

D(1/2,0) and D(0,1/2), respectively. Furthermore, we remark that the representation matrices

(9.26) are, indeed, hermitian (9.23) due to (9.16).

In order to simplify (9.26) further we consider now a particle of mass M in the rest frame, so

that its contravariant four-momentum vector is given by

(pµR) = (Mc, 0) . (9.27)



146 CHAPTER 9. DIRAC FIELD

Performing an active boost into the inertial frame the contravariant four-momentum vector

(9.27) changes to

pµ = Bµ
ν(ξ)p

ν
R , (9.28)

where the respective matrix elements of the boost Bµ
ν(ξ) were already determined in Section

6.7 in terms of the the rapidity ξ. Using (6.76) we thus obtain

(pµ) =
�
p0,p

�
=

�
Mc cosh |ξ|, ξ

|ξ| Mc sinh |ξ|
�

. (9.29)

Combining (9.29) with the hyperbolic Pythagoras

cosh2 α− sinh2 α = 1 (9.30)

and the hyperbolic addition theorems

cosh (α + β) = coshα cosh β + sinh (α) sinh β , (9.31)

sinh (α + β) = sinh (α) cosh β + coshα sinh β , (9.32)

the following relations are derived:

cosh

� |ξ|
2

�
=

�
cosh |ξ|+ 1

2
=

�
p0 +Mc

2Mc
, (9.33)

sinh

� |ξ|
2

�
=

�
cosh |ξ|− 1

2
=

�
p0 −Mc

2Mc
, (9.34)

sinh (|ξ|) = 2 sinh

� |ξ|
2

�
cosh

� |ξ|
2

�
=

�
(p0 −Mc)(p0 +Mc)

Mc
. (9.35)

Using (9.33)–(9.35), the representation matrix (9.26) of the boost can be expressed by the

components of the contravariant four-momentum vector (9.29):

D (B(ξ)) = exp

�
∓1

2
σξ

�
= I

�
p0 +Mc

2Mc
∓ σp

Mc

�
p0 −Mc

2Mc

Mc�
(p0 −Mc)(p0 +Mc)

=⇒ D (B(ξ)) =
(p0 +Mc)I ∓ σp�

2Mc(p0 +Mc)
. (9.36)

In the following it turns out to be technically advantageous to extend the three Pauli matrices

σk by the unit matrix

σ0 = I =

�
1 0

0 1

�
(9.37)

to a four-vector of Pauli matrices:

(σµ) = (σ0, σk) . (9.38)
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Then (9.36) implies that the boost of the representation D(1/2,0) can be concisely written as

D(1/2,0) (B(ξ)) = exp

�
−1

2
σξ

�
=

pσ +Mc�
2Mc(p0 +Mc)

, (9.39)

where the scalar product between the four-vector of Pauli matrices (9.38) and the four-momentum

vector is used:

pσ = pµσ
µ = p0σ0 − pσ . (9.40)

Furthermore, we introduce the spatially inverted four-vector

x̃ = (x̃0, x̃k) = (x0,−xk) (9.41)

and, correspondingly, also the spatially inverted four-vector of Pauli matrices

σ̃ = (σ̃0, σ̃k) = (σ0,−σk) . (9.42)

With this we read off from (9.36) that the boost of the representation D(0,1/2 is given by

D(0,1/2) (B(ξ)) = exp

�
+
1

2
σξ

�
=

pσ̃ +Mc�
2Mc(p0 +Mc)

(9.43)

due to the scalar product

pσ̃ = pµσ̃
µ = p0σ0 + pσ . (9.44)

For various later calculations it turns out to be useful to express the boost representations

(9.39) and (9.43) as the square root of the same expression with a doubled rapidity. Indeed,

taking into account (9.26) and (9.29) we obtain

exp

�
∓1

2
σξ

�
=
�

exp (∓σξ) =

�
cosh |ξ|∓ σξ

|ξ| sinh |ξ| =
�

p0

Mc
∓ pσ

Mc
. (9.45)

Thus, together (9.40) and (9.44) we conclude

exp

�
−1

2
σξ

�
=

�
pσ

Mc
, (9.46)

exp

�
+
1

2
σξ

�
=

�
pσ̃

Mc
. (9.47)

Whenever we will use later on the spinor representations for boosts (9.46) and (9.47) we have

to keep in mind that they present efficient shortcut notations for the more involved concrete

expressions (9.39) and (9.43).
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9.5 Lorentz Invariant Combinations of Weyl Spinors

So far we have constructed with D(1/2,0) and D(0,1/2) the smallest non-trivial representations

of the Lorentz group. Now we define the corresponding Weyl spinors ξα(x) and ηα̇(x) of

type (1/2, 0) and (0, 1/2) upon which the representation matrices of the Lorentz group act.

The different transformation properties of the Weyl spinors ξα(x) and ηα̇(x) under a Lorentz

transformation are expressed by using lower non-dotted and upper dotted indices, respectively:

ξα(x) −→ ξ�α(x
�) = D(1/2,0)(Λ)α

β ξβ(x) , (9.48)

ηα̇(x) −→ η�α̇(x�) = D(0,1/2)(Λ)α̇β̇ η
β̇(x) . (9.49)

In the following we aim for constructing a Lorentz invariant action on the basis of using these

Weyl spinors. To this end we restrict ourselves to consider quadratic terms in the Weyl spinors

and their first partial derivatives.

At first, we only deal with quadratic terms in the Weyl spinors without any first partial deriva-

tive, which are needed to describe massive particles. In this case there are in total four different

combinations of two Weyl spinors

ξ†ξ , η†η , η†ξ , ξ†η , (9.50)

which are converted by a Lorentz transformation Λ into

ξ†D(1/2,0)(Λ)†D(1/2,0)(Λ)ξ , η†D(0,1/2)(Λ)†D(0,1/2)(Λ)η ,

η†D(0,1/2)(Λ)†D(1/2,0)(Λ)ξ , ξ†D(1/2,0)(Λ)†D(0,1/2)(Λ)η , (9.51)

respectively. In case of a rotation Λ = R the representation matrices D(1/2,0)(R) and D(0,1/2)(R)

coincide according to (9.13) and (9.14). Furthermore, we conclude from the unitarity (9.17)

of these representation matrices that all four transformed combinations (9.51) are identical to

the original combinations (9.50). But in case of a boost Λ = B we read off from (9.13) and

(9.14) that the representation matrices D(1/2,0)(B) and D(0,1/2)(B) are just inverse with respect

to each other:

D(1/2,0) (B) = D(0,1/2) (B)−1 . (9.52)

In combination with the hermiticity (9.23) of these representation matrices it follows then

that only the last two of the transformed combinations (9.50) match with their corresponding

original combinations (9.50). In summary, we conclude that a Lorentz invariant action without

space-time derivatives is only possible by combining the two Weyl spinors ξ and η.

In order to describe a particle, which moves in space-time, the action must also contain first

partial derivatives of the Weyl spinors. To this end we consider at first spatial derivatives and

form all possible combinations of two Weyl spinors

ξ†σk∂kξ , η†σk∂kη , η†σk∂kξ , ξ†σk∂kη . (9.53)
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They are converted by a Lorentz transformation Λ into

ξ†D(1/2,0)(Λ)† σk D(1/2,0)(Λ) ∂�
kξ , η†D(0,1/2)(Λ)† σk D(0,1/2)(Λ) ∂�

kη ,

η†D(0,1/2)(Λ)† σk D1/2,0)(Λ) ∂�
kξ , ξ†D1/2,0)(Λ)† σk D(0,1/2)(Λ) ∂�

kη . (9.54)

In case of a rotation Λ = R, the representation matricesD(1/2,0)(R) andD(0,1/2)(R) are identical,

so that due to (9.54) only the expression

D(R)† σk D(R) (9.55)

has to be examined in detail. Using (9.21) we arrive at first at

D(R)† σk D(R) =

�
cos

� |ϕ|
2

�
+ i

σϕ

|ϕ| sin

� |ϕ|
2

��
σk

�
cos

� |ϕ|
2

�
− i

σϕ

|ϕ| sin

� |ϕ|
2

��

= cos2
� |ϕ|

2

�
σk + i sin

� |ϕ|
2

�
cos

� |ϕ|
2

�
ϕl

|ϕ|
�
σl, σk

�
− + sin2

� |ϕ|
2

�
ϕlϕm

|ϕ|2 σlσkσm . (9.56)

In the last term the product of three Pauli matrices appears, which can be simplified by

successively applying the calculation rule (9.7) and by taking into account the contraction

rule of the three-dimensional Levi-Cività symbol (6.56):

σlσkσm = (δlk + i�lknσ
n) σm = δlkσ

m + i�lknσ
nσm

= δlkσ
m + i�lkn(δnm + i�nmpσ

p) = δlkσ
m + i�lkm − (δmlδkp − δlpδkm)σ

p . (9.57)

With this we end up with the result

σlσkσm = i�lkm + δlkσ
m + δkmσ

l − δlmσ
k . (9.58)

Inserting (9.5) and (9.58) in (9.56) and using trigonometric relations then yields

D(R)†σkD(R) = σk cos |ϕ|+ �klm
ϕl

|ϕ| σ
m sin |ϕ|+ ϕkσϕ

|ϕ|2 (1− cos |ϕ|) . (9.59)

This result can be concisely summarized as

D(R)†σkD(R) = Rkl σ
l , (9.60)

where Rkl coincides with the representation matrix of rotations in three-dimensional space as

already determined in (6.66). As the partial derivatives in (9.54) also transform like a vector

∂k −→ ∂�
k = Rkl ∂l (9.61)

and the representation matrix R is orthonormal due to (6.69), all combinations (9.54) turn out

to be invariant under rotations:

D(R)† σk D(R) ∂�
k = Rkl σ

l Rkm ∂m = δlm σl ∂m = σk ∂k . (9.62)

Now the question arises, how the combinations of two Weyl spinors (9.53) can be extended to

relativistic invariant combinations. To this end we remember that the Pauli matrices σk can be
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extended to four-vectors in two different ways, namely in the form of the four-vector of Pauli

matrices σµ in (9.38) and in the form of the spatially inverted four-vector of Pauli matrices σ̃µ

in (9.42). Therefore we consider now the following eight combinations of two Weyl spinors:

ξ†σµ∂µξ , η†σµ∂µη , η†σµ∂µξ , ξ†σµ∂µη ,

ξ†σ̃µ∂µξ , η†σ̃µ∂µη , η†σ̃µ∂µξ , ξ†σ̃µ∂µη . (9.63)

Here the additional term σ0∂0 with the time derivative appears, which is trivially invariant

under rotations

D(R)† σ0 D(R)∂�
0 = D(R)†D(R) ∂�

0 = ∂0 = σ0∂0 . (9.64)

Thus it does not destroy the above discussed rotational invariance of the spatial derivative

terms.

With this it remains to investigate, which of the eight combinations (9.63) are invariant under

boost transformations. To this end expressions of the form

D(B)† σµ D(B) , D(B)† σ̃µ D(B) (9.65)

appear, where both representations (9.22) can occur in the left and the right factor, respectively.

Let us first consider the case µ = 0. In the case that the two representations in the left and

right factor of (9.65) are different, then (9.65) is identical to σ0 due to (9.23), (9.37), and (9.52).

As this does not correspond to the transformation behavior, which is characteristic for boosts,

we conclude that the 3rd, the 4th, the 7th, and the 8th combination in (9.63) is not invariant

under boosts. In the case that both representations in the left and right factor of (9.65) are

identical, then we obtain on the one hand for µ = 0 together with (9.23), (9.26), and (9.37):

D(B)†σ0D(B) = D(B)2 = cosh |ξ|∓ σξ

|ξ| sinh |ξ| . (9.66)

On the other hand we get for µ = k due to (9.23) and (9.26)

D(B)†σkD(B) =

�
cosh

� |ξ|
2

�
∓ σξ

|ξ| sinh

� |ξ|
2

��
σk

�
cosh

� |ξ|
2

�
∓ σξ

|ξ| sinh

� |ξ|
2

��

= cosh2

� |ξ|
2

�
σk ∓ sinh

� |ξ|
2

�
cosh

� |ξ|
2

�
ξl
|ξ|

�
σl, σk

�
+
+ sinh2

� |ξ|
2

�
ξlξm
|ξ|2 σlσkσm . (9.67)

Inserting (9.2) and (9.58) in (9.67) and using hyperbolic relations then yields

D(B)† (∓σk)D(B) = ∓σk +
ξk
|ξ| sinh |ξ|+

ξk
|ξ|

(∓σ)ξ

|ξ| (cosh |ξ|− 1) . (9.68)

The two results (9.66) and (9.68) can be concisely summarized by

D(1/2,0)(B)† σ̃µ D(1/2,0)(B) = Bµ
ν σ̃

ν , (9.69)

D(0,1/2)(B)† σµ D(0,1/2)(B) = Bµ
ν σ

ν , (9.70)
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where Bµ
ν coincides with the representation matrix of boost in the four-dimensional space-

time as already determined in (6.76). As the partial derivatives in (9.63) also transform like a

covariant four-vector

∂µ −→ ∂�
µ = Bµ

ν ∂ν , (9.71)

and the representation matrix B fulfills the property (6.87), we can prove due to (9.69) and

(9.70) the following invariances:

ξ†σ̃µ∂µξ −→ ξ†D(1/2,0)(B)†σ̃µD(1/2,0)(B)∂�
µξ = ξ†Bµ

ν σ̃
νBµ

κ∂κξ = ξ†δν
κσ̃ν∂κξ = ξ†σ̃ν∂νξ , (9.72)

η†σµ∂µη −→ η†D(0,1/2)(B)†σµD(0,1/2)(B)∂�
µη = η†Bµ

νσ
νBµ

κ∂κη = η†δν
κσν∂κη = η†σν∂νη .(9.73)

For the two remaining combinations η†σ̃µ∂µη and ξ†σµ∂µξ in (9.63) a boost invariance can not

be proved, because both σ̃µ and σµ transform due to (9.69) and (9.70)) as a four-vector under

the representations D(1/2,0)(B) and D(0,1/2)(B), respectively.

9.6 Dirac Action

From the considerations of the previous section follows the most general Lorentz-invariant

action for describing a massive spin 1/2 particle

A = A[ξ(•), ξ†(•); η(•), η†(•)] , (9.74)

which contains only quadratic terms in the Weyl spinors and their first partial derivatives:

A =
1

c

�
d4xL

�
ξ(x), ∂µξ(x); ξ

†(x), ∂µξ
†(x); η(x), ∂µη(x); η

†(x) , ∂µη
†(x)

�
. (9.75)

Here the Lagrange density

L = Aiξ†σ̃µ∂µξ + Biη†σµ∂µη + Cξ†η +Dη†ξ , (9.76)

contains constants A, B, C, D, which are not yet defined. Below in Section 9.8 we show that

the additional demand for an invariance of the Lagrange density under parity transformation

leads to the fact, that both Weyl spinors ξ and η have to appear on equal footing. This reduces

(9.76) to

L = A
�
iξ†σ̃µ∂µξ + iη†σµ∂µη −mξ†η −mη†ξ

�
. (9.77)

The still undetermined parameters A, m define the physical dimension of the action and are

only fixed at a later stage by considering the non-relativistic limit. Due to the non-zero rest

mass M of the particle, the action (9.77) necessarily contains both Weyl spinors ξ and η. Only

in the case that the rest mass of the particle vanishes, a Lorentz-invariant action can be formed

with just one of the two Weyl spinors, as is discussed below in Section 9.9.
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Due to the action (9.77) the Weyl spinors ξ and η satisfy the equations of motion

δA
δξ†(x)

=
∂L

∂ξ†(x)
− ∂µ

∂L
∂ (∂µξ†(x))

= A
�
iσ̃µ∂µξ(x)−mη(x)

�
= 0 , (9.78)

δA
δη†(x)

=
∂L

∂η†(x)
− ∂µ

∂L
∂ (∂µη†(x))

= A
�
iσµ∂µη(x)−mξ(x)

�
= 0 . (9.79)

In order to combine these two equations of motion one needs the calculation rules

σµσ̃ν + σν σ̃µ = 2gµνI, (9.80)

σ̃µσν + σ̃νσµ = 2gµνI , (9.81)

which can be explicitly shown by specializing µ, ν to spatial and temporal indices. To this end

one has to take into account the Clifford algebra property (9.2), the definitions (9.37), (9.38),

and (9.42), as well as the components of the Minkowski metric in (6.3):

σ0σ̃0 + σ0σ̃0 = 2σ0 = 2I = 2g00I , (9.82)

σ0σ̃k + σkσ̃0 = −σ0σk + σkσ0 = 0 = 2g0kI , (9.83)

σkσ̃l + σlσ̃k = −σkσl − σlσk = −2δklI = 2gklI . (9.84)

Multiplying (9.78) with iσν∂ν and using (9.79) or, vice versa, multiplying (9.79) with iσ̃ν∂ν and

using (9.78), we obtain due to (9.80) and (9.81)

−σν σ̃ν∂ν∂µξ(x)−miσν∂νη(x) = −gµν∂µ∂νξ(x)−m2ξ(x) = 0 , (9.85)

−σ̃νσν∂ν∂µη(x)−miσ̃ν∂νξ(x) = −gµν∂µ∂νη(x)−m2η(x) = 0 . (9.86)

Thus, both Weyl spinors ξ and η satisfy the Klein-Gordon equation of a particle (7.19), provided

that the parameter m is identified according to

m =
Mc

h̄
, (9.87)

i.e. being inversely proportional to the Compton wave length (7.21).

Since the description of a massive spin 1/2 particle necessarily involves both Weyl spinors ξ

and η, it is suggestive to combine them to a Dirac spinor:

ψ(x) =

�
ξ(x)

η(x)

�
. (9.88)

In view of that we rewrite the Lagrange density (9.77)

L = A

�
(ξ†, η†)

�
σ̃µ O

O σµ

�
i∂µ

�
ξ

η

�
− (ξ†, η†)

�
O mI

mI O

��
ξ

η

��
, (9.89)

where we used the 2× 2 unit matrix (9.3) and introduced in addition the 2× 2 zero matrix

O =

�
0 0

0 0

�
. (9.90)
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Furthermore, we define the Dirac adjoint of the Dirac spinor (9.88) according to

ψ(x) =
�
η†(x), ξ†(x)

�
= ψ†(x)

�
O I

I O

�
↔ ψ†(x) = (ξ†(x), η†(x)) = ψ(x)

�
O I

I O

�
. (9.91)

With this the Lagrange density (9.89) changes into

L = A

�
ψ

�
O I

I O

��
σ̃µ O

O σµ

�
i∂µψ − ψ

�
O I

I O

��
O mI

mI O

�
ψ

�
, (9.92)

which finally reduces to

L = Aψ (iγµ∂µ −m)ψ . (9.93)

Here we have introduced the Dirac matrices

γµ =

�
O σµ

σ̃µ O

�
, (9.94)

which turn out to obey the property of a Clifford algebra, see Eq. (9.4), due to the calculational

rules (9.80) and (9.81):

[γµ, γν ]+ = γµγν + γνγµ =

�
O σµ

σ̃µ O

��
O σν

σ̃ν O

�
+

�
O σν

σ̃ν O

��
O σµ

σ̃µ O

�

=

�
σµσ̃ν + σν σ̃µ O

O σ̃νσµ + σ̃νσµ

�
= 2gµν

�
I O

O I

�
. (9.95)

The action (9.74), (9.75) can, thus, be interpreted as a functional of the Dirac spinor ψ(x) and

the Dirac adjoint Dirac spinor ψ(x):

A[ψ(•);ψ(•)] = 1

c

�
d4xL

�
ψ(x), ∂µψ(x);ψ(x); ∂µψ(x)

�
. (9.96)

The equation of motion of the Dirac spinor is thus given by

δA
δψ(x)

=
∂L

∂ψ(x)
− ∂µ

∂L
∂(∂µψ(x))

= A
�
iγµ∂µψ(x)−mψ(x)

�
= 0 . (9.97)

This reduces to

�
i/∂ −m

�
ψ(x) = 0 (9.98)

with introducing the Feynman dagger as another widespread shortcut notation

/∂ = γµ∂µ . (9.99)
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9.7 Spinor Representation of Lorentz Group

By construction the Dirac action (9.93), (9.96) is invariant under Lorentz transformations.

Nevertheless we now aim for proving this again from a different point of view by studying the

representation of the Lorentz group in the space of the Dirac spinors. To this end we deduce

from the representations of the Lorentz group in the space of the Weyl spinors in (9.48) and

(9.49)

ψ(x) =

�
ξ(x)

η(x)

�
−→ ψ�(x�) =

�
ξ�(x�)

η�(x�)

�
= D(Λ)ψ(x) . (9.100)

Here the representation matrices D(Λ) for the Dirac spinor are composed of the respective

representation matrices D(1/2,0)(Λ) and D(0,1/2)(Λ) for the Weyl spinors:

D(Λ) =

�
D(1/2,0)(Λ) O

O D(0,1/2)(Λ)

�
. (9.101)

Furthermore, we note that the relation (9.91) between the Dirac adjoint Dirac spinor ψ and

the adjoint Dirac spinor ψ† simplifies due to (9.37) and (9.94):

ψ(x) = ψ†(x)γ0 ⇐⇒ ψ†(x) = ψ(x)γ0 . (9.102)

Due to (9.100) and (9.102) the Lorentz transformation of the Dirac adjoint Dirac spinor reads

ψ
�
(x�) = ψ�†(x�)γ0 = ψ†(x)D(Λ)†γ0 = ψ(x)D(Λ) . (9.103)

Here we have introduced the Dirac adjoint representation matrices

D(Λ) = γ0D(Λ)†γ0 , (9.104)

for which we obtain due to (9.37), (9.94), and (9.101) the explicit result

D(Λ) =

�
D(0,1/2)(Λ)† O

O D(1/2,0)(Λ)†

�
. (9.105)

Thus, taking into account (9.13), (9.14), (9.16), (9.101), and (9.105) we conclude

D(Λ) = D(Λ)−1 . (9.106)

Furthermore, we note that we showed in Section 9.5

D(1/2,0)(Λ)† σ̃µ D(1/2,0)(Λ) = Λµ
ν σ̃

µ , (9.107)

D(0,1/2)(Λ)† σµ D(0,1/2)(Λ) = Λµ
νσ

µ (9.108)

for Λ = R and Λ = B in (9.62), (9.64) and (9.69), (9.70), respectively. But since every Lorentz

transformation can be understood as a successive execution of a boost and a rotation

Λ = BR , (9.109)
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the corresponding representation matrices factorize, i.e. we have

D(1/2,0)(Λ) = D(1/2,0)(B)D(1/2,0)(R) , D(0,1/2)(Λ) = D(0,1/2)(B)D(0,1/2)(R) . (9.110)

With this we can show that (9.107) and (9.108) are even valid for any Lorentz transformation.

At first we obtain for the representation D(1/2,0)

D(1/2,0)(Λ)† σ̃µ D(1/2,0)(Λ) = D(1/2,0)(R)† D(1/2,0)(B)† σ̃µ D(1/2,0)(B)D(1/2,0)(R)

= Bµ
ν D

(1/2,0)(R)† σ̃ν D(1/2,0)(R) = Bµ
ν R

ν
κ σ̃

κ = Λµ
ν σ̃

ν , (9.111)

and, correspondingly, we get for the representation D(0,1/2)

D(0,1/2)(Λ)† σµ D(0,1/2)(Λ) = D(0,1/2)(R)† D(0,1/2)(B)† σµ D(0,1/2)(B)D(0,1/2)(R)

= Bµ
ν D

(0,1/2)(R)† σν D(0,1/2)(R) = Bµ
ν R

ν
κ σ

κ = Λµ
ν σ

ν . (9.112)

Note that we have used (9.109) in the last step of both (9.111) and (9.112). The two transfor-

mation laws (9.107) and (9.108) can now be combined into one for the Dirac matrices (9.94).

Taking into account (9.101) and (9.105) a direct multiplication of the involved 4 × 4 matrices

yields

D(Λ)γµD(Λ) =

�
D(0,1/2)(Λ)† O

O D(1/2,0)(Λ)†

��
O σµ

σ̃µ O

��
D(1/2,0)(Λ) O

O D(0,1/2)(Λ)

�

=

�
O D(0,1/2)(Λ)†σµD(0,1/2)(Λ)

D(1/2,0)(Λ)†σ̃µD(1/2,0)(Λ) O

�
= Λµ

ν

�
O σν

σ̃ν O

�
= Λµ

νγ
ν . (9.113)

After these preparations the invariance of the Dirac action can be shown as follows. At first we

obtain for the Lorentz transformation of the action (9.93), (9.96) due to (9.100), (9.103), and

the property d4x� = d4x of special Lorentz transformations:

A� =
A

c

�
d4x� ψ

�
(x�)

�
iγµ∂�

µ −m
�
ψ�(x�)

=
A

c

�
d4xψ(x)

�
iD(Λ)γµD(Λ)∂�

µ −mD(Λ)D(Λ)
�
ψ(x) . (9.114)

Using (9.106) and (9.113) as well as taking into account that the partial derivatives in (9.114)

transform like a covariant four vector

∂µ −→ ∂�
µ = Λµ

ν ∂ν (9.115)

we get

A� =
A

c

�
d4x ψ(x) (iΛµ

νΛµ
κγν∂κ −m)ψ(x) . (9.116)

From (6.28) we then conclude that the Lorentz transformed action (9.116) coincides with the

original action (9.93), (9.96).
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Let us further investigate the representation (9.101) of the Lorentz group in the space of the

Dirac spinors. To this end we use (9.13) as well as (9.14) and bring it to the following form:

D(Λ) = exp

�
−i

�
σk/2 O

O σk/2

�
ϕk − i

�
−iσk/2 O

O iσk/2

�
ξk

�
. (9.117)

Comparing this with a covariant formulation of the Lie theorem as in (6.61)–(6.64)

D(Λ) = exp

�
− i

2
ωµνS

µν

�
= exp

�
− i

2
�kijS

ijϕk − iS0kξk
�

, (9.118)

the representation matrices for the generators of the boosts are given by

D(Mk) = S0k =

�
−iσk/2 O

O iσk/2

�
, (9.119)

while the representation matrices for the generators of the rotations follow from

D(Lk) = Sk =
1

2
�kijS

ij =

�
σk/2 O

O σk/2

�
(9.120)

and read

Sij = �ijk

�
σk/2 O

O σk/2

�
. (9.121)

According to (6.161) we read off that (9.120) just represents the spin vector for spin 1/2

particles. Furthermore, the two results (9.119) and (9.121) can be summarized in a covariant

form with the help of the Dirac matrices (9.94) as follows:

Sµν =
i

4
[γµ, γν ]− . (9.122)

Indeed, whereas Eq. (9.119) follows directly from (9.122), the corresponding derivation of

(9.120) needs to take into account the Lie algebra property of the Pauli matrices (9.5).

Now we aim for determining the commutator between two representation matrices Sµν of the

Lorentz algebra in the space of the Dirac spinors. To this end we apply the calculation rule

(3.94), the definition (9.121) as well as the Clifford algebra property of the Dirac matrices in

(9.95) and calculate at first the commutator

�
Sµν , γλ

�
− = i

�
gνλγµ − gµλγν

�
. (9.123)

Then we use (3.10) and (9.121)–(9.123) for obtaining

�
Sµν , Sκλ

�
− = i

�
gµλSνκ + gνκSµλ − gµκSνλ − gνλSµκ

�
. (9.124)

Thus, we read off from (9.124) that the representation matrices Sµν satisfy, indeed, the usual

commutation relations of the Lorentz algebra, see Eqs. (6.48) and (6.49). Furthermore, (9.123)

and (9.124) show that γλ and Sκλ represent a tensor operator of rank n = 1 and n = 2 in the

sense of (6.102).
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9.8 Parity Transformation

Due to a parity transformation P the four-vector x is mapped to the spatially inverted four-

vector x̃ introduced in (9.41):

x�
P = Px = x̃ . (9.125)

Performing a parity transformation P two times in a row, the original four-vector is reproduced.

Thus, the parity transformation P is involutoric:

P 2 = 1 ⇐⇒ P−1 = P . (9.126)

The representation matrix for such a parity transformation reads as follows:

P =




1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1


 . (9.127)

Furthermore, it can be straight-forwardly shown that the representation matrix of the par-

ity transformation (9.127) commutates with the matrix representations for the generators of

rotations (6.53)

P−1LkP = Lk ⇐⇒ [P, Lk]− = 0 (9.128)

and anti-commutates with the matrix representations for the generators of boosts (6.54)

P−1MkP = −Mk ⇐⇒ [P,Mk]+ = 0 . (9.129)

For instance, we have

P−1L1P =




1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1







0 0 0 0

0 0 0 0

0 0 0 −i

0 0 i 0







1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1


 = L1 , (9.130)

P−1M1P =




1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1







0 −i 0 0

−i 0 0 0

0 0 0 0

0 0 0 0







1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1


 = −M1 . (9.131)

Performing a parity transformation upon a Dirac spinor yields

ψ(x) −→ ψ�
P (x) = D(P )ψ(x̃) , (9.132)

where D(P ) denotes the corresponding representation matrix of the parity transformation in

the space of Dirac spinors. Thus, D(P ) must possess the same properties as P . For instance,

due to (9.126), D(P ) must be involutoric:

D(P )2 = 1 . (9.133)
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Furthermore, D(P ) must satisfy both a commutator and an anti-commutator relation with the

representation matrices D(Lk) and D(Mk) of the rotations and boosts in the space of Dirac

spinors, respectively, which are analogous to (9.128) and (9.129):

D(P )−1D(Lk)D(P ) = D(Lk) , (9.134)

D(P )−1D(Mk)D(P ) = −D(Mk) . (9.135)

We now determine the representation matrix D(P ) from the requirement that the Dirac equa-

tion is invariant under a parity transformation. To this end we rewrite at first the Dirac

equation (9.97) by the applying the substitution x → x̃ :
�
iγµ∂̃µ −m

�
ψ(x̃) = 0 . (9.136)

Then we replace ψ(x̃) in (9.136) with ψ�
P (x) according to (9.132) and use the property of the

scalar product that γ̃µ∂µ = γµ∂̃µ holds, yielding
�
iD(P )γ̃µD(P )−1∂µ −m

�
ψ�
P (x) = 0 . (9.137)

Thus, Eq. (9.137) reduces to the Dirac equation for the parity transformed mirrored Dirac

spinor ψ�
P (x), i.e.

(iγµ∂µ −m)ψ�
P (x) = 0 , (9.138)

provided that the representation matrix D(P ) satisfies the condition

D(P )γ̃µD(P )−1 = γµ . (9.139)

Let us define the representation matrix D(P ) according to

D(P ) = γ0 . (9.140)

Then the involution property (9.133) is valid

D(P )2 = (γ0)2 =

�
O I

I O

��
O I

I O

�
=

�
I O

O I

�
(9.141)

and the condition (9.139) is fulfilled due to the Clifford algebra (9.95):

γ0γ̃0γ0 = (γ0)3 = γ0 , (9.142)

γ0γ̃kγ0 = −γ0γkγ0 = γk . (9.143)

Furthermore, taking into account (9.94), (9.119), (9.120) as well as (9.140) both the commuta-

tors (9.134) and the anti-commutators (9.135) can straight-forwardly be shown:

D(P )−1D(Lk)D(P ) =

�
O I

I O

��
σk/2 O

O σk/2

��
O I

I O

�
= D(Lk) , (9.144)

D(P )−1D(Mk)D(P ) =

�
O I

I O

��
−iσk/2 O

O iσk/2

��
O I

I O

�
= −D(Mk) . (9.145)
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Additionally, we read off from the definition of γ0 in (9.94) that a parity transformation (9.132)

has the effect of interchanging the Weyl spinors ξ and η in the Dirac spinor (9.88):

ψ(x) =

�
ξ(x)

η(x)

�
−→ ψ�

P (x) =

�
O I

I O

��
ξ(x̃)

η(x̃)

�
=

�
η(x̃)

ξ(x̃)

�
. (9.146)

Thus, in a theory, where both ψ(x) and ψ�
p(x) represent physically realized states, one needs

both Weyl spinors ξ and η. And from the Lorentz invariance considerations in Section 9.5

follows then that the corresponding action must necessarily have a mass term. Furthermore,

we conclude from (9.146) that in a parity transformation invariant theory both Weyl spinors ξ

and η have to appear on equal footing.

9.9 Neutrinos

A neutrino is an elementary particle with spin 1/2, which interacts only via the weak force

and gravity. Historically, the neutrino was postulated first by Wolfgang Pauli in 1930 as an

additional particle being involved in the beta decay of a neutron into a proton and an electron

in order explain the conservation of energy, momentum, and angular momentum. The neutrino

is so named because it is electrically neutral and because its rest mass is so small that it was

long thought to be zero, leading to the suffix -ino. Therefore, in accordance with previous

experimental results, neutrinos were considered for decades to be massless spin 1/2-particles,

which are described by a single Weyl spinor ξ or η. According to (9.76), their Lagrangian

density is then given by either

L = Aiξ†σ̃µ∂µξ (9.147)

or by

L = Aiη†σµ∂µη . (9.148)

Like in the Maxwell theory also the Lagrangians (9.147) and (9.148) of the Weyl theory do not

contain a Planck constant but still represent a valid first-quantized theory due to the vanishing

rest mass. In both cases, the Lagrangian density is invariant under Lorentz transformations

according to Section 9.5 but not invariant under parity transformations due to Section 9.8. In

order to describe neutrinos also with a Dirac spinor ψ, one must project out the upper or the

lower Weyl spinor ξ or η. To this end one introduces the matrix

γ5 = iγ0γ1γ2γ3 (9.149)

for which we obtain due to the definition of the Dirac matrices in (9.94)

γ5 = i

�
O I

I O

��
O σ1

−σ1 I

��
O σ2

−σ2 O

��
O σ3

−σ3 O

�
= i

�
σ1σ2σ3 O

O −σ1σ2σ3

�
. (9.150)
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Here the product of the Pauli matrices (9.1) turns out to be

σ1σ2σ3 =

�
0 1

1 0

��
0 −i

i 0

��
1 0

0 −1

�
=

�
i 0

0 i

�
, (9.151)

so that (9.150) reduces to

γ5 =

�
−I O

O I

�
. (9.152)

Thus, we read off that also γ5 is involutoric:

�
γ5
�2

= 1 =⇒
�
γ5
�−1

= γ5 , (9.153)

Furthermore, with the help of the γ5 matrix we can construct projection matrices

Pu =
1

2

�
1− γ5

�
=

�
I O

O O

�
, (9.154)

Pl =
1

2

�
1 + γ5

�
=

�
O O

O I

�
, (9.155)

which possess the desired effect:

Puψ =

�
I O

O O

��
ξ

η

�
=

�
ξ

0

�
, (9.156)

Plψ =

�
O O

O I

��
ξ

η

�
=

�
0

η

�
. (9.157)

Thus, we read off that the Weyl spinors ξ and η represent in form of (1∓ γ5)ψ/2 eigenstates of

the matrix γ5 with the eigenvalues ∓1:

γ5 1

2

�
1∓ γ5

�
ψ = ∓ 1

2

�
1∓ γ5

�
ψ . (9.158)

As the neutrino states can be classified according to the eigenvalues of the matrix γ5, it is of

special importance. One calls γ5 the chirality operator and speaks of left (−1) or right (+1)

chirality for the states (1∓ γ5)ψ/2.

We note that the chirality operator γ5 from (9.149) can also be written as

γ5 =
i

24
�µνκλ γ

µγνγκγλ . (9.159)

Indeed, due to the anti-symmetry (6.141) of the �-tensor only 4! = 24 terms contribute to

(9.159), where each term consists of a product of 4 different Dirac matrices. Furthermore, all

24 terms agree due to the anti-symmetry γµγν = −γνγµ for µ �= ν following from the Clifford

algebra (9.95) and due to the anti-symmetry (6.141) of the �-tensor, yielding (9.149). Since the

Dirac matrices γµ transform according to (9.113) like a contravariant four-vector under Lorentz
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transformations, Eq. (9.159) has due to (9.106) the consequence that the chirality operator γ5

is Lorentz invariant:

D(Λ)γ5D(Λ) =
i

24
�µνκλ

�
D(Λ)γµD(Λ)

��
D(Λ)γνD(Λ)

��
D(Λ)γκD(Λ)

��
D(Λ)γλD(Λ)

�

=
i

24
�µνκλΛ

µ
µ�Λν

ν�Λ
κ
κ�Λλ

λ�γµ�
γν�γκ�

γλ�
=

i

24
�µ�ν�κ�λ�γµ�

γν�γκ�
γλ�

= γ5 . (9.160)

Here we used the Weierstraß expansion of the determinant a 4× 4-matrix Λ = (Λµ
ν)

(Det Λ)�µ�ν�κ�λ� = �µνκλΛ
µ
µ�Λν

ν�Λ
κ
κ�Λλ

λ� , (9.161)

where the property Det Λ = 1 of the special Lorentz transformations implies that the four-

dimensional Levi-Cività tensor has the same components in all inertial systems:

��µνκλ = �µνκλ . (9.162)

With the help of (9.154)–(9.157) the two neutrino Lagrangians (9.147) and (9.148) can be

expressed by Dirac spinors:

L = Aiψ(x)γµ∂µ
1

2
(1∓ γ5)ψ(x) . (9.163)

In fact, taking into account (9.88), (9.92), and (9.94) an explicit calculation yields for the upper

Weyl spinor

L = Aiψ(x)γµ∂µ
1

2

�
1− γ5

�
ψ(x) = Ai(ξ†, η†)

�
O I

I O

��
O σµ

σ̃µ O

�
∂µ

1

2

�
1− γ5

�
�

ξ

η

�

= Ai(ξ†, η†)

�
σ̃µ O

O σµ

�
∂µ

�
ξ

0

�
= Aiξ†σ̃µ∂µξ (9.164)

and, correspondingly, for the lower Weyl spinor

L = Aiψ(x)γµ∂µ
1

2
(1 + γ5)ψ(x) = Ai(ξ†, η†)

�
O I

I O

��
O σµ

σ̃µ O

�
∂µ

1

2
(1 + γ5)

�
ξ

η

�

= Ai(ξ†, η†)

�
σ̃µ O

O σµ

�
∂µ

�
0

η

�
= Aiη†σµ∂µη . (9.165)

The two neutrino Lagrangians (9.163) are manifestly Lorentz-invariant due to (9.100), (9.103),

(9.113), and (9.160). Furthermore, we have due to (9.133), (9.139), (9.149), and (9.159)

D(P )−1γ5D(P ) =
i

24
�µνκλ

�
D(P )−1γµD(P )

��
D(P )−1γνD(P )

��
D(P )−1γκD(P )

�

×
�
D(P )−1γλD(P )

�
=

i

24
�µνκλγ̃

µγ̃ν γ̃κγ̃λ =
−i

24
�µνκλγ

µγνγκγλ = −γ5 , (9.166)

so that a parity transformation maps the two neutrino Lagrangians (9.163) into each other.

We remark that the Lagrangians (9.163) were proposed for the first time by the mathemati-

cian Hermann Weyl in 1929 to describe massless spin 1/2-particles. But since the neutrino



162 CHAPTER 9. DIRAC FIELD

Lagrangians (9.163) are not invariant under parity transformations and at that time only in-

teractions like the electromagnetic or the strong one were known, which are invariant under

parity transformations, the Lagrangians (9.163) were not considered to be physical for a long

time. Only in 1956 it was shown by Chien-Shiung Wu in a β-decay experiment of 60
27Co that the

weak interaction is not invariant under parity transformations and, thus, violates parity. Since

this discovery neutrinos were assumed to be described by the Lagrangians (9.163) for decades.

But in 1987 one managed to resolve the flavour of sun neutrinos in the Kamiokande experiment

and one showed that they oscillate between the electron, the myuon, and the tauon flavour.

From this observation it was concluded that neutrinos must have finite masses although their

precise values have not yet been determined. Therefore, the Lagrangians (9.163) have been

abandoned for describing neutrinos. But, due to their charge neutrality, until today it has not

yet been finally decided how to describe theoretically neutrinos as massive spin 1/2 particles.

Currently there exist two alternative descriptions, which go back to proposals of Paul Dirac

and Ettore Majorana, respectively. In the first case neutrinos and anti-matter neutrinos are

considered to be different particles, whereas in the second case they are assumed to be one

and the same particle masquerading as two. An experimental decision between both possible

theoretical descriptions is still lacking.

Subsequently, we consider the Weyl equation, that is, i.e. the equation of motion for massless

spin 1/2 particles, which follows from (9.163):

δA
δψ(x)

=
∂L

∂ψ(x)
− ∂µ

∂L
∂(∂µψ(x))

= Aiγµ∂µ
1

2

�
1∓ γ5

�
ψ(x) = 0 . (9.167)

In the case of a particle with a fixed four-momentum vector p = (pµ)

ψ(x) = ψ e−ipx (9.168)

the Weyl equation (9.167) changes into

γp
1

2

�
1∓ γ5

�
ψ = γ0p0

1

2

�
1∓ γ5

�
ψ . (9.169)

Multiplying (9.169) from the left by γ5γ0, we obtain due to (9.94) and (9.152)

γ5γ0γk =

�
−I O

O I

��
O I

I O

��
O σk

−σk O

�
=

�
σk O

O σk

�
, (9.170)

thus, taking into account the spin operator (9.120) the result is

Sp

|p0|
1

2

�
1∓ γ5

�
=

1

2
sgn(p0) γ5 1

2

�
1∓ γ5

�
. (9.171)

Due to the energy-momentum dispersion relation p0 = ±|p| the eigenstates (1∓ γ5)ψ/2 of the

chirality operator γ5 with the eigenvalues ∓1, see Eq. (9.158), are also eigenstates of the helicity

operator with the eigenvalues ∓sgn(p0)/2. Thus, we conclude that chirality and helicity are

identical for massless spin 1/2 particles.
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9.10 Charge conjugation

The Lagrange density (9.93) of the Dirac field is also invariant with respect to another discrete

symmetry transformation, where the components of the Dirac spinor ψ(x) are replaced by the

components of the complex conjugate Dirac spinor ψ∗(x). In order to perform such a symmetry

transformation we make the ansatz

ψ�
C(x) = C ψ

T
(x) = Cγ0ψ∗(x) , (9.172)

where the row spinor ψ(x) from (9.91) goes over into the corresponding column spinor ψ
T
(x)

by transposition and we have used that (γ0)T = γ0 due to (9.94). Furthermore, C denotes

a complex 4 × 4-matrix which mixes these components and is defined by the fact that the

transformed Dirac spinor (9.172) obeys the same Dirac equation

(iγµ∂µ −m)ψ�
C(x) = 0 (9.173)

as the original Dirac spinor ψ(x) in (9.97). Inserting (9.172) into (9.173) and multiplying from

the left by C−1, then we obtain at first

iC−1γµC∂µψ
T
(x)−mψ

T
(x) = 0 , (9.174)

which changes due to a subsequent transposition T into

i∂µψ(x)
�
C−1γµC

�T −mψ(x) = 0 . (9.175)

This equation of motion is now compared with the Dirac equation for the Dirac adjoint Dirac

spinor ψ(x). In order to derive it we start from the Dirac equation (9.97) and go over to the

adjoint, yielding

−i∂µψ
†(x)(γµ)† −mψ†(x) = 0 . (9.176)

Taking into account the Clifford algebra (9.95) for µ = ν = 0 and (9.102) changes (9.176) into

−i∂µψ(x)γ
0(γµ)†γ0 −mψ(x) = 0 . (9.177)

Here we note that the Dirac matrices (9.94) have due to (9.16) the property

γ0(γµ)†γ0 =

�
O I

I O

��
O σ̃µ

σµ O

��
O I

I O

�
=

�
O σµ

σ̃µ O

�
= γµ , (9.178)

so that the Dirac equation for the Dirac-adjoint spinor (9.177) reduces to

i∂µψ(x)γ
µ +mψ(x) = 0 . (9.179)

We remark that this equation of motion for the Dirac adjoint Dirac spinor ψ(x) corresponds to

the Euler-Lagrange equation of the Dirac Lagrange density (9.92):

δA
δψ(x)

=
∂L

∂ψ(x)
− ∂µ

∂L
∂(∂µψ(x))

= A
�
i∂µψ(x)γ

µ +mψ(x)
�
= 0 . (9.180)
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The comparison of (9.175) and (9.179) then leads to the following equation for determining the

matrix C:

�
C−1γµC

�T
= −γµ =⇒ C−1γµC = − (γµ)T . (9.181)

In order to solve (9.181) we make the following diagonal ansatz for the matrix C

C =

�
c O

O −c

�
, C−1 =

�
c−1 O

O −c−1

�
. (9.182)

With this we obtain from (9.94) for the left-hand side of (9.181)
�

c−1 O

O −c−1

��
O σµ

σ̃µ O

��
c O

O −c

�
=

�
O −c−1σµc

−c−1σ̃µc O

�
, (9.183)

so we conclude from (9.181)

c−1σµc = (σ̃µ)T , c−1σ̃µc = (σµ)T . (9.184)

Splitting both equations (9.184) into µ = 0 and µ = k, they yield the conditions

c−1σ0c = (σ0)T , (9.185)

c−1σkc = −(σk)T . (9.186)

Here the transposed Pauli matrices (9.1) and (9.37) are given by

�
σ0
�T

= σ0 ,
�
σ1
�T

= σ1 ,
�
σ2
�T

= −σ2 ,
�
σ3
�T

= σ3 . (9.187)

Let us now define the matrix c according to

c = −iσ2 = −i

�
0 −i

i 0

�
=

�
0 −1

1 0

�
. (9.188)

As it has the properties

c† = c−1 = cT = −c = −c∗ , (9.189)

we read off that (9.185) and (9.186) are, indeed, fulfilled due to (9.2) and (9.187)–(9.189)

c−1σ0c = iσ2σ0(−iσ2) = σ2σ0σ2 = (σ2)2 = σ0 = (σ0)T , (9.190)

c−1σ1c = iσ2σ1(−iσ2) = σ2σ1σ2 = −(σ2)2σ1 = −σ1 = −(σ1)T , (9.191)

c−1σ2c = iσ2σ2(−iσ2) = (σ2)2σ2 = σ2 = −(σ2)T , (9.192)

c−1σ3c = iσ2σ3(−iσ2) = σ2σ3σ2 = −(σ2)2σ3 = −σ3 = −(σ3)T . (9.193)

Thus, in conclusion, taking into account (9.188) and (9.189) the matrix C defined in (9.182)

has the properties

C† = C−1 = CT = −C = −C∗ (9.194)
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and can be represented as a product of Dirac matrices (9.94):

iγ0γ2 = i

�
O I

I O

��
O σ2

−σ2 O

�
=

�
−iσ2 O

O iσ2

�
=

�
c O

O −c

�
= C . (9.195)

Moreover, taking into account (9.94), (9.182), (9.189), and (9.194), it follows that also the

discrete symmetry transformation (9.172) is involutoric:

ψ��
C(x) = Cγ0ψ�∗

C (x) = Cγ0C∗(γ0)∗ψ(x) = Cγ0Cγ0ψ(x) =

�
c O

O −c

��
O I

I O

��
c O

O −c

�

×
�

O I

I O

�
ψ(x) =

�
O c

−c O

��
O c

−c O

�
ψ(x) =

�
−c2 O

O −c2

�
ψ(x) = ψ(x) . (9.196)

And, finally, we investigate how the discrete symmetry transformation (9.172) affects the four-

vector current density of the Dirac field invariant. Multiplying the equations of motion (9.97)

and (9.177) for ψ(x) and ψ(x) with ψ(x) and ψ(x), respectively, we yield

iψ(x)γµ∂µψ(x)−mψ(x)ψ(x) = 0 , (9.197)

i∂µψ(x)γ
µψ(x) +mψ(x)ψ(x) = 0 , (9.198)

so we read off the continuity equation

i∂µ

�
ψ(x)γµψ(x)

�
= 0 =⇒ ∂µj

µ(x) = 0 . (9.199)

Here the four-vector current density jµ(x) is fixed except for a constant K:

jµ(x) = K ψ(x)γµψ(x) . (9.200)

Thus, the conserved charge reads due to (9.94) and (9.200)

Q =

�
d3x j0(x, t) = K

�
d3xψ†(x, t)ψ(x, t) . (9.201)

In order to apply the discrete symmetry transformation (9.172) to the four-vector current

density (9.200), we need to know how the Dirac adjoint Dirac spinor (9.102) is transformed.

Thus, applying (9.94), (9.182), (9.189), and (9.194) we yield

ψ
�
C(x) = ψ�†

C(x)γ
0 = ψT (x)(γ0)†C†γ0 = −ψT (x)γ0Cγ0 = −ψT (x)

�
O I

I O

��
c O

O −c

�

×
�

O I

I O

�
= −ψT (x)

�
O I

I O

��
O c

−c O

�
= −ψT (x)

�
−c O

O c

�
= ψT (x)C . (9.202)

Transforming the four-vector current density (9.200) with (9.172) and (9.202) we then conclude

at first

j�µC (x) = Kψ
�
Cγ

µψ�
C(x) = KψT (x)CγµCγ0ψ∗(x) . (9.203)
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As each individual component of the transformed four-vector current density (9.203) coincides

with its transposition, i.e. j�µC (x) = (j�µC (x))T , it follows from (9.94), (9.102), (9.181), (9.194),

and (9.200) that

j�µC (x) = Kψ†(x)(γ0)T (CγµC)Tψ(x) = Kψ†(x)γ0γµψ(x) = Kψ(x)γµψ(x) = jµ(x) . (9.204)

Thus, we conclude that the discrete symmetry transformation (9.172) turns out not to change

the four-vector current density. Note that the physical meaning of the discrete symmetry

transformation (9.172) as a charge conjugation becomes clear only after having implemented

the second quantization of the Dirac field, as then the four-vector density operator changes its

sign in contrast to (9.204),

9.11 Time Inversion

Performing a time inversion T , the space-time four-vector x is mapped into the time-inverted

space-time four-vector −x̃:

x�
T = Tx = −x̃ . (9.205)

Executing a time inversion T successively twice, one reproduces the original state, so the time

inversion T is also involutoric:

T 2 = 1 ⇐⇒ T−1 = T . (9.206)

The representation matrix for such a time inversion reads as follows

T =




−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


 . (9.207)

Thus, we conclude that the representation matrix of the time inversion (9.207) commutates

with the matrix representations for the generators of rotations (6.53)

T−1LkT = Lk (9.208)

and anti-commutates with the matrix representations for the generators of boosts (6.54)

T−1MkT = −Mk . (9.209)
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For instance, we have

T−1L1T =




−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1







0 0 0 0

0 0 0 0

0 0 0 −i

0 0 i 0







−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


 = L1 , (9.210)

T−1M1T =




−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1







0 −i 0 0

−i 0 0 0

0 0 0 0

0 0 0 0







−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


 = −M1 . (9.211)

As the time inversion is more intriguing to interpret, we investigate at first its consequences for

the Schrödinger equation

�
ih̄

∂

∂t
+

h̄2

2M
Δ

�
ψ(x, t) = 0 . (9.212)

Obviously, the time inverted wave function

ψ�
T (x, t) = ψ∗(x,−t) (9.213)

also obeys the Schrödinger equation:

�
ih̄

∂

∂t
+

h̄2

2M
Δ

�
ψ�
T (x, t) = 0 . (9.214)

In analogy to (9.213) we now perform the time inversion for a Dirac spinor via

ψ(x) −→ ψ�
T (x) = D(T )ψ∗(−x̃) , (9.215)

where D(T ) stands for the representation matrix of the time inversion in the space of Dirac

spinors. Then D(T ) must also fulfill the involutoric property (9.206)

D(T )2 = 1 (9.216)

and we expect that also the commutator and anti-commutator relations (9.208) and (9.209) are

satisfied by the representation matrices D(Lk) and D(Mk) of rotations and boosts in the space

of Dirac spinors, respectively:

D(T )−1D(Lk)D(T ) = D(Lk) , (9.217)

D(T )−1D(Mk)D(T ) = −D(Mk) . (9.218)

In analogy with (9.214), we also require that the time inverted Dirac spinor (9.215) satisfies

the Dirac equation (9.97):

(iγµ∂µ −m)ψ�
T (x) = 0 . (9.219)
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Inserting (9.215) into (9.219), we obtain

−i
�
D(T )−1γµD(T )

�∗
∂µψ(−x̃)−mψ(−x̃) = 0 . (9.220)

Comparing (9.220) with the time-inverted Dirac equation (9.97)

−iγ̃µ∂µψ(−x̃)−mψ(−x̃) = 0 , (9.221)

where we used γµ∂̃µ = γ̃µ∂µ, the representation matrix D(T ) of the time inversion is determined

by the equation

D(T )−1γµD(T ) = (γ̃µ)∗ . (9.222)

On the one hand we calculate the conjugate complex of the Dirac matrices (9.94) by taking

into account the Pauli matrices (9.1), yielding

�
γ0
�∗

=

�
O σ0

σ0 O

�
,

�
γ1
�∗

=

�
O σ1

−σ1 O

�
,

�
γ2
�∗

=

�
O −σ2

σ2 O

�
,

�
γ3
�∗

=

�
O σ3

−σ3 O

�
. (9.223)

On the other hand we obtain for the quantities (γ̃µ)T :

�
γ̃0
�T

=
�
γ0
�T

=

�
O (σ0)T

(σ0)T O

�
=

�
O σ0

σ0 O

�
,

�
γ̃1
�T

= −
�
γ1
�T

= −
�

O −(σ1)T

(σ1)T O

�
=

�
O σ1

−σ1 O

�
,

�
γ̃2
�T

= −
�
γ2
�T

= −
�

O −(σ2)T

(σ2)T O

�
=

�
O −σ2

σ2 O

�
,

�
γ̃3
�T

= −
�
γ3
�T

= −
�

O −(σ3)T

(σ3)T O

�
=

�
O σ3

−σ3 O

�
. (9.224)

Thus, from (9.223) and (9.224) we read off the following identity

(γµ)∗ = (γ̃µ)T =⇒ (γµ)† = γ̃µ . (9.225)

Inserting (9.225) into (9.222) then results in

D(T )−1γµD(T ) = (γµ)T . (9.226)

Now we take into account the property (9.181), which relates the Dirac matrices γµ with the

representation matrix C of charge conjugation in the space of Dirac spinors. With this the

equation (9.226) for determining D(T ) leads to

D(T )−1γµD(T ) = −C−1γµC =⇒
�
D(T )C−1

�−1
γµ

�
D(T )C−1

�
= −γµ . (9.227)
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A solution of (9.227) is given by

D(T )C−1 = −iγ5 (9.228)

together with its inverted matrix following from (9.153)
�
D(T )C−1

�−1
= iγ5 , (9.229)

as is verified by an explicit calculation due to (9.94) and (9.152):

γ5γµγ5 =

�
−I O

O I

��
O σµ

σ̃µ O

��
−I O

O I

�
= −

�
O σµ

σ̃µ O

�
= −γµ . (9.230)

Note that (9.228) represents a quite subtle relation, which involves with the matrices γ5, C,

and D(T ) technical ingredients of all three discrete transformation, i.e. the parity, the charge

conjugation, and the time inversion. Thus, taking into account (9.152) and (9.182), the repre-

sentation matrix D(T ) follows from (9.228)

D(T ) = −iγ5C = −i

�
−I O

O I

��
c O

O −c

�
= i

�
c O

O c

�
, (9.231)

which has due to (9.189) the properties

D(T ) = D(T )−1 = D(T )† = −D(T )∗ = −D(T )T . (9.232)

According to (9.232) the representation matrix D(T ) satisfies the involutoric property (9.216),

but the time inversion of the Dirac spinor is not involutoric due to (9.215) and (9.232):

ψ��
T (x) = D(T )ψ�∗

T (−x̃) = D(T )D(T )∗ψ(x) = −ψ(x) . (9.233)

This behavior of Dirac spinors under time inversion corresponds to that under a rotation,

where we read off from (9.21) and (9.101) that the original Dirac spinor is only recovered after

a rotation with the angle 4π. Furthermore, we obtain for the commutators of D(T ) with the

generators of rotation D(Lk) due to (9.16), (9.120), (9.186), and (9.189)

D(T )−1D(Lk)D(T ) = −
�

c O

O c

��
σk/2 O

O σk/2

��
c O

O c

�
=

�
−cσkc/2 O

O −cσkc/2

�

=

�
(σk)T/2 O

O (σk)T/2

�
=

�
(σk)∗/2 O

O (σk)∗/2

�
= D(Lk)

∗ , (9.234)

and, correspondingly, the commutators of D(T ) with D(Mk) yield with (9.119) and (9.231)

D(T )−1D(Mk)D(T ) =
i

2

�
c O

O c

��
σk O

O −σk/2

��
c O

O c

�
=

i

2

�
cσkc O

O −cσkc

�

=
−i

2

�
(σk)T O

O −(σk)T

�
=

−i

2

�
(σk)∗ 0

0 −(σk)∗

�
= −D(Mk)

∗ . (9.235)

The results (9.234) and (9.235) do not match the original expectations (9.217) and (9.218).

Instead, they indicate that the time inversion represents an anti-linear operation as is further

discussed in the exercises in the context of the second quantization of the Dirac field.
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9.12 Dirac Representation

The representation (9.94) of the Dirac matrices used so far is called the chiral representation

or the Weyl representation, as then the chirality operator γ5 is diagonal according to (9.152).

From a group-theoretical point of view this representation has the advantage that the repre-

sentation matrices of the Lorentz transformation in the space of the Dirac spinors have a block

diagonal shape according to (9.101), i.e. both Weyl spinors are treated on equal footing. An-

other common representation of the Dirac matrices is the so-called Dirac representation or the

standard representation

ψD(x) = SDψ(x) , (9.236)

where the transformation matrix SD is given by

SD =
1√
2

�
I I

−I I

�
(9.237)

with the inverse

S−1
D =

1√
2

�
I −I

I I

�
= ST

D . (9.238)

Thus, the transformation matrix SD is orthonormal or, more precisely, unitary. For the Dirac

adjoint Dirac spinor ψ(x) one obtains in the Dirac representation from (9.91), (9.94), (9.237),

and (9.238):

ψD(x) = ψ†
D(x)γ

0 = ψ†(x)S†
Dγ

0 = ψ(x)γ0S†
Dγ

0 = ψ(x)
1√
2

�
O I

I O

��
I I

−I I

��
O I

I O

�

= ψ(x)
1√
2

�
I −I

I I

�
= ψ(x)S−1

D . (9.239)

In the same way one obtains for the Dirac matrices γµ in the Dirac representation

γ0
D = SDγ

0S−1
D =

1

2

�
I I

−I I

��
O I

I O

��
I −I

I I

�
=

�
I O

O −I

�
, (9.240)

γk
D = SDγ

kS−1
D =

1

2

�
I I

−I I

��
O σk

−σk O

��
I −I

I I

�
=

�
O σk

−σk O

�
. (9.241)

And, correspondingly, the chirality operator (9.152) in the Dirac representation turns out to be

no longer diagonal:

γ5
D = SDγ

5S−1
D =

1

2

�
I I

−I I

��
−I O

O I

��
I −I

I I

�
=

�
O I

I O

�
. (9.242)
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Conversely, the Dirac matrix γ0 is not diagonal in the Weyl representation (9.94), while it is

diagonal in the Dirac representation (9.240). Furthermore, the generators of the rotations in

the spinor space (9.120) are invariant under the change of representation

D(Lk)D = SDD(Lk)S
−1
D =

1

4

�
I I

−I I

��
σk O

O σk

��
I −I

I I

�
=

1

2

�
σk O

O σk

�
, (9.243)

whereas the generators of the boosts in the spinor space (9.119) result in the Dirac representa-

tion to be given by

D(Mk)D = SDD(Mk)S
−1
D =

i

4

�
I I

−I I

��
−σk O

O σk

��
I −I

I I

�
=

i

2

�
O −σk

σk O

�
. (9.244)

9.13 Non-Relativistic Limit

The Dirac representation has the advantage that the non-relativistic limit is straight-forwardly

carried out. To this end we transform the Dirac equation (9.97) according to (9.236) into the

Dirac representation:

iγµ
D∂µψD(x)−mψD(x) = 0 . (9.245)

In this manifestly covariant formulation of the Dirac equation, we separate now explicitly the

respective temporal and spatial contributions

iγ0
D

1

c

∂

∂t
ψD(x, t) + iγk

D∂kψD(x, t)−mψD(x, t) = 0 . (9.246)

The Dirac equation (9.246) can then be rewritten in the form of a Schrödinger equation

ih̄
∂

∂t
ψD(x, t) = HD(x)ψD(x, t) , (9.247)

where the Dirac Hamiltonian is given by

HD(x) = −ich̄α∇+ ch̄mβ . (9.248)

Here we have introduced the matrices

β = γ0
D =

�
I O

O −I

�
, (9.249)

αk = γ0
Dγ

k
D =

�
I O

O −I

��
O σk

−σk O

�
=

�
O σk

σk O

�
, (9.250)



172 CHAPTER 9. DIRAC FIELD

where we used (9.240) and (9.241). With this we obtain the anti-commutator relations

[β, β]+ = 2

�
I O

O −I

��
I O

O −I

�
= 2 I , (9.251)

�
αk, β

�
+

=

�
O σk

σk O

��
I O

O −I

�
+

�
I O

O −I

��
O σk

σk O

�
= O , (9.252)

�
αk,αl

�
+

=

�
O σk

σk O

��
O σl

σl O

�
+

�
O σl

σl O

��
O σk

σk O

�

=

� �
σk, σl

�
+

O

O
�
σl, σk

�
+

�
= 2δkl I , (9.253)

where in the latter case we applied the Clifford algebra of the Pauli matrices (9.2). Furthermore,

we introduced as new abbreviations both the 4× 4 unit matrix

I =

�
I O

O I

�
(9.254)

and the 4× 4 zero matrix

O =

�
O O

O O

�
. (9.255)

Thus, we read off from (9.251)–(9.253) that the 4×4 matrices β, αk represent a Clifford algebra

with N = 4 generators in the sense of (9.4).

In close analogy to the Weyl representation in (9.88), we now decompose also in the Dirac

representation the four-component Dirac spinor into two two-component Weyl spinors

ψD(x, t) =

�
ξD(x, t)

ηD(x, t)

�
. (9.256)

Inserting (9.256) into (9.247) and (9.248) as well as taking into account (9.249) and (9.250)

then leads to

ih̄
∂

∂t

�
ξD(x, t)

ηD(x, t)

�
= −ich̄

�
O σ

σ O

�
∇
�
ξD(x, t)

ηD(x, t)

�
+ ch̄m

�
I O

O −I

��
ξD(x, t)

ηD(x, t)

�
, (9.257)

which reduces to two coupled equations of motion for these Weyl spinors in the Dirac repre-

sentation:

ih̄
∂

∂t
ξD(x, t) = −ich̄σ∇ηD(x, t) + ch̄mξD(x, t) , (9.258)

ih̄
∂

∂t
ηD(x, t) = −ich̄σ∇ξD(x, t) + ch̄mηD(x, t) . (9.259)

As discussed already in Fig. 7.1 we now take into account that the relativistic and the non-

relativistic energy scales are shifted against each other by the rest energy Mc2, which leads to

the ansatz

ψD(x, t) =

�
ξD(x, t)

ηD(x, t)

�
=

�
ξ̃D(x, t) e

−iMc2t/h̄

η̃D(x, t) e
−iMc2t/h̄

�
. (9.260)
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Thus the coupled equations of motion (9.258), (9.259) go over into

ih̄
∂

∂t
ξ̃D(x, t) = −ich̄σ∇η̃D(x, t) +

�
ch̄m−Mc2

�
ξ̃D(x, t) , (9.261)

ih̄
∂

∂t
η̃D(x, t) = −ich̄σ∇ξ̃D(x, t) +

�
−ch̄m−Mc2

�
η̃D(x, t) . (9.262)

Fixing the yet undetermined parameter m as being inversely proportional to the Compton wave

length (7.21) according to (9.87), the rest energy Mc2 turns out to appear only in the second

equation of motion:

ih̄
∂

∂t
ξ̃D(x, t) = −ich̄σ∇η̃D(x, t) , (9.263)

ih̄
∂

∂t
η̃D(x, t) = −ich̄σ∇ξ̃D(x, t)− 2Mc2η̃D(x, t) . (9.264)

Performing now the non-relativistic limes c → ∞ the kinetic energy of the Weyl spinor η̃D is

negligible in comparison with its rest energy, i.e.
����ih̄

∂

∂t
η̃D(x, t)

���� �
��Mc2η̃D(x, t)

�� , (9.265)

so that the Weyl spinor η̃D can approximately be expressed by the Weyl spinor ξ̃D:

η̃D(x, t) =
−ih̄

2Mc
σ∇ξ̃D(x, t) . (9.266)

Neglecting the temporal derivative in (9.264) thus leads to an adiabatic elimination of the Weyl

spinor η̃D(x, t), i.e. it now longer has an independent dynamics but its temporal evolution follows

quasi-instantaneously the corresponding one of the Weyl spinor ξ̃D(x, t). Note that similar

applications of an adiabatic elimination of degrees of freedom are ubiquitous in theoretical

physics:

• One prominent example is provided by the Born-Oppenheimer approximation in molec-

ular physics. It is based on recognizing the large difference between the electron mass

and the masses of atomic nuclei, and correspondingly the respective time scales of their

motion. Given the same amount of kinetic energy, the nuclei move much more slowly

than the electrons. Therefore, it is a valid assumption that the wave functions of atomic

nuclei and electrons in a molecule can be treated separately. This enables a separation of

the Hamiltonian operator into electronic and nuclear terms, where cross-terms between

electrons and nuclei are neglected, so that the two smaller and decoupled systems can be

solved more efficiently. As a result an effective electronic Hamilton operator for the elec-

tronic degrees of freedom is solved, where the positions of the nuclei are fixed quantities.

In the second step of the Born-Oppenheimer approximation the Schrödinger equation for

the nuclear motion is treated.

• Another important example is the semi-classical laser theory, where the electric field de-

scribed by the Maxwell theory couples to the matter degrees of freedom, which are dealt
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with quantum mechanically. For the laser it turns out that the electric field evolves on a

much larger time scale than the matter degrees of freedom. This allows to adiabatically

eliminate the matter degrees of freedom from the dynamics and obtain an effective evolu-

tion equation for the electric field, which describes the spontaneous emergence of coherent

laser light from an originally incoherent lamp light by increasing the pump power. This

adiabatic elimination of fast (stable) degrees of freedom in favour of obtaining a result-

ing order parameter equation for slow (unstable) degrees of freedom was recognized by

Hermann Haken in the realm of synergetics, which is a theory of self-organization. This

fundamental discovery leads to many fascinating applications in natural and, partially,

also in social sciences.

After this excursion we return to working out the non-relativistic limit of the Dirac equation.

Substituting (9.266) into (9.263) leads to a Schrödinger equation for the Weyl spinor ξ̃D(x, t):

ih̄
∂

∂t
ξ̃D(x, t) = − h̄2

2M
σk∂kσ

l∂lξ̃D(x, t) = − h̄2

4M

�
σk, σl

�
+
∂l∂kξ̃D(x, t) = − h̄2

2M
Δξ̃D(x, t) (9.267)

with applying the Clifford algebra of the Pauli matrices (9.2). In the exercises we work out

the non-relativistic limit of the Dirac equation in the presence of a minimal coupling to the

electromagnetic field in a more systematic way by performing the so-called Foldy-Wouthuysen

transformation. This leads then not to the Schrödinger equation (9.267) but to the Pauli

equation for the Weyl spinor ξ̃D(x, t) containing automatically the correct Landé factor gs = 2

for a point-like massive spin 1/2 particle. Note that both the proton and the neutron are also

massive spin 1/2 particles but measurements show that their respective Landé factors 2.79 and

- 1.91 deviate significantly from 2.0 which indicates that they are not point-like but composite

particles. Indeed, according to the standard model of elementary particle physics, each of these

nucleons consists of three quarks, which are point-like massive spin 1/2 particles according to

the present day knowledge.

Let us consider now the non-relativistic limit of the Dirac action (9.92), (9.96) in the Dirac

representation

A =
A

c

�
d4xψD(x) (iγ

µ
D∂µ −m)ψD(x) . (9.268)

As a first preparatory step we separate explicitly the respective temporal and spatial contribu-

tions:

A =
A

c

�
d4x

�
iψD(x, t)γ

01

c

∂

∂t
ψD(x, t) + iψD(x, t)γD∇ψD(x, t)−mψD(x, t)ψD(x, t)

�
.(9.269)

Then we take into account how the Dirac spinor decomposes into the Weyl spinors according

to (9.260) and the corresponding expression for the Dirac adjoint Dirac spinor following from

(9.102) and (9.240):

ψD(x, t) = ψ†
D(x, t)γ

0
D =

�
ξ̃†D(x, t)e

iMc2t/h̄,−η̃†D(x, t)e
iMc2t/h̄

�
. (9.270)
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Using in addition (9.87), (9.240), and (9.241) as well as (9.260) and (9.270), the Dirac action

(9.268) reduces to

A = A

�
dt

�
d3x

�
i

c

�
ξ̃†D(x, t)

∂ξ̃D(x, t)

∂t
+ η̃†D(x, t)

∂η̃D(x, t)

∂t

�

+i
�
ξ̃†D(x, t)σ∇η̃D(x, t) + η̃†D(x, t)σ∇ξ̃D(x, t)

�
+

2Mc

h̄
η̃†D(x, t)η̃D(x, t)

�
. (9.271)

If one now expresses the Weyl spinor η̃D according to (9.266) by the Weyl spinor ξ̃D and takes

into account the calculation rule (9.7), then (9.271) goes over in the non-relativistic limes c → ∞
into

A = A

�
dt

�
d3x

�
i

c
ξ̃†D(x, t)

∂ξ̃(x, t)

∂t
+

h̄

2Mc
ξ̃†D(x, t)Δξ̃D(x, t)

�
. (9.272)

Fixing the yet undetermined parameter A according to

α = ch̄ , (9.273)

then (9.272) reduces to the Schrödinger action for the Weyl spinor ξ̃D:

A =

�
dt

�
d3x

�
ih̄ ξ̃†D(x, t)

∂ξ̃D(x, t)

∂t
+

h̄2

2M
ξ̃†D(x, t)Δξ̃D(x, t)

�
. (9.274)

Furthermore, according to (9.87) and (9.273), we then conclude that the Dirac Lagrange density

in the Weyl representation (9.93) reads

L = ψ(x)
�
ih̄cγµ∂µ −Mc2

�
ψ(x) . (9.275)

And finally, inserting (9.260) and (9.266) into the conserved charge (9.201), we read off in the

non-relativistic limit c → ∞ that the yet undetermined parameter K has to be identified with

K = 1 , (9.276)

so that we obtain in the Dirac representation the conserved quantity expected for a Schrödinger

theory:

Q =

�
d3x ξ̃†D(x, t)ξ̃D(x, t) . (9.277)

Thus, we conclude that the conserved charge (9.201) of the Dirac theory reads

Q =

�
d3xψ†(x, t)ψ(x, t) . (9.278)
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9.14 Plane Waves

We now determine the fundamental solutions of the Dirac equation in the Weyl representation

(9.97), which reads by taking into account (9.87):
�
iγµ∂µ −

Mc

h̄

�
ψ(x) = 0 . (9.279)

One solution method relies on performing a plane wave ansatz for the Dirac spinor ψ(x), which

converts the differential equation (9.279) into an algebraic equation for the corresponding spinor

amplitudes. The latter would then have to be solved on the basis of the concrete form of the

Dirac matrices in the Weyl representation. In this section, however, we work out a different

solution method, which is group theoretically inspired. To this end we determine at first the

trivial plane wave solutions in the rest frame of the massive spin 1/2 particle and then we boost

them to a uniformly moving reference frame.

9.14.1 Rest Frame

In the rest frame of the massive spin 1/2 particle, the Dirac spinor can only depend on time t:

ψR(x) = ψ(t) . (9.280)

Inserting (9.280) in (9.279) leads to
�
iγ0 ∂

∂t
− Mc2

h̄

�
ψ(t) = 0 . (9.281)

Multiplying (9.281) with the operator (−iγ0∂/∂t−Mc2/h̄) and taking into account (γ0)2 = I
due to (9.94) then yields

�
−iγ0 ∂

∂t
− Mc2

h̄

��
iγ0 ∂

∂t
− Mc2

h̄

�
ψ(t) =

�
∂2

∂t2
+

�
Mc2

h̄

�2
�
ψ(t) = 0 . (9.282)

Thus, we obtain the two solutions

ψ(t) = ψ e∓iMc2t/h̄ , (9.283)

where the spinor amplitude ψ satisfies due to (9.281) and (9.283) the algebraic equation

�
±γ0 − I

�
ψ = 0 . (9.284)

Taking into account the explicit form of the Dirac matrix γ0 in the Weyl representation (9.94),

then (9.284) reduces to

(γ0 − I)ψ =

��
O I

I O

�
−
�

I O

O I

��
ψ =

�
−I I

I −I

�
ψ = 0 , (9.285)

(−γ0 − I)ψ =

��
O −I

−I O

�
−
�

I O

O I

��
ψ =

�
−I −I

−I −I

�
ψ = 0 . (9.286)
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Assuming that χ(+1/2) and χ(−1/2) are two orthonormal bi-spinors, i.e.

χ†(λ)χ(λ�) = δλλ� , (9.287)

the two solutions of (9.285) are given by

ψ(1) =
1√
2

�
χ(1/2)

χ(1/2)

�
, ψ(2) =

1√
2

�
χ(−1/2)

χ(−1/2)

�
. (9.288)

Then we construct bi-spinors χc(±1/2), which are charge conjugated with respect to χ(±1/2),

by defining analogous to (9.172) and (9.182)

χc

�
±1

2

�
= cχ∗

�
±1

2

�
. (9.289)

They turn out to be orthonormal as well due to (9.189), (9.287), and (9.289):

χc †(λ)χc(λ�) =
�
χc †(λ)χc(λ�)

�T
=
�
χT (λ) c†cχ∗(λ�)

�T
= χ†(λ�)χ(λ) = δλλ� . (9.290)

With this we obtain also the two solutions of (9.286) according to

ψ(3) =
1√
2

�
χc(1/2)

−χc(1/2)

�
, ψ(4) =

1√
2

�
χc(−1/2)

−χc(−1/2)

�
. (9.291)

We note that ψ(3) and ψ(4) just represent the charge conjugated Dirac spinors of ψ(1) and ψ(2).

Namely the Dirac adjoint Dirac spinors

ψ
(1,2)

= ψ(1,2)†γ0 (9.292)

read explicitly with (9.288)

ψ
(1,2)

=
1√
2

�
χ†
�
±1

2

�
,χ†

�
±1

2

���
O I

I O

�
=

1√
2

�
χ†
�
±1

2

�
,χ†

�
±1

2

��
, (9.293)

so the charge conjugation yields due to (9.172), (9.182), (9.289), (9.291) and (9.293)

ψ
�(1,2)
C = Cψ

(1,2)T
=

�
c O

O −c

�
1√
2

�
χ∗(±1/2)

χ∗(±1/2)

�
=

1√
2

�
cχ∗(±1/2)

−cχ∗(±1/2)

�
= ψ(3,4) . (9.294)

The finding (9.294) justifies a posteriori to define the charge conjugation of bi-spinors according

to (9.289).

9.14.2 Boost to Uniformly Moving Reference Frame

Now we boost the fundamental solutions (9.283), (9.288), and (9.291) of the Dirac equation in

the rest frame to a uniformly moving reference frame:

ψ(1,2) e−iMc2t/h̄ −→ ψ(1,2)
p (x) = ψ(1,2)

p e−ipx/h̄ , (9.295)

ψ(3,4) e+iMc2t/h̄ −→ ψ(3,4)
p (x) = ψ(3,4)

p e+ipx/h̄ , (9.296)
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where the momentum four-vector is transferred from the rest frame (9.27) to the uniformly

moving reference frame (9.28). Despite of such a boost transformation a scalar product remains

invariant, so the time-like component of the boosted momentum four-vector (6.16) is fixed by

its spatial components according to

pµR pRµ = pµ pµ =⇒ M2c2 = (p0)2 − p2 =⇒ Ep = p(0)c =
�

p2c2 +M2c4 . (9.297)

Note that this represents precisely the relativistic energy-momentum dispersion relation. Fur-

thermore, the corresponding spinor amplitudes ψ
(ν)
p for ν = 1, 2, 3, 4 in the uniformly moving

reference frame emerge from boosting the spinor amplitudes ψ(ν) in the rest frame:

ψ
(ν)
P = D(B)ψ(ν) . (9.298)

Here the boost representation in the space of the Dirac spinors from (9.13), (9.14), (9.46),

(9.47), and (9.101) reads in the Weyl representation:

D(B) =

�
D(1/2,0)(B) O

O D(0,1/2)(B)

�
=

�
e−σξ/2 O

O eση/2

�
=

� �
pσ
Mc

O

O
�

pσ̃
Mc

�
. (9.299)

Note that the spinor representations for boosts (9.46) and (9.47) represent here efficient shortcut

notations for the more involved concrete expressions (9.39) and (9.43). Thus, applying (9.299)

to both (9.288) and (9.291) yields

ψ(1,2)
p = D(B)ψ(1,2) =

1√
2

� �
pσ
Mc

χ
�
±1

2

�
�

pσ̃
Mc

χ
�
±1

2

�
�

, (9.300)

ψ(3,4)
p = D(B)ψ(3,4) =

1√
2

� �
pσ
Mc

χc
�
±1

2

�

−
�

pσ̃
Mc

χc
�
±1

2

�
�

. (9.301)

With the side calculation following from (6.21) and (9.80)

(pσ)(pσ̃) = pµσ
µpν σ̃

ν =
1

2
pµpν(σ

µσ̃ν + σν σ̃µ) = pµpνg
µνI = p2I = (Mc)2I , (9.302)

we see then explicitly that we have thus constructed solutions of the Dirac equation (9.279).

At first we conclude from (9.295)

�
iγµ∂µ −

Mc

h̄

�
ψ(1,2)
p (x) = 0 =⇒ (γµpµ −Mc)ψ(1,2)

p = 0 (9.303)

From (9.94), (9.300), and (9.302) follows then indeed:

�
O pσ

pσ̃ O

�
1√
2

� �
pσ
Mc

χ(±1
2
)�

pσ̃
Mc

χ(±1
2
)

�
=

Mc√
2

�
pσ
Mc

�
pσ̃
Mc

χ(±1
2
)

pσ̃
Mc

�
pσ
Mc

χ(±1
2
)

�

=
Mc√
2




�
pσ
Mc

�
(pσ)(pσ̃)
(Mc)2

χ(±1
2
)�

pσ̃
Mc

�
(pσ̃)(pσ)
(Mc)2

χ(±1
2
)


 =

�
Mc I O

O Mc I

�
1√
2

� �
pσ
Mc

χ(±1
2
)�

pσ̃
Mc

χ(±1
2
)

�
. (9.304)
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In a similar way we read off from (9.296)
�
iγµ∂µ −

Mc

h̄

�
ψ(3,4)
p (x) = 0 =⇒ (γµPµ +Mc)ψ(3,4)

p = 0 . (9.305)

And from (9.94), (9.301), and (9.302) we get then indeed:

�
O pσ

pσ̃ O

�
1√
2

� �
pσ
Mc

χc(±1
2
)

−
�

pσ̃
Mc

χc(±1
2
)

�
=

Mc√
2

�
− pσ

Mc

�
pσ̃
Mc

χc(±1
2
)

+ pσ̃
Mc

�
pσ
Mc

χc(±1
2
)

�

=
Mc√
2


 −

�
pσ
Mc

�
(pσ)(pσ̃)
(Mc)2

χc(±1
2
)

+
�

pσ̃
Mc

�
(pσ̃)(pσ)
(Mc)2

χc(±1
2
)


 = −

�
Mc I O

O Mc I

�
1√
2

� �
pσ
Mc

χc(±1
2
)

−
�

pσ̃
Mc

χc(±1
2
)

�
. (9.306)

We note that ψ
(3)
p and ψ

(4)
p just represent the charge-conjugate of the Dirac spinors ψ

(1)
p and

ψ
(2)
p . At first, we determine the Dirac adjoint Dirac spinors

ψ
(1,2)

p = ψ(1,2)†
p γ0 =

1√
2

�
χ†
�
±1

2

��
pσ

Mc
,χ†

�
±1

2

��
pσ̃

Mc

��
O I

I O

�

=
1√
2

�
χ†
�
±1

2

��
pσ̃

Mc
,χ†

�
±1

2

��
pσ

Mc

�
. (9.307)

In addition, we summarize (9.185), (9.186) and conclude from (9.189)

c−1σµc = (σ̃µ)T =⇒ c(σµ)T c−1 = σ̃µ , c(σ̃µ)T c−1 = σµ . (9.308)

The latter two relations can be generalized to any function of Pauli matrices f(σµ) or f(σ̃µ),

which has a Taylor series:

cf(σµ)T c−1 = f(σ̃µ) , cf(σ̃µ)T c−1 = f(σµ) . (9.309)

The charge conjugation of the Dirac spinors ψ
(1)
P and ψ

(2)
P then leads to due to (9.172), (9.182),

(9.287), (9.307), and (9.309):

ψ
(1,2)
C = Cψ

(1,2)T
=

�
c O

O −c

�
1√
2




�
pσ̃
Mc

T

χ∗(±1
2
)

�
pσ
Mc

T
χ∗(±1

2
)


 =

1√
2

�
c
�

pσ̃
Mc

c−1 cχ∗(±1
2
)

−c
�

pσ
Mc

c−1 cχ∗(±1
2
)

�

=
1√
2

� �
pσ
Mc

χc(±1
2
)

−
�

pσ̃
Mc

χc(±1
2
)

�
= ψ(3,4)

p . (9.310)

The spinor amplitudes (9.300) and (9.301) can now be written as

ψ(ν)
p =

1√
2




�
pσ
M

χ
�

(−1)ν+1

2

�
�

pσ̃
Mc

χ
�

(−1)ν+1

2

�

 ; ν = 1, 2 (9.311)

ψ(ν)
p =

1√
2




�
pσ
Mc

χc
�

(−1)ν+1

2

�

−
�

pσ̃
Mc

χc
�

(−1)ν+1

2

�

 ; ν = 3, 4 . (9.312)
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9.14.3 Orthonormality Relations

After having obtained the plane wave solutions, we embark now upon determining their respec-

tive orthonormality relations. To this end we start with mentioning the adjoint of the spinor

amplitudes (9.311):

ψ(ν)†
p =

1√
2

�
χ†
�
(−1)ν+1

2

��
pσ

Mc
,χ†

�
(−1)ν+1

2

��
pσ̃

Mc

�
; ν = 1, 2 , (9.313)

ψ(ν)†
p =

1√
2

�
χc †

�
(−1)ν+1

2

��
pσ

Mc
,−χc †

�
(−1)ν+1

2

��
pσ̃

Mc

�
; ν = 3, 4 . (9.314)

Furthermore, we remark that the spinor amplitudes ψ
(ν)
p for ν = 1, 2 and ψ

(ν)
−p for ν = 3, 4

satisfy the following orthonormality relations:

1. case: ν = 1, 2 ; ν � = 1, 2:

ψ(ν)†
p ψ(ν�)

p =
1

2

�
χ†
�
(−1)ν+1

2

��
pσ

Mc
,χ†

�
(−1)ν+1

2

��
pσ̃

Mc

�


�
pσ
Mc

χ( (−1)ν
�+1

2
)�

pσ̃
Mc

χ( (−1)ν
�+1

2
)


 (9.315)

= χ†
�
(−1)ν+1

2

�
pσ + pσ̃

2Mc
χ

�
(−1)ν

�+1

2

�
=

Ep

Mc2
χ†
�
(−1)ν+1

2

�
χ

�
(−1)ν

�+1

2

�
=

Ep

Mc2
δνν� ,

2. case: ν = 3, 4 ; ν � = 3, 4:

ψ
(ν)†
−p ψ

(ν�)
−p =

1

2

�
χc

�
(−1)ν+1

2

��
pσ̃

Mc
,−χc†

�
(−1)ν+1

2

��
pσ

Mc

�


�
pσ̃
Mc

χc( (−1)ν
�+1

2
)

−
�

pσ
Mc

χc( (−1)ν
�+1

2
)


 (9.316)

= χc†
�
(−1)ν+1

2

�
pσ̃ + pσ

2Mc
χc

�
(−1)ν

�+1

2

�
=

Ep

Mc2
χc†

�
(−1)ν+1

2

�
χc

�
(−1)ν

�+1

2

�
=

Ep

Mc2
δνν� ,

3. case: ν = 1, 2 ; ν � = 3, 4:

ψ(ν)†
p ψ

(ν�)
−p =

1

2

�
χ†
�
(−1)ν+1

2

��
pσ

Mc
,χ†

�
(−1)ν+1

2

��
pσ̃

Mc

�


�
pσ̃
Mc

χc( (−1)ν
�+1

2
)

−
�

pσ
Mc

χc( (−1)ν
�+1

2
)




=
1

2
χ†
�
(−1)ν+1

2

���
(pσ)(pσ̃)

(Mc)2
−
�

(pσ̃)(pσ)

(Mc)2

�
χc

�
(−1)ν

�+1

2

�
= 0 , (9.317)

4. case ν = 3, 4 ; ν � = 1, 2:

ψ
(ν)†
−p ψ(ν�)

p =
1

2

�
χc†

�
(−1)ν+1

2

��
pσ̃

Mc
,−χc†

�
(−1)ν+1

2

��
pσ

Mc

�


�
pσ
Mc

χ( (−1)ν
�+1

2
)�

pσ̃
Mc

χ( (−1)ν
�+1

2
)




=
1

2
χc†

�
(−1)ν+1

2

���
(pσ̃)(pσ)

(Mc)2
−
�

(pσ)(pσ̃)

(Mc)2

�
χ

�
(−1)ν

�+1

2

�
= 0 . (9.318)
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The orthonormality relations (9.315)–(9.318) can be summarized as follows

ψ(ν)†
ενp ψ(ν�)

εν�p
=

Ep

Mc2
δνν� , (9.319)

where have introduced the abbreviation

εν =

�
+1 ; ν = 1, 2

−1 ; ν = 3, 4
. (9.320)

With this, we can check whether the fundamental solutions

ψ(ν)
p (x, t) = ψ(ν)

p e−
i
h̄
εν(Ept−px) (9.321)

fulfill orthonormality relations. Taking into account (9.297) and (9.319) we obtain from (9.321)
�

d3xψ(ν)†
p (x, t)ψ

(ν�)
p� (x, t) = ψ(ν)†

p ψ
(ν�)
p� e

i
h̄
(εν�Ep�−ενEp)t(2πh̄)3δ(ενp− εν�p

�) (9.322)

= (2πh̄)3ψ(ν)†
p ψ(ν�)

pενεν�
e

i
h̄
(εν�Eεν�ενp−ενEp)tδ(p� − ενεν�p) =

(2πh̄)3Ep

Mc2
δνν�δ(p

� − p) . (9.323)

If we now replace (9.321) with

ψ(ν)
p (x, t) =

�
Mc2

(2πh̄)3Ep

ψ(ν)
p e−

i
h̄
�ν(Ept−px) , (9.324)

then the fundamental solutions of the Dirac equation satisfy the orthonormality relations
�

d3xψ(ν)†
p (x, t)ψ

(ν�)
p� (x, t) = δνν� δ(p− p�) . (9.325)

9.14.4 Dirac Representation

For the sake of completeness, we finally determine the fundamental solutions (9.325) in the

Dirac representation. To this end we have to calculate at first the spinor amplitudes (9.288)

and (9.291) in the rest system in the Dirac representation:

ψ
(1,2)
D = SDψ

(1,2) =
1√
2

�
I I

−I I

�
1√
2

�
χ(±1

2
)

χ(±1
2
)

�
=

�
χ(±1

2
)

0

�
, (9.326)

ψ
(3,4)
D = SDψ

(3,4) =
1√
2

�
I I

−I I

�
1√
2

�
χc(±1

2
)

−χc(±1
2
)

�
=

�
0

−χc(±1
2
)

�
. (9.327)

By boosting from the rest frame into the uniformly moving reference frame we then get

ψ
(1,2)
pD = SDψ

(1,2)
p =

1√
2

�
I I

−I I

�
1√
2

� �
pσ
Mc

χ(±1
2
)�

pσ̃
Mc

χ(±1
2
)

�
=

1

2




��
pσ
Mc

+
�

pσ̃
Mc

�
χ(±1

2
)

�
−
�

pσ̃
Mc

+
�

pσ
Mc

�
χ(±1

2
)




=
1

2




�
pσ+Mc√

2Mc(p0+Mc)
+ pσ̃+Mc√

2Mc(p0+Mc)

�
χ(±1

2
)

�
− pσ+Mc√

2mc(p0+Mc)
+ pσ̃+Mc√

2Mc(p0+Mc)

�
χ(±1

2
)


 =




�
Ep+Mc2

2Mc2
χ(±1

2
)

σpc√
2Mc2(Ep+Mc2)

χ(±1
2
)


 (9.328)
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and, correspondingly,

ψ
(3,4)
pD = SDψ

(3,4)
p =

1√
2

�
I I

−I I

�
1√
2

� �
pσ
Mc

χc(±1
2
)

−
�

pσ̃
Mc

χc(±1
2
)

�
=

1

2




��
pσ
Mc

−
�

pσ̃
Mc

�
χc(±1

2
)

�
−
�

pσ
Mc

−
�

pσ̃
Mc

�
χc(±1

2
)




=
1

2




�
pσ+Mc√

2Mc(p0+Mc)
− pσ̃+Mc√

2Mc(p0+Mc)

�
χc(±1

2
)

�
− pσ+Mc√

2Mc(p0+Mc)
− pσ̃+Mc√

2Mc(p0+Mc)

�
χc(±1

2
)


 =




−σpc√
2Mc2(Ep+Mc2)

χc(±1
2
)

−
�

Ep+Mc2

2M2 χc(±1
2
)


 . (9.329)

Note that the results (9.328) and (9.329) are obtained in the exercises in a different way by

invoking a Foldy-Wouthuysen transformation. Furthermore, we recognize in the non-relativistic

limes c → ∞ that the lower or upper components of the Dirac spinor are small at ψ
(1,2)
PD or ψ

(3,4)
PD

in (9.328) or (9.329), respectively.

9.15 Helicity Spinors

In the considerations of the previous section, the two orthonormal bi-spinors χ(+1/2) and

χ(−1/2) have not yet been specified. It is now time to catch up with this deficiency and to

make a particular choice for those orthonormal bi-spinors. In the following we introduce even

two possible choices, which depend on the quantization axis for the spin 1/2.

9.15.1 Rest Frame

At first, we consider spin 1/2 particles in the rest frame, where the spin is quantized with

respect to the z-axis. In this case we define the orthonormal bi-spinors according to

χ

�
+
1

2

�
=

�
1

0

�
, χ

�
−1

2

�
=

�
0

1

�
, (9.330)

as they represent the orthonormal eigenvectors of the generator D(L3) = σ3/2 for a rotation

around the z-axis:

1

2
σ3 χ

�
±1

2

�
= ±1

2
χ

�
±1

2

�
. (9.331)

From (9.188), (9.289), and (9.330) we then get the explicit form of the charge conjugated

bi-spinors:

χc

�
+
1

2

�
=

�
0 −1

1 0

��
1

0

�
=

�
0

1

�
, (9.332)

χc

�
−1

2

�
=

�
0 −1

1 0

��
0

1

�
=

�
−1

0

�
. (9.333)
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Accordingly, the charge conjugated bi-spinors satisfy the eigenvalue problem

1

2
σ3 χc

�
±1

2

�
= ∓1

2
χc

�
±1

2

�
. (9.334)

A comparison of (9.331) with (9.334) shows that the eigenvalues of χ(±1/2) and χc(±1/2) are

just exchanged.

The Dirac spinors (9.288) and (9.291) formed with the bi-spinors χ(±1/2) and χc(±1/2) in

the rest system of the particle turn out to represent eigenvectors of the generator D(L3) of the

rotation about the z-axis:

D(L3)ψ
(ν) =

(−1)ν+1

2
ψ(ν) ; ν = 1, 2 , D(L3)ψ

(ν) =
(−1)ν

2
ψ(ν) ; ν = 3, 4 . (9.335)

Namely, taking into account (9.120), the following holds:

�
1
2
σ3 0

0 1
2
σ3

�
1√
2

�
χ(±1

2
)

χ(±1
2
)

�
=

1√
2

�
1
2
σ3 χ(±1

2
)

1
2
σ3 χ(±1

2
)

�
= ±1

2

1√
2

�
χ(±1

2
)

χ(±1
2
)

�
, (9.336)

�
1
2
σ3 0

0 1
2
σ3

�
1√
2

�
χc(±1

2
)

−χc(±1
2
)

�
=

1√
2

�
1
2
σ3 χc(±1

2
)

−1
2
σ3 χc(±1

2
)

�
= ∓1

2

1√
2

�
χc(±1

2
)

−χc(±1
2
)

�
. (9.337)

9.15.2 Helicity Operator

In the following we embark on considering spin 1/2 particles, whose spin is quantized with

respect to the direction of the respective particle momentum p. To this end we construct

the corresponding helicity spinors analogous to Section 8.10, where the polarisation vectors of

circularly polarised plane waves were determined in the realm of electrodynamics.

To this end we determine at first the helicity operator (6.185) in the space of bi-spinors, where

the spin vector is given by D(L) = σ/2 due to (9.120):

h(p) =
D(L)p

p
=

σp

2p
(9.338)

Taking into account the explicit form of the Pauli matrices (9.8) this yields

h(p) =
1

2p

�
px

�
0 1

1 0

�
+ py

�
0 −i

i 0

�
+ pz

�
1 0

0 −1

��
=

1

2p

�
pz px − ipy

px + ipy −pz

�
.(9.339)

Now we define the helicity spinors χh(p,±1/2) as eigenvectors of the helicity operator (9.338)

with the eigenvalues ±1/2:

h(p) χh

�
p,±1

2

�
= ±1

2
χh

�
p,±1

2

�
. (9.340)
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From (9.330) and (9.338) follows then that the bi-spinors χ(±1/2) are eigenvectors of the

helicity operator h(p ez) to the eigenvalue ±1/2:

h(p ez)χ

�
+
1

2

�
=

1

2

�
1 0

0 −1

��
1

0

�
=

1

2
χ

�
+
1

2

�
, (9.341)

h(p ez)χ

�
−1

2

�
=

1

2

�
1 0

0 −1

��
0

1

�
= −1

2
χ

�
−1

2

�
. (9.342)

Thus, due to (9.340), we then conclude

χh

�
p ez,±

1

2

�
= χ

�
±1

2

�
. (9.343)

9.15.3 Uniformly Moving Rest Frame

Now we consider a uniformly moving rest frame, where the spin is quantized with respect to the

momentum vector, where p is described with the help of spherical coordinates p, φ ∈ [0, 2π), θ ∈
[0, π):

p = p




sin θ cosφ

sin θ sinφ

cos θ


 . (9.344)

Then we know that the rotation matrix (8.128) determined in (8.131) yields (9.344) analogous

to (8.132):

R(θ,φ)pez = p . (9.345)

Therefore, we determine the rotation matrix D(R(θ,φ) in the space of bi-spinors, where first

the rotation D(Ry(θ)) and then the rotation D(Rz(φ)) is performed:

D(R(θ,φ)) = D(Rz(φ)) D(Ry(θ)) . (9.346)

The individual rotation matrices follow from (9.8), (9.10), (9.11), and (9.21):

D(Rz(φ)) = e−iD(L3)φ = e−
i
2
σ3φ = cos

�
φ

2

�
I − i sin

�
φ

2

�
σ3

= cos

�
φ

2

��
1 0

0 1

�
− i sin

�
φ

2

��
1 0

0 −1

�
=

�
e−iφ/2 0

0 eiφ/2

�
, (9.347)

D(Ry(θ)) = e−iD(L2)θ = e−
i
2
σ2θ = cos

�
θ

2

�
I − i sin

�
θ

2

�
σ2

= cos

�
θ

2

��
1 0

0 1

�
− i sin

�
θ

2

��
0 −i

i 0

�
=

�
cos

�
θ
2

�
− sin

�
θ
2

�

sin
�
θ
2

�
cos

�
θ
2

�
�

. (9.348)
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Thus, the resulting rotation matrix (9.346) is given by:

D(R(θ,φ)) =

�
cos

�
θ
2

�
e−iφ/2 − sin

�
θ
2

�
e−iφ/2

sin
�
θ
2

�
eiφ/2 cos

�
θ
2

�
eiφ/2

�
. (9.349)

Now we map the bi-spinors χ(±1/2), which describe a quantization of the spin 1/2 with respect

to the z-axis, with the rotation matrix D(R(θ,φ) and obtain the helicity bi-spinors, which

describe a spin quantization with respect to the direction of the momentum p:

χh

�
p,±1

2

�
= D(R(θ,φ))χ

�
±1

2

�
. (9.350)

With the explicit form of the dual spinors (9.330) and the rotation matrix (9.349), the helicity

dual spinors are then:

χh

�
p,+

1

2

�
=

�
cos

�
θ
2

�
e−iφ/2

sin
�
θ
2

�
eiφ/2

�
, χh

�
p,−1

2

�
=

�
− sin

�
θ
2

�
e−iφ/2

cos
�
θ
2

�
eiφ/2

�
. (9.351)

In special case p = p ez, i.e. θ = φ = 0, the result (9.351) reduces to (9.330) according to

(9.343). Furthermore, the charge conjugation of the helicity spinors χh(p,±1/2) leads to:

χc
h

�
p,+

1

2

�
= cχ∗

h

�
p,+

1

2

�
=

�
0 −1

1 0

��
cos

�
θ
2

�
eiφ/2

sin
�
θ
2

�
e−iφ/2

�
=

�
− sin

�
θ
2

�
e−iφ/2

cos
�
θ
2

�
eiφ/2

�
, (9.352)

χc
h

�
p,−1

2

�
= cχ∗

h

�
p,−1

2

�
=

�
0 −1

1 0

��
− sin

�
θ
2

�
eiφ/2

cos
�
θ
2

�
e−iφ/2

�
=

�
− cos

�
θ
2

�
e−iφ/2

− sin
�
θ
2

�
eiφ/2

�
.(9.353)

In case p = p ez, i.e. θ = φ = 0, (9.352) and (9.353) reduce to (9.330):

χc
h

�
p ez,±

1

2

�
= χc

�
±1

2

�
. (9.354)

Furthermore, we remark that the mapping of the charge conjugated bi-spinors (9.332) with the

rotation matrix (9.349) leads to the charge conjugated helicity spinors (9.352) and (9.353):

χc
h

�
p,±1

2

�
= D(R(θ,φ))χc

�
±1

2

�
. (9.355)

As a crosscheck we also verify that the constructed helicity spinors χh(p,±1/2) are, indeed,

eigenvectors of the helicity operator h(p) from (9.339) with the eigenvalue ±1
2
:

h(p)χh

�
p,+

1

2

�
=

1

2

�
cos θ sin θ e−iφ

sin θ eiφ − cos θ

��
cos

�
θ
2

�
e−iφ/2

sin
�
θ
2

�
eiφ/2

�

=
1

2

�
cos

�
θ
2

�
e−iφ/2

sin
�
θ
2

�
eiφ/2

�
=

1

2
χh

�
p,+

1

2

�
, (9.356)

h(p)χh

�
p,−1

2

�
=

1

2

�
cos θ sin θ e−iφ

sin θ eiφ − cos θ

��
− sin

�
θ
2

�
e−iφ/2

cos
�
θ
2

�
e−iφ/2

�

=
1

2

�
sin

�
θ
2

�
e−iφ/2

− cos
�
θ
2

�
eiφ/2

�
= −1

2
χh

�
p,−1

2

�
. (9.357)
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Furthermore, we show that the constructed charge conjugated helicity spinors χc
h(p,±1/2) are

eigenvectors of the helicity operator h(p) with the eigenvalue ∓1/2:

h(p)χc
h

�
p,+

1

2

�
=

1

2

�
cos θ sin θ e−iφ

sin θ eiφ − cos θ

��
− sin

�
θ
2

�
e−iφ/2

cos
�
θ
2

�
eiφ/2

�

=
1

2

�
sin

�
θ
2

�
e−iφ/2

− cos
�
θ
2

�
eiφ/2

�
= −1

2
χc
h

�
p,+

1

2

�
, (9.358)

h(p)χc
h

�
p,−1

2

�
=

1

2

�
cos θ sin θe−iφ

sin θeiφ − cos θ

��
− cos

�
θ
2

�
e−iφ/2

− sin
�
θ
2

�
eiφ/2

�

=
1

2

�
− cos

�
θ
2

�
e−iφ/2

− sin
�
θ
2

�
e+iφ/2

�
=

1

2
χc
h

�
p,−1

2

�
. (9.359)

Now we come back to the Dirac spinors (9.300) and (9.301) in the uniformly moving reference

frame, where χ(±1/2) and χc(±1/2) denoted two sets of orthonormal bi-spinors, which are

charge conjugated with respect to each other. Whereas we have discussed in the two previous

subsections the case of choosing the z-axis as the quantization axis, we come now to another

appropriate physical choice to identify χ(±1/2) and χc(±1/2). Namely we assume that the spin

is quantized with respect to the direction of motion p/p, which amounts to identifying χ(±1/2)

and χc(±1/2) with the helicity spinors χh(p,±1/2) and χc
h(p,±1/2), yielding concretely

ψ(1,2)
p =

1√
2

� �
pσ
Mc

χh

�
p,±1

2

�
�

pσ̃
Mc

χh

�
p,±1

2

�
�

, (9.360)

ψ(3,4)
p =

1√
2

� �
pσ
Mc

χc
h

�
p,±1

2

�

−
�

pσ̃
Mc

χc
h

�
p,±1

2

�
�

. (9.361)

In order to justify this choice we define the helicity operator in the space of Dirac spinors due

to (6.185) and (9.120):

H(p) =
D(L)p

p
=

1

2p

�
σp O

O σp

�
=

�
h(p) O

O h(p)

�
. (9.362)

According to (9.36), (9.45), and (9.338) as well as the Lie algebra of the Pauli matrices (9.5),

the helicity operator h(p) in the space of bi-spinors commutates with the boost representation

in the space of bi-spinors:

��
pσ

Mc
, h(p)

�

−
=

��
pσ̃

Mc
, h(p)

�

−
= 0 . (9.363)

Therefore, the Dirac spinors (9.360) and (9.361) are eigenstates of the helicity operator

H(p)ψ(ν)
p = ην ψ

(ν)
p (9.364)
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with the eigenvalues

ην =
(−1)ν+1

2
; ν = 1, 2 , ην =

(−1)ν

2
; ν = 3, 4 . (9.365)

In detail, due to (9.283), (9.284), (9.339), (9.362), and (9.363) the following applies for ν = 1, 2

H(p)ψ(ν)
p =

�
h(p) O

O h(p)

�
1√
2

��
pσ
Mc

χh(p,±1
2
)�

pσ̃
Mc

χh(p,±1
2
)

�
=

±1

2
√
2

��
pσ
Mc

χh(p,±1
2
)�

pσ̃
Mc

χh(p,±1
2
)

�
= ±1

2
ψ(ν)
p ,

and, correspondingly, we have for ν = 3, 4

H(p)ψ(ν)
p =

�
h(p) O

O h(p)

�
1√
2

� �
pσ
Mc

χc
h(p,±1

2
)

−
�

pσ̃
Mc

χc
h(p,±1

2
)

�
=

∓1

2
√
2

� �
pσ
Mc

χc
h(p,±1

2
)

−
�

pσ̃
Mc

χc
h(p,±1

2
)

�
= ∓1

2
ψ(ν)
p .

Thus, in conclusion, we have determined in a group theoretically inspired approach the plane

wave solutions of the Dirac equation (9.324), where the corresponding Dirac spinor amplitudes

are given by (9.360) and (9.361). This result will turn out to be indispensable for the subsequent

canonical field quantization of the Dirac theory.

9.16 Canonical Field Quantisation

In order to determine the Hamiltonian formulation of classical field theory from the Lagrangian

formulation, one has to find at first the momentum fields, which are canonically conjugated to

the independent field degrees of freedom. In case of the Dirac field, the following canonically

conjugated momentum fields are obtained for the Dirac spinor ψ(x, t) and the Dirac adjoint

Dirac spinor ψ(x, t), respectively:

π(x, t) =
δA

δ
�

∂ψ(x,t)
∂t

� =
∂L

∂
�

∂ψ(x,t)
∂t

� = ih̄ψ(x, t)γ0 = ih̄ψ†(x, t) , (9.366)

π(x, t) =
δA

δ
�

∂ψ(x,t)
∂t

� =
∂L

∂
�

∂ψ(x,t)
∂t

� = 0 . (9.367)

Note that the last equality in (9.366) follows from taking into account (9.102). Thus, in the

Hamiltonian formulation of the Dirac theory, one can consider ψ(x, t) and π(x, t) or, equiva-

lently, ψ(x, t) and ψ†(x, t) as the independent fields.

And, according to the Noether theorem being explored and applied to the Dirac field in the

Appendix, any conserved physical quantity of the Dirac theory turns out to be bilinear in these

independent fields. Namely, due to the sandwich principle, each conserved quantity follows

from a spatial integral over the respective first-quantized operator, which is multiplied with

ψ†(x, t) from the left and ψ(x, t) from the right. Indeed, the charge of the Dirac field is given
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by (9.278) and analogous expressions also hold for the energy, the momentum, and the helicity

of the Dirac field:

E =

�
d3xψ†(x, t)HD(x)ψ(x, t) , (9.368)

P =

�
d3xψ†(x, t)

h̄

i
∇ψ(x, t) , (9.369)

h =

�
d3xψ†(x, t)

�
σ/2 O

O σ/2

�
h̄∇/i

|h̄∇/i| ψ(x, t) . (9.370)

Note that the Dirac Hamiltonian HD(x) was already defined in (9.248) and reduces due to

(9.87) to

HD(x) = −ich̄α∇+Mc2β . (9.371)

Furthermore, we have used in (9.370) that the helicity (6.185) stems from the generators of the

rotations (9.120) in the space of Dirac spinors.

In a canonical quantization of the Dirac field the independent fields ψ(x, t) and π(x, t) or ψ(x, t)

and ψ†(x, t) of the Hamilton field theory become field operators ψ̂(x, t) and π̂(x, t) or ψ̂(x, t)

and ψ̂†(x, t). Since a bosonic quantisation of the Dirac field turns out to violate microcausality

and, thus, leads inevitably to contradictions, one has to perform a fermionic quantisation.

Therefore, the following equal-time anti-commutator algebra is required:

�
ψ̂α(x, t), ψ̂β(x

�, t)
�
+
= [π̂α(x, t), π̂β(x

�, t)]+ = 0 ,
�
ψ̂α(x, t), π̂β(x

�, t)
�
+
= ih̄δαβδ(x− x�) ,(9.372)

where α, β denote the spinorial components. Due to the definition of the momentum field in

(9.366) the anti-commutator algebra (9.372) reduces to

�
ψ̂α(x, t), ψ̂β(x

�, t)
�
+
=
�
ψ̂†
α(x, t), ψ̂

†
β(x

�, t)
�
+
= 0 ,

�
ψ̂α(x, t), ψ̂

†
β(x

�, t)
�
+
= δαβδ(x− x�) . (9.373)

Thus, the conserved quantities of the first quantized Dirac theory, i.e. the charge (9.278), the

energy (9.368), the momentum (9.369), and the helicity (9.370), become second quantized

operators due to the canonical field quantisation:

Q̂ =

�
d3x ψ̂†(x, t)ψ̂(x, t) , (9.374)

Ĥ =

�
d3x ψ̂†(x, t)HD(x)ψ̂(x, t) , (9.375)

P̂ =

�
d3x ψ̂†(x, t)

h̄

i
∇ ψ̂(x, t) , (9.376)

ĥ =

�
d3x ψ̂†(x, t)

�
σ/2 O

O σ/2

�
h̄∇/i

|h̄∇/i| ψ̂(x, t) . (9.377)

In order to determine the Heisenberg equations of motion (3.62), one needs to take into account

both the first and the second quantized Hamilton operator (9.371) and (9.376) as well as to
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apply the calculation rule (3.94). With this the Heisenberg equations of motion of the field

operators ψ̂(x, t) and ψ̂†(x, t) result in

ih̄
∂ψ̂(x, t)

∂t
=

�
ψ̂(x, t), Ĥ

�
−
= HD(x)ψ̂(x, t) =

�
−ich̄α∇+Mc2β

�
ψ̂(x, t) , (9.378)

ih̄
∂ψ̂†(x, t)

∂t
=

�
ψ̂†(x, t), Ĥ

�
−
= −

�
HD(x)ψ̂(x, t)

�†
=
�
−ich̄α∇−Mc2β

�
ψ̂†(x, t) . (9.379)

Thus, the field operators ψ̂(x, t) and ψ̂†(x, t) satisfy the Dirac equation (9.247) and the adjoint

Dirac equation, respectively.

9.17 Decomposition Into Plane Waves

The field operator ψ̂(x, t) is now decomposed with respect to the fundamental plane wave

solutions ψ
(ν)
p (x, t) of the Dirac equation defined in (9.324). The expansion coefficients in this

decomposition are then operators of second quantisation:

ψ̂(x, t) =
4�

ν=1

�
d3pψ(ν)

p (x, t)â(ν)p . (9.380)

Correspondingly, one obtains for the adjoint field operator:

ψ̂†(x, t) =
4�

ν=1

�
d3pψ(ν)†

p (x, t)â(ν)†p . (9.381)

With the help of the orthonormality relation (9.325) of the fundamental plane wave solutions,

the expansions (9.380) and (9.381) can be inverted, yielding:
�

d3xψ(ν)†
p (x, t)ψ̂(x, t) = â(ν)p , (9.382)

�
d3x ψ̂†(x, t)ψ(ν)

p (x, t) = â(ν)†p . (9.383)

From the equal-time anti-commutator algebra (9.373) of the field operator ψ̂(x, t) and its adjoint

ψ̂†(x, t), a corresponding anti-commutator algebra can then be determined for the expansion

coefficients â
(ν)
p and â

(ν)†
p :

�
â(ν)p , â

(ν�)
p�

�
+
=

�
d3x

�
d3x�

4�

α,α�=1

ψ(ν)
p,α(x, t)ψ

(ν�)
p�,α�(x

�, t)
�
ψ̂α(x, t), ψ̂α�(x�, t)

�
+
= 0 , (9.384)

�
â(ν)†p , â

(ν�)†
p�

�
+
=

�
d3x

�
d3x�

4�

α,α�=1

ψ(ν)†
p,α (x, t)ψ

(ν�)†
p�,α�(x

�, t)
�
ψ̂†
α(x, t), ψ̂

†
α�(x

�, t)
�
+
= 0 , (9.385)

�
â(ν)p , â

(ν�)†
p�

�
+
=

�
d3x

�
d3x�

4�

α,α�=1

ψ(ν)†
p,α (x, t)ψ

(ν�)
p�,α�(x

�, t)
�
ψ̂α(x, t), ψ̂

†
α�(x

�, t)
�
+

=

�
d3x

4�

α=1

ψ(ν)†
p,α (x, t)ψ

(ν�)
p�,α(x, t) =

�
d3xψ(ν)†

p (x, t)ψ
(ν�)
p� (x, t) = δνν�δ(p− p�) . (9.386)
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Note that in (9.386) the orthonormality relation (9.325) is applied. As the operators â
(ν)
p , â

(ν)†
p

fulfill according to (9.384)–(9.386) the canonical anti-commutator algebra, they are interpreted

for the time being as annihilation and creation operators of fermionic particles.

9.18 Second Quantizied Operators

Inserting (9.380) and (9.381) into (9.374) and taking into account the orthonormality relation

(9.325) the charge operator Q̂ in second quantisation can be expressed in terms of the creation

and annihilation operators â
(ν)†
p and â

(ν)
p :

Q̂ =
4�

ν=1

4�

ν�=1

�
d3p

�
d3p� â(ν)†p â

(ν�)
p�

�
d3xψ(ν)†

p (x, t)ψ
(ν�)
p� (x, t)

=
4�

ν=1

4�

ν�=1

�
d3p

�
d3p� â(ν)†p â

(ν�)
p� δνν�δ(p− p�) =

4�

ν=1

�
d3p â(ν)†p â(ν)p . (9.387)

Since the particle number operator â
(ν)†
p â

(ν)
p is positive definite, also the charge operator Q̂ is

positive definite due to (9.387). Thus, it looks like as if the fermionic particles seem to have

only a positive charge.

Accordingly, inserting (9.380) and (9.381) into (9.375) one obtains for the Hamilton operator

Ĥ of second quantisation at first

Ĥ =
4�

ν=1

4�

ν�=1

�
d3p

�
d3p� â(ν)†p â

(ν�)
p�

�
d3xψ(ν)†

p (x, t)HD(x)ψ
(ν�)
p� (x, t) . (9.388)

Here we can take into account that the plane waves ψ
(ν�)
p� (x, t) from (9.324) are eigenfunctions

of the Dirac Hamiltonian operator of the first quantisation (9.371) as they were determined in

Section 9.14 to solve the Dirac equation (9.279):

HD(x)ψ
(ν�)
p� (x, t) = ih̄

∂

∂t
ψ

(ν�)
p� (x, t) = εν�Ep�ψ

(ν�)
p� (x, t) . (9.389)

With the help of the orthonormality relation (9.325) the Hamilton operator of second quanti-

sation (9.388) then results in

Ĥ =
4�

ν=1

4�

ν�=1

�
d3p

�
d3p� εν�Ep� â(ν)†p â

(ν�)
p�

�
d3xψ(ν)†

p (x, t)ψ
(ν�)
p� (x, t)

=
4�

ν=1

�
d3p ενEpâ

(ν)†
p â(ν)p =

�
d3p

�
2�

ν=1

Epâ
(ν)†
p â(ν)p −

4�

ν=3

Epâ
(ν)†
p â(ν)p

�
, (9.390)

where we have used the abbreviation (9.320) in the last step. Thus, the fermionic particles

with ν = 1, 2 appear to have positive energies Ep, while those with ν = 3, 4 seem to have

correspondingly negative energies −Ep.
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Subsequently, we insert (9.380) and (9.381) into (9.376), so the momentum operator P̂ of second

quantisation results at first in

P̂ =
4�

ν=1

4�

ν�=1

�
d3p

�
d3p� â(ν)†p â

(ν�)
p�

�
d3xψ(ν)†

p (x, t)
h̄

i
∇ψ

(ν�)
p� (x, t) . (9.391)

Here we use the fact that the plane waves ψ
(ν�)
p� (x, t) from (9.324) are eigenfunctions of the

momentum operator of first quantisation:

h̄

i
∇ψ

(ν�)
p� (x, t) = εν�p

�ψ(ν�)
p� (x, t) . (9.392)

Thus, with the orthonormality relation (9.325) the momentum operator of second quantisation

(9.377) reduces to

P̂ =
4�

ν=1

4�

ν�=1

�
d3p

�
d3p� â(ν)†p â

(ν�)
p� εν�p

�
�

d3xψ(ν)†
p (x, t)ψ

(ν�)
p� (x, t)

=
4�

ν=1

�
d3p ενp â(ν)†p â(ν)p =

�
d3p

�
2�

ν=1

p â(ν)†p â(ν)p −
4�

ν=3

p â(ν)†p â(ν)p

�
. (9.393)

We conclude that the fermionic particles with ν = 1, 2 seem to have the momentum p and,

correspondingly, those with ν = 3, 4 the momentum −p.

In a similar way we also proceed for the helicity operator (9.377), where we insert (9.380) and

(9.381), yielding

ĥ =
4�

ν=1

4�

ν�=1

�
d3p

�
d3p� â(ν)†p â

(ν�)
p�

�
d3xψ(ν)†

p (x, t)

�
σ/2 O

O σ/2

�
h̄∇/i

|h̄∇/i| ψ
(ν�)
p� (x, t) . (9.394)

Applying the eigenvalue problem (9.392) and the first quantized helicity operator (9.362) this

reduces to

ĥ =
4�

ν=1

4�

ν�=1

�
d3p

�
d3p� â(ν)†p â

(ν�)
p� εν�

�
d3xψ(ν)†

p (x, t)H(p�)ψ(ν�)
p� (x, t) . (9.395)

Here we use the fact that the plane waves ψ
(ν�)
p� (x, t) from (9.324) are eigenfunctions of the

helicity operator of first quantisation according to (9.364):

H(p�)ψ(ν�)
p� (x, t) = ην� ψ

(ν�)
p� (x, t) . (9.396)

Thus, with this and the orthonormality relation (9.325) the helicity operator of second quanti-

sation (9.395) reads

ĥ =
4�

ν=1

4�

ν�=1

�
d3p

�
d3p� â(ν)†p â

(ν�)
p� εν�ην�

�
d3xψ(ν)†

p (x, t)ψ
(ν�)
p� (x, t) (9.397)

=
4�

ν=1

�
d3p ενην â

(ν)†
p â(ν)p =

�
d3p

�
2�

ν=1

(−1)ν+1

2
â(ν)†p â(ν)p +

4�

ν=3

(−1)ν+1

2
â(ν)†p â(ν)p

�
.
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Figure 9.2: Schematic sketch of the Dirac sea, which models the physical vacuum as an infinite

sea of particles with negative energy.

Note that we have used in the last step the abbreviations (9.320) and (9.365). The result

(9.397) means that the fermionic particles with ν = 1, 3 (ν = 2, 4) have supposedly the helicity

+1/2 (−1/2).

Finally, we conclude this section by summarizing that, indeed, the second quantized operators

for the charge (9.387), the energy (9.390), the momentum (9.393), and the helicity (9.397) have

turned out to not explicitly depend on time. This reflects that these second quantized operators

correspond to conserved quantities.

9.19 Dirac Sea

Within the framework of the canonical field quantisation, the vacuum state |0�V is usually

defined by the fact that it does not contain any particle. This is guaranteed provided that all

annihilation operators â
(ν)
p annul the vacuum state |0�V :

â(ν)p |0�V = 0 for all ν,p . (9.398)

On the other, in the second quantized Dirac theory we are confronted with the fact that particles

with both positive and negative energies appear, see Eq. (9.390). In order to provide a physical

interpretation for the latter observation, Paul Dirac assumed in 1930 that instead of the vacuum

state |0�V a physical vacuum state |0�P is realised in nature. It is defined by the condition that

all states with negative energies, i.e. those with ν = 3, 4, are occupied, forming the so-called

Fermi sea, see Fig. 9.2:

|0�P =
�

ν=3,4

�

p

â(ν)†p |0�V . (9.399)
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Here, a continuous product is formed with respect to all momenta p. Dirac justifies this

transition from the vacuum state |0�V to the physical vacuum state |0�P by the argument that

the Dirac sea is always present and can, therefore, not be measured in any experiment, Thus,

the infinitely large energy or charge of the Dirac sea can be renormalised.

An immediate consequence of the definition of the physical vacuum state |0�P in (9.399) is

that it is annulled by the annihilation operators â
(ν)
p for ν = 1, 2 because of (9.398) and by the

creation operators â
(ν)†
p for ν = 3, 4 due to the anti-commutator algebra (9.385):

â(ν)p |0�P = 0 for all ν = 1, 2 and p ; â(ν)†p |0�P = 0 for all ν = 3, 4 and p . (9.400)

If one takes into account the anti-commutator algebra (9.384)–(9.386) and the property (9.400)

of the physical vacuum |0�P , a reinterpretation of the annihilation and creation operators be-

comes possible. While â
(ν)
p and â

(ν)†
p for ν = 1, 2 continue to be understood as annihilation and

creation operators of particles, â
(ν)
p and â

(ν)†
p for ν = 3, 4 can now be interpreted inversely as

the creation and annihilation operators of particles. For instance, applying â
(ν)
p for ν = 3, 4

to the physical vacuum state (9.399) annihilates a particle in the Dirac sea of Fig. 9.2, which

corresponds to the creation of a hole.

Consequently, by convention we consider in the Dirac hole theory that the indices ν = 1, 2

(ν = 3, 4) describe particles (antiparticles), for instance electrons (positrons) with spin up and

down. The double role of the expansion operators â
(ν)
p and â

(ν)†
p as creation and annihilation

operators, respectively, makes the theory at a first glance confusing. Therefore, it is suggestive

to introduce different symbols in order to discriminate already from the notation between the

operators of particles and antiparticles. For the particles we use from now on the following

definition for the creation operators

â(1)†p = b̂(1)†p , â(2)†p = b̂(2)†p (9.401)

and for the annihilation operators

â(1)p = b̂(1)p , â(2)p = b̂(2)p . (9.402)

Correspondingly, we introduce for the antiparticles the creation operators

â(3)p = d̂(1)†p , â(4)p = d̂(2)†p (9.403)

and the annihilation operators

â(3)†p = d̂(1)p , â(4)†p = d̂(2)p . (9.404)

For ν = 1, 2 this redefinition just corresponds to a simple renaming. But for ν = 3, 4 the

creation and annihilation operators exchange their roles. Note that the anti-commutator alge-

bra (9.384)–(9.386) remains invariant due to this redefinition, since creation and annihilation
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operators appear there on equal footing:
�
b̂(ν)p , b̂

(ν�)
p�

�
+

=
�
b̂(ν)p , d̂

(ν�)
p�

�
+
=
�
d̂(ν)p , d̂

(ν�)
p�

�
+
=
�
b̂(ν)p , d̂

(ν�)†
p�

�
+
= 0 , (9.405)

�
b̂(ν)†p , b̂

(ν�)†
p�

�
+

=
�
b̂(ν)†p , d̂

(ν�)†
p�

�
+
=
�
d̂(ν)†p , d̂

(ν�)†
p�

�
+
=
�
b̂(ν)†p , d̂

(ν�)
p�

�
+
= 0 , (9.406)

�
b̂(ν)p , b̂

(ν�)†
p�

�
+

=
�
d̂(ν)p , d̂

(ν�)†
p�

�
+
= δνν�δ(p− p�) . (9.407)

The physical vacuum state |0�P is now determined by the fact that it is annulled by the

annihilation operators b̂
(ν)
p , d̂

(ν)
p of both the particles and the antiparticles:

b̂(ν)p |0�P = 0 , (9.408)

d̂(ν)p |0�P = 0 . (9.409)

The Hamilton operator (9.390) of the second quantisation has both positive and negative energy

values. Due to the redefinition of second quantized operators (9.401)–(9.404) it changes into

Ĥ =
2�

ν=1

�
d3pEp

�
b̂(ν)†p b̂(ν)p − d̂(ν)p d̂(ν)†p

�
. (9.410)

But, taking into account the anti-commutator algebra (9.407), the expression (9.410) for the

Hamilton operator is transformed into:

Ĥ =
2�

ν=1

�
d3pEp

�
b̂(ν)†p b̂(ν)p + d̂(ν)†p d̂(ν)p

�
−

2�

ν=1

�
d3pEp δ(0) . (9.411)

The expectation value of this Hamilton operator with respect to the physical vacuum state |0�P
reads due to (9.408) and (9.409)

P �0| Ĥ |0�P = −
2�

ν=1

�
d3pEp δ(0) . (9.412)

First of all we note that the vacuum energy for the fermions of the Dirac theory turns out to be

negative in contrast to the bosonic cases of the Klein-Gordon theory in (7.119) and the Maxwell

theory in (8.158). This is an immediate consequence of having an underlying anti-commutator

algebra instead of a commutator algebra. But also in the fermionic case the vacuum energy

(9.412) is divergent due to two reasons. On the one hand the respective momentum integral

over the relativistic energy-momentum dispersion (9.297) is divergent and on the other hand

the factor δ(0) is divergent as well. The renormalisation of the Hamilton operator (9.411) is

performed by simply subtracting this infinitely large expectation value (9.412), yielding the

normal-ordered Hamilton operator

: Ĥ : = Ĥ − P �0| Ĥ |0�P =
2�

ν=1

�
d3pEp

�
b̂(ν)†p b̂(ν)p + d̂(ν)†p d̂(ν)p

�
. (9.413)

This physical Hamilton operator is positive definite as both particles and antiparticles have the

same energy Ep > 0.
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Quite correspondingly, the charge operator Q̂, the momentum operator P̂ , and the helicity

operator from (9.387), (9.393), and (9.397) change due to the redefinition of second quantized

operators (9.401)–(9.404) to

Q̂ =
2�

ν=1

�
d3p

�
b̂(ν)†p b̂(ν)p + d̂(ν)p d̂(ν)†p

�
, (9.414)

P̂ =
2�

ν=1

�
d3pp

�
b̂(ν)†p b̂(ν)p − d̂(ν)p d̂(ν)†p

�
, (9.415)

ĥ =
2�

ν=1

�
d3p

(−1)ν+1

2

�
b̂(ν)†p b̂(ν)p + d̂(ν)p d̂(ν)†p

�
. (9.416)

Applying the anti-commutator algebra (9.407) yields

Q̂ =
2�

ν=1

�
d3p

�
b̂(ν)†p b̂(ν)p − d̂(ν)†p d̂(ν)p

�
+

2�

ν=1

�
d3p δ(0) , (9.417)

P̂ =
2�

ν=1

�
d3pp

�
b̂(ν)†p b̂(ν)p + d̂(ν)†p d̂(ν)p

�
−

2�

ν=1

�
d3pp δ(0) , (9.418)

ĥ =
2�

ν=1

�
d3p

(−1)ν+1

2

�
b̂(ν)†p b̂(ν)p − d̂(ν)†p d̂(ν)p

�
+

2�

ν=1

(−1)ν+1

2

�
d3p δ(0) . (9.419)

The charge operator Q̂ can be renormalised by subtracting its divergency, which amount to

going over to the normal ordered charge operator

: Q̂ : = Q̂− P �0| Q̂ |0�P =
2�

ν=1

�
d3p

�
b̂(ν)†p b̂(ν)p − d̂(ν)†p d̂(ν)p

�
. (9.420)

In contrast to that a renormalisation of the momentum operator P̂ is not necessary, since the

expectation value of (9.418) with respect to the physical vacuum state |0�P vanishes due to

symmetry reasons in the momentum integral. Thus, the momentum operator (9.418) is already

normal ordered:

: P̂ : = P̂ =
2�

ν=1

�
d3pp

�
b̂(ν)†p b̂(ν)p + d̂(ν)†p d̂(ν)p

�
. (9.421)

We conclude that particles carry the charge +1 and possess the momentum p, while antiparticles

have the negative charge −1 and also possess the momentum p. And, finally, we recognize that

also a renormalization of the helicity operator ĥ is superfluous as the expectation value of

(9.419) with respect to the physical vacuum state |0�P vanishes due to symmetry reasons in

the discrete sum. Thus, the helicity operator (9.419) is already normal ordered:

: ĥ : = ĥ =
2�

ν=1

�
d3p

(−1)ν+1

2

�
b̂(ν)†p b̂(ν)p − d̂(ν)†p d̂(ν)p

�
. (9.422)

This means that particles with ν = 1 (ν = 2) and antiparticles with ν = 2 (ν = 1) have a

positive (negative) helicity.
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9.20 Propagator as Green Function

Analogous to the Klein-Gordon or the Maxwell propagator, also the Dirac propagator is defined

as the expectation value of the time-ordered product of the field operators ψ̂α(x, t) and ψ̂β(x
�, t�)

with respect to the physical vacuum |0�P :

Sαβ(x, t;x
�, t�) = P

�
0
���T̂

�
ψ̂α(x, t)ψ̂β(x

�, t�)
���� 0

�
P
. (9.423)

Note that the definition (7.124) of two time-dependent operators Â(t) and B̂(t�) in the context

of bosonic operators is not valid for fermionic operators and is given instead by

T̂
�
Â(t) B̂(t�)

�
= Θ(t− t�) Â(t) B̂(t�)−Θ(t� − t) B̂(t�) Â(t) (9.424)

with the Heaviside function (7.125). Note the appearance of the minus in (9.424), which reflects

the anti-commutativity of fermionic operators. Due to (9.424) the Dirac propagator (9.423)

reads explicitly

Sαβ(x, t;x
�, t�) = Θ(t− t�)P

�
0
���ψ̂α(x, t)ψ̂β(x

�, t�)
��� 0
�
P
−Θ(t� − t)P

�
0
���ψ̂β(x

�, t�)ψ̂α(x, t)
��� 0
�
P
. (9.425)

At first we derive the equation of motion for the Dirac propagator by performing the time

derivative of (9.425) and by taking into account (7.128):

ih̄
∂

∂t
Sαβ(x, t;x

�, t�) = ih̄δ(t− t�)P

�
0

����
�
ψ̂α(x, t), ψ̂β(x

�, t�)
�
+

���� 0
�

P

(9.426)

+Θ(t− t�)P

�
0

�����ih̄
∂ψ̂α(x, t)

∂t
ψ̂β(x

�, t�)

����� 0
�

P

−Θ(t� − t)P

�
0

�����ψ̂β(x
�, t�)ih̄

∂ψ̂α(x, t)

∂t

����� 0
�

P

.

With the definition of the Dirac adjoint Dirac spinor (9.91), the equal-time anti-commutator

algebra (9.373), the Heisenberg equation of the Dirac spinor (9.378), and (9.423) we then yield

ih̄
∂

∂t
Sαβ(x, t;x

�, t�) =
4�

γ=1

�
−ih̄cααγ∇+Mc2βαγ

�
Sγβ(x, t;x

�, t�) + ih̄γ0αβδ(t− t�)δ(x− x�) . (9.427)

Thus, the Dirac propagator is just the Green function of the Dirac equation, which follows

from (9.87), (9.247), and (9.248). Multiplying (9.427) from the left by γ0/c and taking into

account (9.249), (9.250) the equation of motion of the Dirac propagator can also be rewritten

in a manifestly covariant form:

(ih̄γµ∂µ −Mc)S(x; x�) = ih̄δ(x− x�) . (9.428)

9.21 Propagator Calculation

In order to derive a Fourier representation for the Dirac propagator, we must first transfer the

Dirac reinterpretation for the creation and annihilation operators â
(ν)†
p and â

(ν)
p to the plane
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wave expansions (9.380) and (9.381) of the field operator ψ̂(x, t) and its adjoint ψ̂†(x, t). To

this end we introduce the following notation for the plane waves of the particles

u(1)
p (x, t) = ψ(1)

p (x, t) , u(2)
p (x, t) = ψ(2)

p (x, t) (9.429)

and, correspondingly, for the antiparticles

v(1)p (x, t) = ψ(3)
p (x, t) , v(2)p (x, t) = ψ(4)

p (x, t) . (9.430)

Taking into account (9.401)–(9.404) the expansions (9.380), (9.381) then merge into

ψ̂(x, t) =
2�

ν=1

�
d3p

�
u(ν)
p (x, t)b̂(ν)p + v(ν)p (x, t)d̂(ν)†p

�
, (9.431)

ψ̂(x, t) =
2�

ν=1

�
d3p

�
u(ν)
p (x, t)b̂(ν)†p + v(ν)p (x, t)d̂(ν)p

�
. (9.432)

Now we can insert (9.431) and (9.432) into (9.425). As the annihilation operators b̂
(ν)
p , d̂

(ν)
p

annul the ket vacuum state |0�P according to (9.408), (9.409) and, correspondingly, the creation

operators b̂
(ν)†
p , d̂

(ν)†
p annul the bra vacuum state P �0|, we get

Sαβ(x, t;x
�, t�) = Θ(t− t�)

2�

ν=1

2�

ν�=1

�
d3p

�
d3p� u(ν)

pα(x, t)u
(ν�)
p�β (x

�, t�)P �0| b̂(ν)p b̂
(ν�)†
p� |0�P (9.433)

−Θ(t� − t)
2�

ν=1

2�

ν�=1

�
d3p

�
d3p� v(ν

�)
p�β (x

�, t�)v(ν)pα(x, t)P �0| d̂(ν�)p� d̂(ν)†p |0�P .

Due to the anti-commutator algebra (9.407) this reduces to

Sαβ(x, t;x
�, t�) =

2�

ν=1

�
d3p

�
Θ(t− t�)u(ν)

pα(x, t)u
(ν)
pβ (x

�, t�)−Θ(t� − t)v(ν)pα(x, t)v
(ν)
pβ (x

�, t�)
�
(9.434)

Inserting the plane waves (9.324) into (9.434) and considering (9.429) as well as (9.430) one

obtains for the Fourier representation of the Dirac propagator

Sαβ(x, t;x
�, t�) =

�
d3p

Mc2

(2πh̄)3Ep

(9.435)

×
�
Θ(t− t�)e−i[Ep(t−t�)−p(x−x�)/h̄]P u

αβ(p)−Θ(t� − t)e+i[Ep(t−t�)−p(x−x�)/h̄]P v
αβ(p)

�
,

where the following polarisation sums for both particles and antiparticles are introduced:

P u
αβ(p) =

2�

ν=1

u(ν)
pα u

(ν)
pβ =

2�

ν=1

ψ(ν)
pα ψ

(ν)

pβ , (9.436)

P v
αβ(p) =

2�

ν=1

v(ν)pα v
(ν)
pβ =

4�

ν=3

ψ(ν)
pα ψ

(ν)

pβ . (9.437)
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In order to evaluate these polarisation sums we have to perform several auxiliary calculations.

To this end we start with the Dirac adjoint spinor amplitudes resulting from (9.314) with the

help of (9.94) and (9.102):

ψ
(ν)

p = ψ(ν)†
p γ0 =

1√
2

�
χ†
�
(−1)ν+1

2

��
pσ̃

Mc
,χ†

�
(−1)ν+1

2

��
pσ

Mc

�
for ν = 1, 2 , (9.438)

ψ
(ν)

p = ψ(ν)†
p γ0 =

1√
2

�
−χc†

�
(−1)ν+1

2

��
pσ̃

Mc
,χc†

�
(−1)ν+1

2

��
pσ

Mc

�
for ν = 3, 4 . (9.439)

We also note that the bi-spinors χ(±1/2) are complete:

2�

ν=1

χ

�
(−1)ν+1

2

�
χ†
�
(−1)ν+1

2

�
= χ

�
1

2

�
χ†
�
1

2

�
+ χ

�
−1

2

�
χ†
�
−1

2

�
= I . (9.440)

In fact, for the quantisation of the spin 1/2 with respect to the direction of the momentum p

we obtain according to (9.351)
�

cos( θ
2
)e−iφ/2

sin( θ
2
)e+iφ/2

��
cos

�
θ

2

�
e+iφ/2, sin

�
θ

2

�
e−iφ/2

�

+

�
− sin( θ

2
)e−iφ/2

cos( θ
2
)e+iφ/2

��
− sin

�
θ

2

�
e+iφ/2, cos

�
θ

2

�
e−iφ/2

�
=

�
1 0

0 1

�
= I . (9.441)

Furthermore, from the completeness of the bi-spinors χ(±1/2) we then conclude the complete-

ness of the charge-conjugated bi-spinors χc(±1/2):

2�

ν=1

χc

�
(−1)ν+1

2

�
χc†

�
(−1)ν+1

2

�
=

2�

ν=1

cχ∗
�
(−1)ν+1

2

�
χT

�
(−1)ν+1

2

�
c†

= c

�
2�

ν=1

χ

�
(−1)ν+1

2

�
χ†
�
(−1)ν+1

2

��T

c† = cIc† = cc† = I . (9.442)

After these preparations, the polarisation sum of the particles is calculated as follows. At first,

we insert (9.313) and (9.438) in (9.436):

P u(p) =
1

2

� �
pσ
Mc�
pσ̃
Mc

�
2�

ν=1

χ

�
(−1)ν+1

2

�
χ†
�
(−1)ν+1

2

���
pσ̃

Mc
,

�
pσ

Mc

�
. (9.443)

Due to the completeness relation (9.440) this reduces to

P u(p) =
1

2

� �
pσ
Mc�
pσ̃
Mc

���
pσ̃

Mc
,

�
pσ

Mc

�
=

1

2




�
pσ pσ̃
(Mc)2

pσ
Mc

pσ̃
Mc

�
pσ̃ pσ
(Mc)2


 . (9.444)

And, finally, using the side calculation (9.302) we yield with the Dirac matrices (9.94)

P u(p) =
1

2

�
pµ
Mc

�
O σµ

σ̃µ O

�
+

�
I O

O I

��
=

pµγ
µ +Mc

2Mc
. (9.445)
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The polarisation sum of the antiparticles is calculated along similar lines. Inserting (9.314) and

(9.439) in (9.437) we get

P v(p) =
1

2

� �
pσ
Mc

−
�

pσ̃
Mc

�
2�

ν=1

χc

�
(−1)ν+1

2

�
χc†

�
(−1)ν+1

2

��
−
�

pσ̃

Mc
,

�
pσ

Mc

�
, (9.446)

which reduces according to the completeness relation (9.442)

P v(p) =
1

2

� �
pσ
Mc

−
�

pσ̃
Mc

��
−
�

pσ̃

Mc
,

�
pσ

Mc

�
=

1

2


 −

�
pσ pσ̃
(Mc)2

pσ
Mc

pσ̃
Mc

−
�

pσ̃ pσ
(Mc)2


 . (9.447)

With the side calculation (9.302) and the Dirac matrices (9.94) we finally obtain

P v(p) =
1

2

�
pµ
Mc

�
O σµ

σ̃µ O

�
−
�

I O

O I

��
=

pµγ
µ −Mc

2Mc
. (9.448)

A comparison of (9.445) and (9.448) reveals that there is a simple relationship between the

polarisation sums of the particles and the antiparticles:

P v(p) = −P u(−p) . (9.449)

Using (9.449) in (9.435), the minus sign between the polarisation sums of the particles and

antiparticles compensates the minus sign, which originally stems from the definition of the

time-ordered product of fermionic operators in (9.424), yielding

Sαβ(x, t;x
�, t�) =

�
d3p

Mc2

(2πh̄)3Ep

×
�
Θ(t− t�)e−i[Ep(t−t�)−p(x−x�)/h̄]P u

αβ(p) +Θ(t� − t)e+i[Ep(t−t�)−p(x−x�)/h̄]P u
αβ(−p)

�
. (9.450)

It turns out that this form of the Dirac propagator is universally valid for massive particles

with arbitrary spin. The respective spin dependencies are hidden in the polarisation sum of the

particles. For example, the result (9.450) agrees with the Klein-Gordon propagator (7.139) with

the plane waves (7.113) provided that the polarisation sum is identified according to P u
αβ(p) = 1.

9.22 Four-Dimensional Fourier Representation

Substituting the explicit form of the polarisation sum of the particles (9.445) into (9.450), one

obtains

Sαβ(x, t;x
�, t�) =

�
d3p

Mc2

(2πh̄)3Ep

�
Θ(t− t�)e−i[Ep(t−t�)−p(x−x�)]/h̄ pµγ

µ
αβ +Mc δαβ

2Mc

+Θ(t� − t)e+i[Ep(t−t�)−p(x−x�)]/h̄ −pµγ
µ
αβ +Mc δαβ

2Mc

�
. (9.451)
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The four-momentum vector in the polarisation sum of the particles can now be understood as

the effect of applying the four-momentum operator on the plane waves, see (6.96):

Sαβ(x, t;x
�, t�) =

�
d3p

Mc2

(2πh̄)3Ep

�
Θ(t− t�)

ih̄∂µγ
µ
αβ +Mc δαβ

2Mc
e−i[Ep(t−t�)−p(x−x�)/h̄]

+Θ(t� − t)
ih̄∂µγ

µ
αβ +Mc δαβ

2Mc
e+i[Ep(t−t�)−p(x−x�)/h̄]

�
. (9.452)

As now both terms involve the same differential operator it is suggestive to bring it in front

of the momentum integral. Note that this manipulation leads to an additional term due to

applying the time derivative upon the Heavside functions. But one can convince oneself that

this additional term vanishes due to the odd symmetry of the respective momentum integral.

With this we yield

Sαβ(x, t;x
�, t�) =

ih̄∂µγ
µ
αβ +Mc δαβ

2Mc

�
d3p

Mc2

(2πh̄)3Ep

(9.453)

×
�
Θ(t− t�)e−i[Ep(t−t�)−p(x−x�)/h̄] +Θ(t� − t)e+i[Ep(t−t�)−p(x−x�)/h̄]

�
.

The remaining momentum integral just represents the Klein-Gordon propagator as discussed

below Eq. (9.450). Thus, the Dirac propagator can be obtained directly from the Klein-Gordon

propagator by applying the following differential rule:

Sαβ(x, t;x
�, t�) =

ih̄∂µγ
µ
αβ +Mc δαβ

2Mc
G(x, t;x�, t�) . (9.454)

Since we have already found a covariant formulation for the Klein-Gordon propagator in Sec-

tion 7.12, also the Dirac propagator can be formulated covariantly according to (9.454):

S(x; x�) =
ih̄∂µγ

µ +Mc

2Mc
G(x; x�) . (9.455)

Note that (9.455) can be generalized to any massive particles with arbitrary spin according to

the remarks below (9.450):

S(x; x�) = P u(ih̄∂)G(x; x�) . (9.456)

Indeed, inserting the explicit form of the polarisation sum of the particles (9.445) for the

Dirac theory in (9.456) yields back (9.455). Substituting the four-dimensional Fourier rep-

resentation of the Klein-Gordon propagator (7.169) into (9.455), we obtain a corresponding

four-dimensional Fourier representation of the Dirac propagator:

S(x; x�) =
ih̄∂µγ

µ +Mc

2Mc
ih̄2Mc lim

η↓0

�
d4p

(2πh̄)4
1

p2 −M2c2 + iη
e−ip(x−x�)/h̄

= ih̄ lim
η↓0

�
d4p

(2πh̄)4
pµγ

µ +Mc

p2 −M2c2 + iη
e−ip(x−x�)/h̄ . (9.457)

With the help of the Clifford algebra (9.95) of the Dirac matrices, the denominator of (9.457)

can be transformed as follows:

p2 −M2c2 = pµpνg
µν −M2c2 =

1

2
pµpν (γ

µγν + γνγµ)−M2c2

= (pµγ
µ) (pνγ

ν)− (Mc)2 = (pµγ
µ −Mc) (pνγ

ν +Mc) . (9.458)
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In the η ↓ 0 limit, the numerator in (9.457) can be cancelled by a factor of the denominator

in (9.458). With this the Dirac propagator has the following compact four-dimensional Fourier

representation:

S(x; x�) = lim
η↓0

�
d4p

(2πh̄)4
ih̄

pµγµ −Mc+ iη
e−ip(x−x�)/h̄ . (9.459)

In this form, the Dirac propagator obviously satisfies the equation of motion (9.428):

(ih̄γµ∂µ −Mc)S(x; x�) = ih̄

�
d4p

(2πh̄)4
e−ip(x−x�)/h̄ = ih̄ δ(x− x�) . (9.460)




