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Problem 23: Yukawa Potential (12 points)

We consider the scattering of a particle with mass µ at a weak Yukawa potential

V (x) = V0
a

|x|
e−|x|/a . (1)

a) Show that the scattering amplitude reads in first Born approximation:

f (1)(ϑ) = −2µV0a
3

~2

1

2(ka)2(1− cosϑ) + 1
. (2)

b) Express the phase shifts δl for a weak Yukawa potential in terms of the Legendre functions of the second kind

Ql(x) =
1

2

∫ 1

−1

dx′
Pl(x

′)

x− x′
. (3)

Hint: In case of a rotationally invariant scattering potential the scattering amplitude f(ϑ) has the partial wave

decomposition

f(ϑ) =
1

k

∞∑
l=0

(2l + 1)eiδl sin δlPl(cosϑ) , (4)

where Pl(x) stands for the Legendre functions of the first kind, which fulfill the orthonormality relation∫ 1

−1

dxPl(x)Pl′(x) =
2

2l + 1
δl,l′ . (5)

Furthermore, δl denotes the scattering phases and a weak scattering potential implies δl � 1.

c) Show that the scattering phases for an attractive (repulsive) Yukawa potential is positive (negative) and determine

the scattering phases δl in the limit of low energies, i.e. ka � 1. Explain heuristically why in this limit δl falls off

rapidly with l, so that the dominant contribution stems from s-wave scattering.

Hint: The Legendre functions of the second kind have the following expansion

Ql(x) =

∞∑
n=0

(l + 2n)!

(2n)!!(2l + 2n+ 1)!!

1

xl+2n+1
, |x| > 1 . (6)

d) Use the partial wave decomposition (4) in order to express the total cross-section σ =
∫
dΩ|f(ϑ)|2 in terms of the

scattering phases δl. Check explicitly that the optical theorem

σ =
4π

k
Imf(ϑ = 0) (7)

yields the same result. Define the scattering length via σ = 4πa2
0 and show that the scattering length is given by

a0 = − lim
k→0

δ0
k
. (8)

Determine with this a0 in case of the weak Yukawa potential by taking the result from c) into account.



Problem 24: Eikonal Approximation (12 points)

The Born approximation of the scattering amplitude assumes that the scattering potential V (x) is weak enough

so that it can be treated as a perturbation. Here we consider instead the scattering in the semiclassical Wentzel-

Kramers-Brillouin (WKB) approximation, i.e. we assume that V (x) varies slowly on the scale of the de Broglie wave

length:

|∇V (x)|
E − V (x)

� p(x)

~
, p(x) =

√
2µ[E − V (x)] . (9)

a) Solve the time-independent Schrödinger equation[
− ~2

2µ
∆ + V (x)

]
ψ(x) = Eψ(x) (10)

with the ansatz ψ(x) = eiS(x)/~ and determine the resulting differential equation for the eikonal S(x). Expand

then S(x) with respect to ~, i.e. S(x) = S0(x) − i~S1(x) + . . . and show that the classical action S0(x) obeys the

Hamilton-Jakobi equation [∇S0(x)]
2

= p(x)2.

b) Solve the Hamilton-Jakobi equation for the case that the energy E = ~2k2/2µ is much larger than the strength |V |
of the scattering potential V (x). Then you can assume that the classical trajectory is a straight line x = b+ zez with

the impact parameter b and b ⊥ ez. Why is it justified to choose the integration constant such that S0(x)/~→ kz in

the limit of a vanishing potential V (x)? Show that the wave function turns out to have the form

ψ(x) ≈ exp

[
ikz − i µ

~2k

∫ z

−∞
dz′ V (b + z′ez)

]
. (11)

c) The scattering amplitude for a rotationally symmetric potential V (x) = V (|x|) reads

f(ϑ) = − µ

2π~2

∫
d3x′ e−ik

′x′
V (x′)ψ(x) , k′ = k

x′

|x|
. (12)

Evaluate the integral in (12) by using cylinder coordinates and show that the scattering amplitude reduces in the

eikonal approximation (11) to the expression

f(ϑ) = −ik
∫ ∞

0

db b J0(kbϑ)
[
e2i∆(b) − 1

]
, ∆(b) = − µ

2~2k

∫ ∞
−∞

dz V
(√

b2 + z2
)
. (13)

Hint: The Bessel function has the integral representation J0(x) =
∫ 2π

0
dϕ/(2π) e−ix cosϕ.

d) Evaluate the partial wave decomposition (4) in the classical limit of large energies and, i.e. large wave vectors

k. Why does then hold l ≈ bk? Thus, in that limit the discrete angular quantum number l gets continuous so

that the sum over l in (4) can approximately be evaluated by an integral with respect to b. Use furthermore that

Pl(cosϑ) ≈ J0(lϑ) holds for large l and small ϑ and derive in comparison with (13) the eikonal approximation for the

scattering phases

δl =
∣∣∣∆(b)

∣∣∣
b=l/k

. (14)

e) Evaluate (14) for the Yukawa potential (1) and compare your result with the corresponding one of Problem 23 b).

Drop the solutions in the post box on the 5th floor of building 46 or, in case of illness/quarantine,

send them via email to jkrauss@rhrk.uni-kl.de until January 8 at 11.45.


