Quantum Mechanics II

Problem 23: Yukawa Potential

We consider the scattering of a particle with mass μ at a weak Yukawa potential

$$
\begin{equation*}
V(\mathbf{x})=V_{0} \frac{a}{|\mathbf{x}|} e^{-|\mathbf{x}| / a} \tag{1}
\end{equation*}
$$

a) Show that the scattering amplitude reads in first Born approximation:

$$
\begin{equation*}
f^{(1)}(\vartheta)=-\frac{2 \mu V_{0} a^{3}}{\hbar^{2}} \frac{1}{2(k a)^{2}(1-\cos \vartheta)+1} . \tag{2}
\end{equation*}
$$

b) Express the phase shifts δ_{l} for a weak Yukawa potential in terms of the Legendre functions of the second kind

$$
\begin{equation*}
Q_{l}(x)=\frac{1}{2} \int_{-1}^{1} d x^{\prime} \frac{P_{l}\left(x^{\prime}\right)}{x-x^{\prime}} \tag{3}
\end{equation*}
$$

Hint: In case of a rotationally invariant scattering potential the scattering amplitude $f(\vartheta)$ has the partial wave decomposition

$$
\begin{equation*}
f(\vartheta)=\frac{1}{k} \sum_{l=0}^{\infty}(2 l+1) e^{i \delta_{l}} \sin \delta_{l} P_{l}(\cos \vartheta), \tag{4}
\end{equation*}
$$

where $P_{l}(x)$ stands for the Legendre functions of the first kind, which fulfill the orthonormality relation

$$
\begin{equation*}
\int_{-1}^{1} d x P_{l}(x) P_{l^{\prime}}(x)=\frac{2}{2 l+1} \delta_{l, l^{\prime}} . \tag{5}
\end{equation*}
$$

Furthermore, δ_{l} denotes the scattering phases and a weak scattering potential implies $\delta_{l} \ll 1$.
c) Show that the scattering phases for an attractive (repulsive) Yukawa potential is positive (negative) and determine the scattering phases δ_{l} in the limit of low energies, i.e. $k a \ll 1$. Explain heuristically why in this limit δ_{l} falls off rapidly with l, so that the dominant contribution stems from s-wave scattering.
Hint: The Legendre functions of the second kind have the following expansion

$$
\begin{equation*}
Q_{l}(x)=\sum_{n=0}^{\infty} \frac{(l+2 n)!}{(2 n)!!(2 l+2 n+1)!!} \frac{1}{x^{l+2 n+1}}, \quad|x|>1 . \tag{6}
\end{equation*}
$$

d) Use the partial wave decomposition (4) in order to express the total cross-section $\sigma=\int d \Omega|f(\vartheta)|^{2}$ in terms of the scattering phases δ_{l}. Check explicitly that the optical theorem

$$
\begin{equation*}
\sigma=\frac{4 \pi}{k} \operatorname{Im} f(\vartheta=0) \tag{7}
\end{equation*}
$$

yields the same result. Define the scattering length via $\sigma=4 \pi a_{0}^{2}$ and show that the scattering length is given by

$$
\begin{equation*}
a_{0}=-\lim _{k \rightarrow 0} \frac{\delta_{0}}{k} . \tag{8}
\end{equation*}
$$

Determine with this a_{0} in case of the weak Yukawa potential by taking the result from \mathbf{c}) into account.

The Born approximation of the scattering amplitude assumes that the scattering potential $V(\mathbf{x})$ is weak enough so that it can be treated as a perturbation. Here we consider instead the scattering in the semiclassical Wentzel-Kramers-Brillouin (WKB) approximation, i.e. we assume that $V(\mathbf{x})$ varies slowly on the scale of the de Broglie wave length:

$$
\begin{equation*}
\frac{|\nabla V(\mathbf{x})|}{E-V(\mathbf{x})} \ll \frac{p(\mathbf{x})}{\hbar}, \quad \quad p(\mathbf{x})=\sqrt{2 \mu[E-V(\mathbf{x})]} \tag{9}
\end{equation*}
$$

a) Solve the time-independent Schrödinger equation

$$
\begin{equation*}
\left[-\frac{\hbar^{2}}{2 \mu} \Delta+V(\mathbf{x})\right] \psi(\mathbf{x})=E \psi(\mathbf{x}) \tag{10}
\end{equation*}
$$

with the ansatz $\psi(\mathbf{x})=e^{i S(\mathbf{x}) / \hbar}$ and determine the resulting differential equation for the eikonal $S(\mathbf{x})$. Expand then $S(\mathbf{x})$ with respect to \hbar, i.e. $S(\mathbf{x})=S_{0}(\mathbf{x})-i \hbar S_{1}(\mathbf{x})+\ldots$ and show that the classical action $S_{0}(\mathbf{x})$ obeys the Hamilton-Jakobi equation $\left[\nabla S_{0}(\mathbf{x})\right]^{2}=p(\mathbf{x})^{2}$.
b) Solve the Hamilton-Jakobi equation for the case that the energy $E=\hbar^{2} k^{2} / 2 \mu$ is much larger than the strength $|V|$ of the scattering potential $V(\mathbf{x})$. Then you can assume that the classical trajectory is a straight line $\mathbf{x}=\mathbf{b}+z \mathbf{e}_{z}$ with the impact parameter b and $\mathbf{b} \perp \mathbf{e}_{z}$. Why is it justified to choose the integration constant such that $S_{0}(\mathbf{x}) / \hbar \rightarrow k z$ in the limit of a vanishing potential $V(\mathbf{x})$? Show that the wave function turns out to have the form

$$
\begin{equation*}
\psi(\mathbf{x}) \approx \exp \left[i k z-i \frac{\mu}{\hbar^{2} k} \int_{-\infty}^{z} d z^{\prime} V\left(\mathbf{b}+z^{\prime} \mathbf{e}_{z}\right)\right] \tag{11}
\end{equation*}
$$

c) The scattering amplitude for a rotationally symmetric potential $V(\mathbf{x})=V(|\mathbf{x}|)$ reads

$$
\begin{equation*}
f(\vartheta)=-\frac{\mu}{2 \pi \hbar^{2}} \int d^{3} x^{\prime} e^{-i \mathbf{k}^{\prime} \mathbf{x}^{\prime}} V\left(\mathbf{x}^{\prime}\right) \psi(\mathbf{x}), \quad \mathbf{k}^{\prime}=k \frac{\mathbf{x}^{\prime}}{|\mathbf{x}|} \tag{12}
\end{equation*}
$$

Evaluate the integral in (12) by using cylinder coordinates and show that the scattering amplitude reduces in the eikonal approximation (11) to the expression

$$
\begin{equation*}
f(\vartheta)=-i k \int_{0}^{\infty} d b b J_{0}(k b \vartheta)\left[e^{2 i \Delta(b)}-1\right], \quad \Delta(b)=-\frac{\mu}{2 \hbar^{2} k} \int_{-\infty}^{\infty} d z V\left(\sqrt{b^{2}+z^{2}}\right) \tag{13}
\end{equation*}
$$

Hint: The Bessel function has the integral representation $J_{0}(x)=\int_{0}^{2 \pi} d \varphi /(2 \pi) e^{-i x \cos \varphi}$.
d) Evaluate the partial wave decomposition (4) in the classical limit of large energies and, i.e. large wave vectors k. Why does then hold $l \approx b k$? Thus, in that limit the discrete angular quantum number l gets continuous so that the sum over l in (4) can approximately be evaluated by an integral with respect to b. Use furthermore that $P_{l}(\cos \vartheta) \approx J_{0}(l \vartheta)$ holds for large l and small ϑ and derive in comparison with (13) the eikonal approximation for the scattering phases

$$
\begin{equation*}
\delta_{l}=|\Delta(b)|_{b=l / k} \tag{14}
\end{equation*}
$$

e) Evaluate (14) for the Yukawa potential (1) and compare your result with the corresponding one of Problem 23 b).

Drop the solutions in the post box on the 5 th floor of building 46 or, in case of illness/quarantine, send them via email to jkrauss@rhrk.uni-kl.de until January 8 at 11.45.

