Quantum Mechanics II

Problem 27: Two Spin 1/2-Particles

$\hat{\mathbf{S}}_{1}$ and $\hat{\mathbf{S}}_{2}$ are the spin operators of two spin 1/2-particles, for instance the two electrons in the helium atom.
a) Find the mutual eigenstates $\left|s_{1}, s_{2} ; s, m_{s}\right\rangle$ of the total spin operator $\hat{\mathbf{S}}=\hat{\mathbf{S}}_{1}+\hat{\mathbf{S}}_{2}$, its z-component \hat{S}_{z} as well as $\hat{\mathbf{S}}_{1}^{2}$ and $\hat{\mathbf{S}}_{2}^{2}$.
b) Show that those states are also eigenstates of the operators $\hat{\mathbf{S}}_{1} \cdot \hat{\mathbf{S}}_{2}$ and determine the corresponding eigenvalues.
c) Show that the operator

$$
\begin{equation*}
\hat{P}=\frac{3}{4}+\frac{\hat{\mathbf{S}}_{1} \cdot \hat{\mathbf{S}}_{2}}{\hbar^{2}} \tag{1}
\end{equation*}
$$

represents a projection operator in the space of spin states. Onto which subspace does the operator \hat{P} project?

Problem 28: Hamiltonian of Two Spin 1/2-Particles

The Hamilton operator of two spin 1/2-particles is given by

$$
\begin{equation*}
\hat{H}=-J \hat{\mathbf{S}}_{1} \cdot \hat{\mathbf{S}}_{2}+\mu\left(\hat{S}_{1 z}+\hat{S}_{2 z}\right) \tag{2}
\end{equation*}
$$

Calculate the eigenvalues and determine the eigenstates in the basis $\left\{\left|s_{1}, s_{2} ; s, m_{s}\right\rangle\right\}$.

Problem 29: LS Coupling

Calculate for the total angular momentum of the electron $\mathbf{J}=\mathbf{L}+\mathbf{S}$ with $s=1 / 2$ and $l \geq 1$ the mutual eigenstates $\left|l, 1 / 2 ; j, m_{j}\right\rangle=\left|j, m_{j}\right\rangle$ of the operators $\hat{\mathbf{J}}^{2}, \hat{J}_{z}, \hat{\mathbf{L}}^{2}, \hat{\mathbf{S}}^{2}$ as linear combinations of the eigenstates $\left|l, 1 / 2 ; m_{l}, m_{s}\right\rangle=\left|l, m_{l}\right\rangle\left|1 / 2, m_{s}\right\rangle$ of the operators $\hat{\mathbf{L}}^{2}, \hat{L}_{z}, \hat{\mathbf{S}}^{2}, \hat{S}_{z}$. To this end proceed as follows:
a) Show that the quantum number j can only have the two values $l+1 / 2$ and $l-1 / 2$.
b) Verify for the eigenstates the following expressions:

$$
\begin{equation*}
\left|l \pm \frac{1}{2}, m_{j}\right\rangle=\sqrt{\frac{l \pm m_{j}+1 / 2}{2 l+1}}\left|l, m_{j}-1 / 2\right\rangle|1 / 2,1 / 2\rangle \pm \sqrt{\frac{l \mp m_{j}+1 / 2}{2 l+1}}\left|l, m_{j}+1 / 2\right\rangle|1 / 2,-1 / 2\rangle . \tag{3}
\end{equation*}
$$

Problem 30: Two Particles With Angular Quantum Number One

Two angular momentum operators $\hat{\mathbf{J}}_{1}$ and $\hat{\mathbf{J}}_{2}$ couple to the total angular momentum operator $\hat{\mathbf{J}}=\hat{\mathbf{J}}_{1}+\hat{\mathbf{J}}_{2}$. Calculate for the angular quantum numbers $j_{1}=j_{2}=1$ all Clebsch-Gordan coefficients.

Consider two angular momentum operators $\hat{\mathbf{J}}_{1}$ and $\hat{\mathbf{J}}_{2}$ with the angular momentum quantum numbers $j_{1}=1 / 2$ and $j_{2}=3 / 2$.
a) Which quantum numbers j and m_{j} are possible for the square and the z-component of the total angular momentum operator $\hat{\mathbf{J}}_{1}$ and $\hat{\mathbf{J}}_{2}$?
b) Determine for the maximal value of j and for all non-negative m_{j} all Clebsch-Gordan coefficients.

Drop the solutions in the post box on the 5 th floor of building 46 or, in case of illness/quarantine, send them via email to jkrauss@rhrk.uni-kl.de until January 29 at 11.45.

