## Quantum Mechanics II

## Problem 32: Klein Paradox for Dirac Equation

The Dirac equation describing a spin 1/2-particle in a static potential $V(\mathbf{x})$ can be written in the form of a Schrödinger equation

$$
\begin{equation*}
i \hbar \frac{\partial}{\partial t} \psi(\mathbf{x}, t)=\left[-i c \hbar \boldsymbol{\alpha} \boldsymbol{\nabla}+M c^{2} \beta+V(\mathbf{x})\right] \psi(\mathbf{x}, t), \tag{1}
\end{equation*}
$$

which determines the 4-component Dirac spinor $\psi(\mathbf{x}, t)=\left[\psi_{1}(\mathbf{x}, t), \psi_{2}(\mathbf{x}, t), \psi_{3}(\mathbf{x}, t), \psi_{4}(\mathbf{x}, t)\right]^{T}$. Here we have introduced the $4 \times 4$-matrices

$$
\alpha^{k}=\left(\begin{array}{cc}
O & \sigma^{k}  \tag{2}\\
\sigma^{k} & O
\end{array}\right), \quad \beta=\left(\begin{array}{cc}
I & O \\
O & -I
\end{array}\right)
$$

where $\sigma^{k}$ stands for the Pauli matrices as well as $O$ and $I$ represent the $2 \times 2$ zero and unit matrix, respectively :

$$
\sigma^{1}=\left(\begin{array}{cc}
0 & 1  \tag{3}\\
1 & 0
\end{array}\right), \quad \sigma^{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad \sigma^{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \quad O=\left(\begin{array}{cc}
0 & 0 \\
0 & 0
\end{array}\right), \quad I=\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right) .
$$

In the following you investigate the situation that the spin $1 / 2$-particle propagates in $z$-direction and hits a potential step of strength $V_{0}$ :

a) Assume that the incoming wave in region I is given by $E>0$ and $p>0$ as well as

$$
\begin{equation*}
\psi_{\mathrm{i}}=u_{\mathrm{i}} e^{i(p z-E t) / \hbar} \tag{4}
\end{equation*}
$$

Which equation fulfills the spinor $u_{\mathrm{i}}$ ? Conclude from the requirement $u_{\mathrm{i}} \neq 0$ that $E$ and $p$ satisfy the relativistic energy-momentum dispersion.
b) The reflected wave in region I must have a momentum $-p$, whereas the transmitted wave in region II has a momentum $\bar{p}>0$. With this the respective wave functions read

$$
\begin{equation*}
\psi_{\mathrm{r}}=u_{\mathrm{r}} e^{i(-p z-E t) / \hbar}, \quad \psi_{\mathrm{t}}=u_{\mathrm{t}} e^{i(\bar{p} z-E t) / \hbar} \tag{5}
\end{equation*}
$$

Write down the resulting equations for the spinors $u_{\mathrm{r}}$ and $u_{\mathrm{t}}$. Conclude from the requirement $u_{\mathrm{t}} \neq 0$ the dispersion relation between $E$ and $\bar{p}$.
c) The total wave function must be continuous at the boundary, i.e. for $z=0$. Show that this leads to the condition $u_{\mathrm{i}}+u_{\mathrm{r}}=u_{\mathrm{t}}$.
d) Conclude from a)-c) that the amplitudes $u_{\mathrm{r}}$ and $u_{\mathrm{i}}$ are proportional to each other according to

$$
\begin{equation*}
u_{\mathrm{r}}=\frac{2 V_{0}}{c} \frac{-E / c+\alpha_{z} p}{V_{0}^{2} / c^{2}-(p+\bar{p})^{2}} u_{\mathrm{i}} \tag{6}
\end{equation*}
$$

e) Show that the fraction $R$ of spin $1 / 2$-particles, which are reflected, follows to be given by

$$
\begin{equation*}
u_{\mathrm{r}}^{\dagger} u_{\mathrm{r}}=R u_{\mathrm{i}}^{\dagger} u_{\mathrm{i}}, \quad R=\left[\frac{2 V_{0} M}{V_{0}^{2} / c^{2}-(p+\bar{p})^{2}}\right]^{2} \tag{7}
\end{equation*}
$$

Which result do you get for $R$ in the respective cases $V_{0}=0$ and $V_{0}=E-M c^{2}$ ?
f) If $V_{0}$ increases still further, i.e. $V_{0}>E-M c^{2}$, then $\bar{p}$ becomes imaginary and we set

$$
\begin{equation*}
\psi_{\mathrm{t}}=u_{\mathrm{t}} e^{-\mu z-i E t / \hbar} \tag{8}
\end{equation*}
$$

where $\mu$ is now real. Why must $\mu$ be greater than zero? Show that $u_{\mathrm{r}}^{\dagger} u_{\mathrm{r}}=u_{\mathrm{i}}^{\dagger} u_{\mathrm{i}}$ holds, i.e. the reflected current is equal to the incoming one. Discuss $\mu$ for increasing $V_{0}$ more and more. At which value $V_{0}$ does the maximal value of $\mu$ occur and at which $V_{0}$ does $\mu$ vanish again for further increasing $V_{0}$ ?
g) Consider now the case $V_{0}>E+M c^{2}$. Then $\bar{p}$ becomes real again, so that the above result (7) holds. Which values do you now get for $R$ ? What is the Klein paradox?

Drop the solutions in the post box on the 5 th floor of building 46 or, in case of illness/quarantine, send them via email to jkrauss@rhrk.uni-kl.de until February 5 at 11.45.

