
Chapter 1

Formal Principles of Quantum Mechanics

Here we describe concisely the formal principles of quantum mechanics as they were introduced
in a previous lecture. To this end we review at first the quantization of one-particle mechanics
in the representation independent Dirac notation and then explain how to obtain the corre-
sponding coordinate representation of quantum mechanics, which is due to Schrödinger. And,
finally, we summarize exemplarily the results for two paradigmatic quantum systems, namely
the harmonic oscillator and the hydrogen atom.

1.1 Classical Mechanics

A nonrelativistic classical particle of mass M moving in a potential V (x) is described by the
action

A [x(•)] =

∫ t2

t1

L (x(t); ẋ(t)) dt , (1.1)

which represents a functional of the particle path x(t) in configuration space. The corresponding
Lagrange function is given by the difference of kinetic and potential energy:

L(x; ẋ) =
M

2
ẋ2 − V (x) . (1.2)

The Hamilton principle of Lagrangian mechanics states that extremizing the action (1.1) ac-
cording to the functional derivative, see Appendix A

δA [x(•)]
δx(t)

= 0 (1.3)

yields the underlying equation of motion. Indeed, applying the functional derivative calculus
leads to the Euler-Lagrange equation

∂L

∂x(t)
− d

dt

∂L

∂ẋ(t)
= 0 , (1.4)
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which reduces with the Lagrange function (1.2) to the Newton equations of motion:

M ẍ(t) = −∇V (x(t)) . (1.5)

Here we have introduced the Nabla operator

∇ =
∂

∂x
=



∂

∂x
∂

∂y
∂

∂z

 . (1.6)

The transition to the Hamilton formalism is implemented by introducing the canonically con-
jugated momentum

p =
∂L

∂ẋ
= M ẋ (1.7)

and by performing the Legendre transformation

H(p;x) = pẋ− L(x; ẋ) (1.8)

which yields the Hamilton function

H(p;x) =
p2

2M
+ V (x) . (1.9)

Correspondingly, the action (1.1) converts with the Lagrange function (1.2) to

A [p(•);x(•)] =

∫ t2

t1

{
p(t)ẋ(t)−H(p(t);x(t))

}
dt , (1.10)

which represents a functional of a path p(t), x(t) in phase space. In Hamilton mechanics the
Hamilton principle demands the extremization

δA [p(•);x(•)]
δp(t)

= 0 , (1.11)

δA [p(•);x(•)]
δx(t)

= 0 . (1.12)

Taking into account the functional derivative calculus, see Appendix A, this leads to the Hamil-
ton equations

ẋ(t) =
∂H

∂p(t)
=

p(t)

M
, (1.13)

ṗ(t) = − ∂H

∂x(t)
= −∇V (x(t)) , (1.14)

which turn out to be equivalent to the Newton equations of motion (1.5).
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1.2 Quantization

The transition from classical mechanics to quantum mechanics is achieved by assigning opera-
tors to observables:

x→ x̂ , p→ p̂ , H(p;x)→ H(p̂; x̂) . (1.15)

In order to obey the Heisenberg uncertainty relation, one has to postulate the following canon-
ical commutation relations for the respective components of the coordinate and the momentum
vector operator: [

x̂j, x̂k
]
− =

[
p̂j, p̂k

]
− = 0 ,

[
p̂j, x̂k

]
− =

~
i
δjk , (1.16)

where the commutator between two quantum mechanical operators Â and B̂ is defined by[
Â, B̂

]
− = ÂB̂ − B̂Â . (1.17)

The time evolution of a quantum mechanical state vector |ψ(t)〉 is described by the Schrödinger
equation:

i~
∂

∂t
|ψ(t)〉 = Ĥ|ψ(t)〉 . (1.18)

In order to convert this representation independent formulation of quantum mechanics, which
is due to Dirac, to the coordinate representation, one chooses as a basis the eigenstates |x〉 of
the coordinate operator x̂. They fulfill the eigenvalue problem

x̂|x〉 = x|x〉 (1.19)

as well as the orthonormality relation

〈x|x′〉 = δ(x− x′) (1.20)

and the completeness relation ∫
d3x |x〉〈x| = 1 . (1.21)

The coordinate representation of the momentum operators p̂ is given by the Jordan rule:

〈x|p̂ =
~
i
∇〈x| , (1.22)

Evolving the quantum mechanical state vector |ψ(t)〉 with respect to this basis yields due to
the completeness relation (1.21)

|ψ(t)〉 =

∫
d3xψ(x, t) |x〉 , (1.23)
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where the expansion coefficients represent the wave function

ψ(x, t) = 〈x|ψ(t)〉 . (1.24)

Multiplying (1.18) from the left with the bra-vector 〈x| leads for the wave function (1.24) the
Schrödinger equation

i~
∂

∂t
ψ(x, t) = Ĥψ(x, t) . (1.25)

Here the coordinate representation of the Hamilton operator Ĥ follows due to (1.15), (1.19),
and (1.22) from the Hamilton function H as follows:

Ĥ = H

(
~
i
∇;x

)
. (1.26)

In case of the standard Hamilton function (1.9) we get

Ĥ = − ~2

2M
∆ + V (x) (1.27)

with the Laplace operator

∆ = ∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
. (1.28)

As we have assumed here that the potential V (x) does not explicitly depend on time, one can
perform for the wave function the separation ansatz

ψ(x, t) = ψE(x) e−iEt/~ . (1.29)

This reduces the time-dependent Schrödinger equation (1.25) to the time-independent Schrödinger
equation:

ĤψE(x) = EψE(x) , (1.30)

where E denotes the energy eigenvalue and ψE(x) the energy eigenfunction.

1.3 Harmonic Oscillator

The harmonic oscillator represents an ubiquitous quantum mechanical model with which it
is possible to describe quite successfully, for instance, collective oscillations in molecules or
in solids. The Hamilton operator of a one-dimensional harmonic oscillator with mass M and
angular frequency ω reads

Ĥ =
p̂2

2M
+
M

2
ω2x̂2 . (1.31)
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Thus, we conclude together with (1.27) and (1.30) that the corresponding time-independent
Schrödinger equation for the one-dimensional harmonic oscillator is given in coordinate repre-
sentation by (

− ~2

2M

d2

dx2
+
M

2
ω2x2

)
ψ(x) = Eψ(x) . (1.32)

It is a standard problem in quantum mechanics to solve the eigenvalue problem (1.32) together
with Dirichlet boundary conditions, i.e. the wave function ψ(x) has to vanish in the limits
x→ ±∞.

1.3.1 Kummer Differential Equation

At first we focus on the relevant physical dimensions. From the mass M and the angular
frequency ω of the harmonic oscillator follows as a characteristic length scale

l =

√
~
Mω

, (1.33)

which is called the the oscillator length. Considering a single 87Rb atom with the mass M =

87 × 1.66 10−27 kg in a harmonic trap of angular frequency ω = 2π × 100Hz, the oscillator
length amounts to l = 1.16µm. Furthermore, the relevant energy scale is given by ~ω, which
motivates to introduce the dimensionless energy

ε =
E

~ω
. (1.34)

With this the time-independent Schrödinger equation for the harmonic oscillator (1.32) is rec-
ognized to be of the form of the Weber differential equation:(

− d2

dx2
+
x2

l2

)
ψ(x) =

2ε

l2
ψ(x) . (1.35)

In the next step we introduce a dimensionless coordinate by implementing the nonlinear coor-
dinate transformation

y =
x2

l2
⇐⇒ x = l

√
y . (1.36)

Consequently this implies a transformation of the wave function according to

ψ(x) = ϕ

(
x2

l2

)
⇐⇒ ϕ(y) = ψ (l

√
y ) . (1.37)

Taking into account the chain rule of differentiation yields then

dψ

dx
=

2x

l2
dϕ

dy
, (1.38)

d2ψ

dx2
=

2

l2

(
dϕ

dy
+

2x2

l2
d2ϕ

dy2

)
, (1.39)
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so the Weber differential equation (1.35) is transformed to

y
d2ϕ

dy2
+

1

2

dϕ

dy
+
(ε

2
− y

4

)
ϕ = 0 . (1.40)

Afterwards, it turns out to be advantageous to split off the asymptotic solution. As the wave
function of the harmonic oscillator solving the Weber differential equation (1.35) can be shown
to behave asymptotically as the Gauß function

ψ(x)→ e−x
2/2l2 , x→ ±∞ , (1.41)

this implies due to (1.37) the following ansatz for the transformed wave function:

ϕ(y) = e−y/2 φ(y) . (1.42)

Taking into account the product rule of differentiation this leads to

dϕ

dy
= e−y/2

(
dφ

dy
− 1

2
φ

)
, (1.43)

d2ϕ

dy2
= e−y/2

(
d2φ

dy2
− dφ

dy
+

1

4
φ

)
, (1.44)

so (1.40) reduces to

y
d2φ

dy2
+

(
1

2
− y
)
dφ

dy
+

(
ε

2
− 1

4

)
φ = 0 . (1.45)

With this we have obtained the standard form of a Kummer differential equation (B.21) with
the parameters

a =
1

4
− ε

2
, c =

1

2
. (1.46)

As (1.45) represents a linear differential equation of second order, it has two fundamental
solutions, which are derived in detail in Appendix B. From (1.46) and (B.24) we conclude that
the Kummer differential equation (1.45) can be solved for each dimensionless energy ε and has
the general solution

φ(y) = A 1F1

(
1

4
− ε

2
;
1

2
; y

)
+B
√
y 1F1

(
3

4
− ε

2
;
3

2
; y

)
. (1.47)

Here the confluent hypergeometric function 1F1(a; c; y) is defined by the series (B.26).

1.3.2 Quantization

The quantization of the energy eigenvalues emerges only once we implement the Dirichlet
boundary condition. To this end we have to take into account the asymptotic behavaviour of
the confluent hypergeometric function 1F1(a; c; y) as determined in (B.39). Apart from some
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polynomial dependency, which is irrelevant for the present argument, we notice that both
fundamental solutions in (1.47) grow exponentially like ey, which implies due to (1.42) that
ϕ(y) ∼ ey/2. As this yields via (1.37) the leading asymptotic behaviour ψ(x) ∼ ex

2/2l2 , the
normalization integral diverges and the Dirichlet boundary condition is not fulfilled. In order
to prevent this to happen, we have to guarantee that the series (B.26) terminates at some finite
order. Due to the definition of the Pochhammer symbol (B.8) this implies the quantization
condition a = −n with n = 0, 1, 2, . . .. As we have two fundamental solutions (1.47), we have
to consider two cases. Taking into account (1.34) the first fundamental solution in (1.47) leads
to the quantized energy eigenvalues

1

4
− ε

2
= −n =⇒ En = 2~ω

(
2n+

1

2

)
, n = 0, 1, 2, . . . . (1.48)

They correspond due to (1.37) and (1.42) to the energy eigenfunctions

ψn(x) = Nn 1F1

(
−n;

1

2
;
x2

l2

)
e−x

2/2l2 , n = 0, 1, 2, . . . . (1.49)

where Nn denotes a yet to be determined normalization constant. The appearing confluent hy-
pergeometric function is identified to be a Hermite polynomial with an even index [16, (8.953.1)]:

H2n(ξ) = (−1)n
(2n)!

n!
1F1

(
−n;

1

2
; ξ2

)
e−x

2/2l2 , n = 0, 1, 2, . . . . (1.50)

Correspondingly the second fundamental solution in (1.47) implies the quantized energy eigen-
values

3

4
− ε

2
= −n =⇒ En = 2~ω

(
2n+ 1 +

1

2

)
, n = 0, 1, 2, . . . . (1.51)

together with the energy eigenfunctions

ψn(x) = Nn 1F1

(
−n;

3

2
;
x2

l2

)
e−x

2/2l2 , n = 0, 1, 2, . . . . (1.52)

They contain Hermite polynomials with an odd index according to [16, (8.953.2)]

H2n+1(ξ) = (−1)n
2(2n+ 1)!

n!
ξ 1F1

(
−n;

3

2
; ξ2

)
e−x

2/2l2 , n = 0, 1, 2, . . . . (1.53)

1.3.3 Results

Combining (1.48) and (1.51) yields the energy eigenvalues

En = ~ω
(
n+

1

2

)
, (1.54)

where the quantum numbers turn out to be the natural numbers including the zero:

n = 0, 1, 2, . . . . (1.55)
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Figure 1.1: Schematic illustration of the harmonic potential V (x) = Mω2x2/2 together with
the first three energy eigenvalues (1.54) and eigenfunctions (1.56).

Thus, the harmonic oscillator has an equidistant energy spectrum with energy spacing ~ω and
the ground-state energy ~ω/2 represents the zero-point energy. Furthermore, we read off from
(1.49), (1.50) and (1.52), (1.53) that the energy eigenfunctions are given by

ψn(x) = NnHn

(x
l

)
exp

(
− x

2

2l2

)
. (1.56)

Furthermore, Hn(x) stands for the Hermite polynomials, whose properties are listed in Ref. [16,
(8.95)]. They are defined according to

Hn(x) = (−1)nex
2 dn

dxn
e−x

2

, (1.57)

so the first five Hermite polynomials read:

H0(x) = 1 , (1.58)

H1(x) = 2x , (1.59)

H2(x) = 4x2 − 2 , (1.60)

H3(x) = 8x3 − 12x , (1.61)

H4(x) = 16x4 − 48x2 + 12 . (1.62)

From Fig. 1.1 we read off that the quantum number (1.55) directly corresponds to the number
of zeros of the energy eigenfunctions (1.56). Furthermore, the orthonormality relation of the
energy eigenfunctions (1.56) ∫ ∞

−∞
dxψ∗n(x)ψn(x) = δnm (1.63)
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allows to determine the normalization constant from the integral [16, (7.374)], yielding

Nn =

√
1√

π2nn!l
. (1.64)

1.4 Hydrogen Atom

Another important quantum mechanical system is the hydrogen atom. Here one is interested
in describing the possible states of an electron, which has the mass M and the charge −e, in
the vicinity of a proton having the elementary charge e = 1.602× 10−19 C. The corresponding
Hamilton operator reads in SI units

Ĥ = − ~2

2M
∆− e2

4πε0|x|
(1.65)

with the vacuum dielectric constant ε0 = 8.854 × 10−12 C/Vm. Thus, from (1.27) and (1.30)
follows that the corresponding time-independent Schrödinger equation for the hydrogen atom
in coordinate representation is given by(

− ~2

2M
∆− e2

4πε0|x|

)
ψ(x) = Eψ(x) . (1.66)

At first one recognizes that the underlying Coulomb potential is isotropic. Therefore, it is
appropriate to rewrite (1.66) in terms of the spherical coordinates r, ϑ, ϕ:[

− ~2

2M

(
∂2

∂r2
+

2

r

∂

∂r
− L̂2

~2r2

)
− e2

4πε0r

]
ψ(r, ϑ, ϕ) = Eψ(r, ϑ, ϕ) . (1.67)

Here the angle dependences of the Laplace operator are contained in the square of the angular
momentum operator

L̂2 = −~2

(
∂2

∂ϑ2
+

cosϑ

sinϑ

∂

∂ϑ
+

1

sin2 ϑ

∂

∂ϕ2

)
. (1.68)

Solving (1.67) together with Dirichlet boundary conditions also represents a standard problem
in quantum mechanics. At first, we recognize that (1.67) is a separable, partial differential
equation which can be solved in terms of special functions. To this end we separate angular
and radial dependences of the energy eigenfunctions by factorizing according to

ψ(r, ϑ, ϕ) = Y (ϑ, ϕ)R(r) . (1.69)

1.4.1 Angular Part

In the lecture Quantum Mechanics I it is worked out in detail that the angular part of the
energy eigenfunction Y (ϑ, ϕ) turns out to be a common eigenfunction of the square of the
angular momentum operator L̂2 and the z-component of the angular momentum operator

L̂z =
~
i

∂

∂ϕ
. (1.70)
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Thus, these so-called spherical harmonics Ylm(ϑ, ϕ) fulfill

L̂2Ylm(ϑ, ϕ) = ~2l(l + 1)Ylm(ϑ, ϕ) , (1.71)

L̂zYlm(ϑ, ϕ) = ~mYlm(ϑ, ϕ) (1.72)

and depend on the angular quantum number

l = 0, 1, 2, . . . (1.73)

as well as the magnetic quantum number

m = −l,−l + 1, . . . , l − 1, l . (1.74)

They are defined according to [12, Sect. 5.3]

Ylm(ϑ, ϕ) =

√
2l + 1

4π

(l −m)!

(l +m)!
P

(m)
l (cosϑ)eimϕ (1.75)

with the associated Legendre polynomials

P
(m)
l (x) = (−1)m(1− x2)m/2

dm

dxm
Pl(x) (1.76)

following from the Legendre polynomials

Pl(x) =
1

2ll!

dl

dxl
(x2 − 1)l . (1.77)

Note that the the associated Legendre polynomials (1.76) satisfy recurrence relations [16,
(8.733.2)]

xP
(m)
l (x) =

l + 1−m
2l + 1

P
(m)
l+1 (x) +

l +m

2l + 1
P

(m)
l−1 (x) . (1.78)

and that the Legendre polynomials (1.77) obey the differential equation [16, (8.910)]

(1− x2)P ′′l (x)− 2xP ′l (x) + l(l + 1)Pl(x) = 0 . (1.79)

The first Legendre polynomials read [16, (8.912)]

P0(x) = 1 , P1(x) = x , P2(x) =
1

2

(
3x2 − 1

)
, P3(x) =

1

2

(
5x3 − 3x

)
. (1.80)

Thus, the spherical harmonics for l = 0 and l = 1 read explicitly

Y00(ϑ, ϕ) =
1√
4π

, Y10(ϑ, ϕ) =

√
3

4π
cosϑ , Y1±1(ϑ, ϕ) = ∓

√
3

8π
sinϑe±iϕ . (1.81)

A graphical representation of the spherical harmonics up to l = 3 is provided by Fig. 1.2. Note
that the spherical harmonics (1.75) are normalized according to∫ π

0

dϑ sinϑ

∫ 2π

0

dϕY ∗lm(ϑ, ϕ)Yl′m′(ϑ, ϕ) = δll′δmm′ . (1.82)
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Figure 1.2: Graphical representation of the first spherical harmonics up to l = 3.

1.4.2 Radial Part

Inserting the separation ansatz (1.69) into the time-independent Schrödinger equation (1.67)
and taking into account (1.71) yields a second-order ordinary differential equation for the yet
undetermined radial wave function R(r):[

− ~2

2M

(
d2

dr2
+

2

r

d

dr

)
+

~2l(l + 1)

2Mr2
− e2

4πε0r

]
R(r) = ER(r) . (1.83)

One can get rid of the first derivative via the ansatz

R(r) =
u(r)

r
. (1.84)

Indeed, with this we have

dR

dr
=

1

r

du

dr
− 1

r2
u , (1.85)

d2R

dr2
=

1

r

d2u

dr2
− 2

r2

du

dr
+

2

r3
u , (1.86)

so the differential equation (1.69) reduces to[
− ~2

2M

d2

dr2
+

~2l(l + 1)

2Mr2
− e2

4πε0r

]
u(r) = Eu(r) . (1.87)

Thus, u(r) solves a one-dimensional Schrödinger equation with an effective potential, which
consists of a centrifugal barrier and the Coulomb potential. In the next step we analyze the
behaviour of u(r) for both small and large radii r. Considering the former case reduces (1.87)
to [

d2

dr2
− l(l + 1)

r2

]
u(r) = 0 , r → 0 . (1.88)

This differential equation is solved by the ansatz u(r) = rα provided that the parameter α is
given by α1 = l+1 and α2 = −l. The second solution has to be neglected in order to guarantee
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the normalizability of the radial wave function. Thus we conclude that u(r) reads for small
radii

u(r)→ rl+1 , r → 0 . (1.89)

Correspondingly, for larger radii (1.87) reduces to(
d2

dr2
+

2ME

~2

)
u(r) = 0 , r →∞ . (1.90)

As we aim for obtaining a bound energy eigenfunctions, we can assume that the energy E is
negative. This suggests introducing the abbreviation

κ =

√
−2ME

~2
, E < 0 , (1.91)

so that (1.90) simplifies to (
d2

dr2
− κ2

)
u(r) = 0 , r →∞ . (1.92)

From the two solutions u1(r) = e−κr, u2(r) = eκr the second one has to be discarded due to the
Dirichlet boundary condition, yielding finally for large radii

u(r)→ e−κr r →∞ . (1.93)

It is now suggestive to combine the small and the large distance behaviour of u(r) in (1.89)
and (1.93) by the ansatz

u(r) = rl+1e−κrv(r) , (1.94)

where the newly introduced function v(r) covers the radial wave function for intermediate
distances. Calculating the first derivative

du

dr
=

[
r
dv

dr
+ (l + 1− κr)v

]
rle−κr (1.95)

and the second derivative

d2u

dr2
=

{
r
d2v

dr2
+ 2 (l + 1− κr) dv

dr
+

[
(l + 1)l

r
− 2κ(l + 1) + κ2r

]
v

}
rle−κr (1.96)

we obtain from (1.87) by taking into account (1.91){
r
d2

dr2
+ 2 (l + 1− κr) d

dr
−
[
2κ(l + 1)− e2M

2πε0~2

]}
v(r) = 0 . (1.97)

Introducing the dimensionless coordinate y = 2κr via

φ(y) = v
( y

2κ

)
⇐⇒ v(r) = φ(2κr) (1.98)
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finally yields [
y
d2

dy2
+ (2l + 2− y)

d

dy
−
(
l + 1− e2M

4πε0~2κ

)]
φ = 0 . (1.99)

With this we have obtained the standard form of a Kummer differential equation (B.21) with
the parameters

a = l + 1− e2M

4πε0~2κ
, c = 2l + 2 . (1.100)

The general solution of the second-order differential equation (1.99) represents according to
(B.24) a superposition of two fundamental solutions in terms of confluent hypergeometric func-
tions (B.26):

φ(y) = A 1F1

(
l + 1− e2M

4πε0~2κ
; 2l + 2; y

)
+B y−2l−1

1F1

(
−l − e2M

4πε0~2κ
;−2l; y

)
. (1.101)

Taking into account the series expansion of the confluent hypergeomtric function (B.26) and
the definition of the Pochhammer symbol (B.8) we conclude that (−2l)n vanishes for n = 1+2l

so that the second fundamental solution in (1.101) diverges and has to be excluded. Thus we
conclude that the time-independent Schrödinger equation for the hydrogen atom (1.66) can be
solved for any κ, i.e. according to (1.91) for each energy E < 0, yielding

φ(y) = A 1F1

(
l + 1− e2M

4πε0~2κ
; 2l + 2; y

)
. (1.102)

1.4.3 Energy Eigenvalues

But still we have to consider the asymptotic behaviour of the confluent hypergeometric functions
in (1.102) and check whether it is compatible with the Dirichlet boundary conditions. Similar
to the treatment of the harmonic oscillator in Subsection 1.3.2 we obtain from the confluent
hypergeometric function in (1.102) due to the asymptotics (B.39) the quantization condition

l + 1− e2M

4πε0~2κ
= −nr (1.103)

with the radial quantum number

nr = 0, 1, 2, . . . . (1.104)

This leads to the following energy eigenvalues of the hydrogen atom

En = −Ry 1

n2
(1.105)

with the principal quantum number

n = nr + l + 1 . (1.106)
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Here the relevant energy scale is provided by the Rydberg energy

Ry =
Me4

32π2ε2
0~2

, (1.107)

which characterizes the ionization energy of the hydrogen atom in its ground state. It can be
re-expressed in terms of the rest energy Mc2 of the electron according to

Ry =
1

2
Mc2α2 (1.108)

by introducing the Sommerfeld fine-structure constant

α =
e2

4π~ε0c
≈ 0.0073 ≈ 1

137
. (1.109)

Note that the latter dimensionless quantity is a fundamental physical constant, which quantifies
the strength of the electromagnetic interaction between elementary charged particles, and can
be expressed as the ratio of two length scales via

α =
λC

2πaB

. (1.110)

Here the Compton wavelength of the electron appears in the numerator

λC =
2π~
Mc

, (1.111)

stemming from unifying quantum mechanics with special relativity. And the denominator is
given by the Bohr radius as the characteristic length scale of the hydrogen atom

aB =
4πε0~2

Me2
, (1.112)

which already appears within the Bohr model. Furthermore, we note that Rydberg energy
(1.107) and Bohr radius (1.112) are related via

Ry =
~2

2Ma2
B

. (1.113)

Thus, restricting the electron to a length scale of the Bohr radius aB yields a kinetic energy in
form of the Rydberg energy Ry. With the electron mass M = 9.109 × 10−31 kg this leads for
the Compton wavelength (1.111) and the Bohr radius (1.112) to the value λC = 2.426×10−12 m
and aB = 5.292× 10−11 m, respectively. Furthermore, the rest energy Mc2 of the electron turns
out to be 0.511 MeV, yielding for the Rydberg energy (1.108) the value

Ry =
0.511MeV

2(137)2
= 13.6 eV . (1.114)

Furthermore, from (1.104) and (1.106) we read off that fixing the principal quantum number
to some value

n = 1, 2, 3, . . . (1.115)
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implies that the angular quantum number l is restricted to

l = 0, 1, 2, . . . , n− 1 . (1.116)

Together with the magnetic quantum number (1.74) the corresponding energy eigenfunctions
of the electron ψnlm(x) are indexed with the three quantum numbers n, l, and m. Thus, the
energy eigenvalue (1.105) for some principal quantum number n has the degeneracy

dn =
n−1∑
l=0

(2l + 1) = n2 . (1.117)

Note that each degeneracy occurs, in principle, twice as the electron has in addition an internal
degree of freedom called spin, which can point up- or downwards. For the time being, however,
we simplify our discussion by neglecting this additional spin degree of freedom.

1.4.4 Radial Eigenfunctions

Combining (1.84), (1.94), (1.98), (1.102), and (1.103) the radial wave function of the hydrogen
atom reads

R(r) = Arle−κr1F1 (−nr; 2l + 2; 2κr) . (1.118)

Here the confluent hypergeometric function coincides according to [16, (8.972.1)] with a La-
guerre polynomial

L(α)
n (x) =

(
n+ α

n

)
1F1 (−n;α + 1;x) . (1.119)

Note the Laguerre polynomials are defined via the Rodrigues formula [16, (8.970)]

L(α)
n (x) =

1

xαn!
ex

dn

dxn
(
e−xxn+α

)
, (1.120)

which reduces to

L(α)
n (x) =

n∑
ν=0

(
n+ α

n− ν

)
(−x)ν

ν!
(1.121)

with the binomial coefficient (
α

n

)
=

α!

n!(α− n)!
. (1.122)

Furthermore, we remark that the Hermite polynomials appearing for the harmonic oscillator
are special cases of the Laguerre polynomials [16, (8.972.2), (8.972.3)]:

H2n(x) = (−1)n22nn!L(−1/2)
n (x2) , (1.123)

H2n+1(x) = (−1)n22n+1n!L(1/2)
n (x2) . (1.124)
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Thus, taking into account (1.91), (1.103), (1.105), (1.106), (1.113), and (1.118) as well as
normalizing the radial eigenfunction via∫ ∞

0

dr r2Rnl(r)Rn′l(r) = δnn′ , (1.125)

the radial contribution to the energy eigenfunction (1.69) turns out to be

Rnl(r) =
2

n2a
3/2
B

√
(n− l − 1)!

(n+ l)!

(
2r

naB

)l
L

(2l+1)
n−l−1

(
2r

naB

)
exp

(
− r

naB

)
. (1.126)

Consequently, the lowest radial energy eigenfunctions read for n = 1

R10(r) =
2

a
3/2
B

exp

(
− r

aB

)
(1.127)

and n = 2

R20(r) =
1

2
√

2a
3/2
B

(
2− r

aB

)
exp

(
− r

2aB

)
, R21(r) =

1

2
√

6a
3/2
B

r

aB

exp

(
− r

2aB

)
, (1.128)

respectively.

1.4.5 Energy Eigenfunctions

Thus, we conclude from (1.82) and (1.125) that the energy eigenfunctions (1.69) are orthonor-
mal: ∫ ∞

0

drr2

∫ π

0

dϑ sinϑ

∫ 2π

0

dϕψ∗n′l′m′(r, ϑ, ϕ)ψnlm(r, ϑ, ϕ) = δnn′δll′δmm′ . (1.129)

Finally, we mention for the purpose of illustration the lowest energy eigenfunctions as they
follow from (1.69), (1.81), (1.127), and (1.128). The ground-state wave functions reads

ψ100(r, ϑ, ϕ) =
1

√
πa

3/2
B

exp

(
− r

aB

)
(1.130)

and has the energy E1 = −1Ry. The principal quantum number n = 2 defines the four-
fold degenerate first excited state with the energy E2 = −Rb/4 with the respective energy
eigenfunctions

ψ200(r, ϑ, ϕ) =
1

4
√

2πa
3/2
B

(
2− r

aB

)
exp

(
− r

2aB

)
, (1.131)

ψ210(r, ϑ, ϕ) =
1

4
√

2πa
3/2
B

r

aB

exp

(
− r

2aB

)
cosϑ , (1.132)

ψ21±1(r, ϑ, ϕ) =
±1

8
√
πa

3/2
B

r

aB

exp

(
− 2r

2aB

)
sinϑ e±iϕ . (1.133)

Figure 1.3 shows the plots of the radial probability densities Pnl(r) = r2R2
nl(r) for the first

three principle quantum numbers n. Also here we can read off a node rule, namely the zeros
of the radial wave functions Rnl(r) correspond to the radial quantum number nr = n − l − 1.
This is due to the fact that the radial quantum number nr appears in the radial contribution
to the energy eigenfunction (1.126) as the lower index of the Laguerre polynomial.



Figure 1.3: Radial probability densities Pnl(r) = r2R2
nl(r) for the first three principle quantum

numbers n.
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Chapter 2

Time-Independent Non-Degenerate
Perturbation Theory

In quantum mechanics only a quite limited number of systems can be treated exactly. Among
them are, for instance, a few one-dimensional problems as, for instance, diverse box problems or
the harmonic oscillator. Another class of exactly solvable problems are spherically symmetric
problems like the hydrogen atom as, due to symmetry reasons, they can be reduced to effective
one-dimensional ones. Therefore, there is a need for approximation methods which allow to
study non-exactly solvable problems at least approximately. To this end it is advantageous
to provide an introduction to time-independent perturbation theory, which deals with a time-
independent Hamiltonian operator Ĥ decomposing into an unperturbed contribution Ĥ0 and a
perturbation V̂ :

Ĥ = Ĥ0 + V̂ . (2.1)

Depending on whether non-degenerate or degenerate eigenvalues of the underlying unperturbed
Hamilton operator Ĥ0 are considered, one distinguishes between non-degenerate and degenerate
perturbation theory.

2.1 Schrödinger Equation

In the former case one aims at solving the Schrödinger equation

Ĥ|ψn〉 = En|ψn〉 (2.2)

for the perturbed Hamilton operator (2.1). Here it is assumed that the eigenvalues E(0)
n of the

unperturbed Hamilton operator Ĥ0 are known together with their eigenstates |ψ(0)
n 〉, i.e. its

corresponding eigenvalue problem

Ĥ0|ψ(0)
n 〉 = E(0)

n |ψ(0)
n 〉 (2.3)

19
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is already solved. It is supposed that the eigenvalues E(0)
n are not degenerate as well as that

the eigenstates |ψ(0)
n 〉 are orthonormal

〈ψ(0)
n |ψ(0)

m 〉 = δnm (2.4)

and represent a basis ∑
n

|ψ(0)
m 〉〈ψ(0)

n | = 1 . (2.5)

For the following derivation it is useful to consider the family of Hamilton operators

Ĥ(λ) = Ĥ0 + λV̂ , (2.6)

as it is then easier to monitor the different perturbative orders. Thus, also the corresponding
eigenvalues En(λ) and eigenstates |ψn(λ)〉 are considered to be functions of the parameter λ,
which reduce for λ = 0 and λ = 1 to the respective unperturbed and perturbed quantities. For
technical reasons we consider the family parameter λ to be small, so that it is suggestive to
expand both En(λ) and |ψn(λ)〉 in a Taylor series with respect to the parameter λ:

En(λ) =
∞∑
ν=0

E(ν)
n λν = E(0)

n + E(1)
n λ+ E(2)

n λ2 + . . . , (2.7)

|ψn(λ)〉 =
∞∑
ν=0

|ψ(ν)
n 〉λν = |ψ(0)

n 〉+ |ψ(1)
n 〉λ+ |ψ(2)

n 〉λ2 + . . . . (2.8)

Note that the existence of the Taylor series (2.7) and (2.8) is not obvious at all and represents, in
fact, a basic assumption of time-independent non-degenerate perturbation theory. For instance,
the function f(x) = e−1/x has a vanishing Taylor series but a non-vanishing Laurent series
around the expansion point x0 = 0. Although a physicist might have the impression that this
as a rather far-fetched mathematical counterexample, this is not the case. For instance, the
Bardeen-Cooper-Schrieffer theory yields for the critical temperature of superconductivity the
non-perturbative result TC ∼ e−1/N(EF)g, where N(EF) denotes the electronic density of states
at the Fermi edge and g the electron-phonon interaction strength.

Inserting both Taylor series (2.7) and (2.8) into the eigenvalue problem

Ĥ(λ)|ψn(λ)〉 = En(λ)|ψn(λ)〉 (2.9)

of the family of Hamilton operators (2.6) we get

Ĥ0

∞∑
ν=0

|ψ(ν)
n 〉λν + V̂

∞∑
ν=0

|ψ(ν)
n 〉λν+1 =

∞∑
ν=0

∞∑
µ=0

E(ν)
n |ψ(µ)

n 〉λν+µ . (2.10)

Here we shift the index ν in the second term according to ν ′(ν) = ν + 1. Furthermore, we
change the index ν in the third term via ν ′(ν) = ν+µ, see Fig. 2.1, due to the Cauchy product

∞∑
ν=0

∞∑
µ=0

aνbµ =
∞∑
ν′=0

ν′∑
µ=0

aν′−µbµ . (2.11)
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Figure 2.1: Changing the summation indices within the Cauchy product (2.11).

This converts (2.10) to

Ĥ0

∞∑
ν=0

|ψ(ν)
n 〉λν + V̂

∞∑
ν=1

|ψ(ν−1)
n 〉λν =

∞∑
ν=0

(
ν∑

µ=0

E(ν−µ)
n |ψ(µ)

n 〉

)
λν . (2.12)

In zeroth order, i.e. ν = 0, Eq. (2.12) reduces to the unperturbed eigenvalue problem (2.3),
whereas the higher orders give

Ĥ0|ψ(ν)
n 〉+ V̂ |ψ(ν−1)

n 〉 =
ν∑

µ=0

E(ν−µ)
n |ψ(µ)

n 〉 , ν = 1, 2, . . . . (2.13)

In the following we analyze in detail the first two perturbative orders, i.e. ν = 1 and ν = 2, for
which we have

Ĥ0|ψ(1)
n 〉+ V̂ |ψ(0)

n 〉 = E(1)
n |ψ(0)

n 〉+ E(0)
n |ψ(1)

n 〉 , (2.14)

Ĥ0|ψ(2)
n 〉+ V̂ |ψ(1)

n 〉 = E(2)
n |ψ(0)

n 〉+ E(1)
n |ψ(1)

n 〉+ E(0)
n |ψ(2)

n 〉 . (2.15)

2.2 Normalization

The task is now to solve both equations (2.14) and (2.15) for E(1)
n , |ψ(1)

n 〉 and E
(2)
n , |ψ(2)

n 〉,
respectively. However, a detailed investigation shows that (2.14) and (2.15) stemming from
the eigenvalue problem (2.6) are not sufficient to determine the eigenstates |ψ(1)

n 〉, |ψ(2)
n 〉 and,

thus, also the eigenenergies E(1)
n , E(2)

n . In order to solve each perturbative order one additional
condition turns out to be needed. This is provided by demanding without loss of generality
that also the eigenstates |ψn(λ)〉 are orthonormal for each λ:

〈ψn(λ)|ψm(λ)〉 = δn,m . (2.16)

Inserting the Taylor series (2.8) into (2.16) one gets

∞∑
ν=0

∞∑
µ=0

〈ψ(ν)
n |ψ(µ)

m 〉λν+µ = δn,m . (2.17)
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Taking into account again the Cauchy product (2.11) converts (2.17) to

∞∑
ν=0

(
ν∑

µ=0

〈ψ(ν−µ)
n |ψ(µ)

m 〉

)
λν = δn,m . (2.18)

In zeroth order, i.e. ν = 0, Eq. (2.18) leads to the orthonormality of the unperturbed eigenstates
|ψ(0)
m 〉:

〈ψ(0)
n |ψ(0)

m 〉 = δn,m , (2.19)

whereas in each higher order ν > 0 one additional condition emerges:
ν∑

µ=0

〈ψ(ν−µ)
n |ψ(µ)

m 〉 = 0 . (2.20)

Concretely, they read in the first two perturbative orders, i.e. ν = 1 and ν = 2:

〈ψ(1)
n |ψ(0)

m 〉+ 〈ψ(0)
n |ψ(1)

m 〉 = 0 , (2.21)

〈ψ(2)
n |ψ(0)

m 〉+ 〈ψ(1)
n |ψ(1)

m 〉+ 〈ψ(0)
n |ψ(2)

m 〉 = 0 . (2.22)

Now we show that, indeed, (2.14), (2.21) and (2.15), (2.22) allow to determine E(1)
n , |ψ(1)

n 〉 and
E

(2)
n , |ψ(2)

n 〉, respectively. To this end we use the fact that the unperturbed eigenstates |ψ(0)
l 〉

are complete, i.e. they represent a basis for the underlying Hilbert space. Consequently each
state can be expanded with respect to the basis states |ψ(0)

l 〉. This is valid, for instance, for
both perturbative corrections |ψ(1)

n 〉 and |ψ(2)
n 〉:

|ψ(1)
n 〉 =

∑
l

c
(1)
nl |ψ

(0)
l 〉 , (2.23)

|ψ(2)
n 〉 =

∑
l

c
(2)
nl |ψ

(0)
l 〉 . (2.24)

2.3 First Order

Inserting (2.23) into (2.14) yields initially∑
l

c
(1)
nl Ĥ0|ψ(0)

l 〉+ V̂ |ψ(0)
n 〉 = E(1)

n |ψ(0)
n 〉+

∑
l

c
(1)
nl E

(0)
n |ψ

(0)
l 〉 . (2.25)

Multiplying from the left with 〈ψ(0)
m | as well as taking into account both the eigenvalue problem

(2.3) and the orthonormality (2.19) for the unperturbed system reduces (2.25) to

E(0)
m c(1)

nm + Vmn = E(1)
n δnm + E(0)

n c(1)
nm . (2.26)

Here we have introduced as an abbreviation the matrix elements of the perturbation V̂ with
respect to the unperturbed eigenstates:

Vmn = 〈ψ(0)
m |V̂ |ψ(0)

n 〉 . (2.27)
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In case that n = m we read off from (2.26) the first-order correction for eigenenergies:

E(1)
n = Vnn . (2.28)

And in case of n 6= m Eq. (2.26) can be solved for the coefficients c(1)
nm, yielding

c(1)
nm =

Vmn

E
(0)
n − E(0)

m

, n 6= m. (2.29)

Thus, analyzing the Schrödinger equation in first order (2.14) does not allow to fix the diagonal
coefficient c(1)

nn . Inserting (2.29) into (2.23) we obtain as an intermediate result

|ψ(1)
n 〉 = c(1)

nn |ψ(0)
n 〉+

∑
m 6=n

Vmn

E
(0)
n − E(0)

m

|ψ(0)
m 〉 , (2.30)

which contains the yet unknown coefficient c(1)
nn . Therefore, it becomes relevant to study also

the additional condition (2.21), which followed from the orthonormality (2.16). Inserting (2.23)
into (2.21), using the sesquilinearity of the scalar product, i.e.

〈cψ1|ψ2〉 = c∗〈ψ1|ψ2〉 , 〈ψ1|cψ2〉 = c〈ψ1|ψ2〉 , (2.31)

and taking into account (2.19) one gets

c(1)
nm +

(
c(1)
nm

)∗
= 0 . (2.32)

Due to (2.29) we observe that (2.32) is fulfilled in case of n 6= m as the hermiticity of the
perturbation V̂ implies the hermiticity of the matrix element (2.27):

Vmn = V ∗nm . (2.33)

But for n = m we conclude from (2.33) that the coefficient c(1)
nn must be imaginary:

c(1)
nn = iγ(1)

n , γn ∈ R . (2.34)

Due to (2.8), (2.30), and (2.32) the eigenstate reads up to first order in λ:

|ψn(λ)〉 =
(
1 + iγ(1)

n λ
)
|ψ(0)
n 〉+ λ

∑
m 6=n

Vmn

E
(0)
n − E(0)

m

|ψ(0)
m 〉+ . . . . (2.35)

Up to first order in λ this can be rearranged to

|ψn(λ)〉 = eiγ
(1)
n λ

(
|ψ(0)
n 〉+ λ

∑
m 6=n

Vmn

E
(0)
n − E(0)

m

|ψ(0)
m 〉+ . . .

)
, (2.36)

so that γ(1)
n describes a phase factor. As phase factors can be arbitrarily chosen in quantum

mechanics, one can set without loss of generality

γ(1)
n = 0 . (2.37)



24CHAPTER 2. TIME-INDEPENDENT NON-DEGENERATE PERTURBATION THEORY

With this the perturbed eigenstate reads up to first order

|ψn(λ)〉 = |ψ(0)
n 〉+ λ

∑
m 6=n

Vmn

E
(0)
n − E(0)

m

|ψ(0)
m 〉+ . . . (2.38)

and we conclude for later purposes from (2.34)

c(1)
nn = 0 . (2.39)

Thus, in first order the orthonormality condition was needed to fix the correction of the eigen-
state, but it only led to an irrelevant phase factor. This changes now in second order, where the
orthonormality condition turns out to contribute to a correction of the eigenstate apart from
containing another irrelevant phase factor.

2.4 Second Order

In second order the insertion of (2.23), (2.24) into (2.15) leads to∑
l

c
(2)
nl Ĥ0|ψ(0)

l 〉+
∑
l

c
(1)
nl V̂ |ψ

(0)
l 〉 = E(2)

n |ψ(0)
n 〉+

∑
l

E(1)
n c

(1)
nl |ψ

(0)
l 〉+

∑
l

E(0)
n c

(2)
nl |ψ

(0)
l 〉 . (2.40)

Again multiplying from the left with 〈ψ(0)
m |, taking into account both the eigenvalue problem

(2.3) and the orthonormality (2.19) for the unperturbed system as well as using the matrix
element (2.27) leads to

E(0)
m c(2)

nm +
∑
l

Vmlc
(1)
nl = E(2)

n δnm + E(1)
n c(1)

nm + E(0)
n c(2)

nm . (2.41)

Evaluating (2.41) for n = m determines the energy correction E(2)
n in the form

E(2)
n =

∑
l

Vnlc
(1)
nl − E

(1)
n c(1)

nn . (2.42)

Taking into account (2.28), (2.29), (2.33), and (2.39) this reduces to the final expression:

E(2)
n =

∑
l 6=n

|Vnl|2

E
(0)
n − E(0)

l

, (2.43)

Furthermore, in case of n 6= m Eq. (2.41) can be solved for the coefficient c(2)
nm:

c(2)
nm =

∑
l

Vml

E
(0)
n − E(0)

m

c
(1)
nl −

E
(1)
n

E
(0)
n − E(0)

m

c(1)
nm , n 6= m. (2.44)

Inserting therein (2.28), (2.29), and (2.39) one finally gets

c(2)
nm =

∑
l 6=n

VmlVln(
E

(0)
n − E(0)

m

)(
E

(0)
n − E(0)

l

) − VnnVmn(
E

(0)
n − E(0)

m

)2 , n 6= m. (2.45)
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Thus, also in second-order the diagonal coefficient c(2)
nn is not determined from the Schrödinger

equation, leading with (2.24) and (2.45) to the following intermediate result for the perturbed
eigenstate

|ψn(λ)〉 =
(
1 + c(2)

nnλ
2
)
|ψ(0)
n 〉+

∑
m6=n

λ Vmn

E
(0)
n − E(0)

m

(2.46)

+λ2

∑
l 6=n

VmlVln(
E

(0)
n − E(0)

m

)(
E

(0)
n − E(0)

l

) − VnnVmn(
E

(0)
n − E(0)

m

)2


 |ψ(0)

m 〉+ . . . .

Therefore, also the second order of the orthonormality condition (2.22) has to be considered.
Inserting therein (2.24) and using (2.31) one gets

c(2)
nm +

∑
l

(
c

(1)
nl

)∗
c

(1)
ml +

(
c(2)
nm

)∗
= 0 . (2.47)

In case of n 6= m one obtains together with (2.29), (2.33), and (2.45)

∑
l 6=n,m

VnlVlm

 1(
E

(0)
m − E(0)

n

)(
E

(0)
m − E(0)

l

) (2.48)

+
1(

E
(0)
n − E(0)

m

)(
E

(0)
n − E(0)

l

) +
1(

E
(0)
n − E(0)

l

)(
E

(0)
m − E(0)

l

)
 = 0 , n 6= m,

which is, indeed valid due to the identity
1

x− y
1

x− z
+

1

y − x
1

y − z
+

1

z − x
1

z − y
= 0 , x 6= y 6= z 6= x . (2.49)

On the other hand, setting n = m in Eq. (2.47) yields due to (2.39)

c(2)
nn +

∑
l 6=n

(
c

(1)
nl

)∗
c

(1)
nl +

(
c(2)
nn

)∗
= 0 . (2.50)

This can be solved for the yet unknown second-order diagonal coefficient c(2)
nn , yielding together

with (2.29)

c(2)
nn = −1

2

∑
l 6=n

|Vln|2(
E

(0)
n − E(0)

l

)2 + iγ(2)
n , (2.51)

where iγ(2)
n denotes a second-order arbitrary imaginary contribution. Inserting the finding

(2.51) into the perturbed eigenstate (2.46), we get up to second order in λ

|ψn(λ)〉 = eiγ
(2)
n λ2


1− 1

2

∑
l 6=n

|Vln|2(
E

(0)
n − E(0)

l

)2 λ
2

 |ψ(0)
n 〉+

∑
m6=n

λ Vmn

E
(0)
n − E(0)

m

(2.52)

+λ2

∑
l 6=n

VmlVln(
E

(0)
n − E(0)

m

)(
E

(0)
n − E(0)

l

) − VnnVmn(
E

(0)
n − E(0)

m

)2


 |ψ(0)

m 〉+ . . .

 .
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As in first order we can also argue in second order that the phase factor can be chosen arbitrarily,
so we demand without loss of generality

γ(2)
n = 0 . (2.53)

2.5 Second-Order Result

Inserting (2.53) into (2.52) and setting λ = 1 we obtain the following second-order result for
the eigenstates:

|ψn〉 =

1− 1

2

∑
l 6=n

|Vln|2(
E

(0)
n − E(0)

l

)2

 |ψ(0)
n 〉 (2.54)

+
∑
m 6=n

 Vmn

E
(0)
n − E(0)

m

+
∑
l 6=n

VmlVln(
E

(0)
n − E(0)

m

)(
E

(0)
n − E(0)

l

) − VnnVmn(
E

(0)
n − E(0)

m

)2

 |ψ(0)
m 〉+ . . . .

Here the first line reveals that the diagonal corrections are of second order, whereas the off-
diagonal corrections in the second line are at least of first order. By construction these eigen-
states are orthonormal with respect to each other. Furthermore, the corresponding second-order
result for the eigenenergies follows from (2.7), (2.28), and (2.43) as well as setting λ = 1:

En = E(0)
n + Vnn +

∑
m6=n

|Vnm|2

E
(0)
n − E(0)

m

+ . . . . (2.55)

Note that the second-order term always leads to a decrease of the ground-state energy with
quantum number n0 as En0 < E

(0)
m holds for all quantum numbers m > n0. Finally we discuss

the validity range of this perturbative result. To this end we argue a posteriori that such
a perturbative result can only be reasonable provided that a correction term in one order is
smaller than the previous order, yielding the condition∣∣∣∣ Vnm

E
(0)
n − E(0)

m

∣∣∣∣� 1 , n 6= m. (2.56)

Provided that this condition is violated, one can not expect convergence of the perturbative
series.

2.6 Anharmonic Oscillator

One of the most studied perturbative problems is the anharmonic oscillator. It appears
whereever a particle can explore a potential landscape farther away from a local minimum.
This occurs, for instance, in solid-state physics provided that the thermal energy allows larger
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elongations for the atoms, yielding anharmonic interactions for the phonons. The Hamilton
operator of the anharmonic oscillator

Ĥ =
p̂2

2M
+
M

2
ω2x̂2 + gx̂4 (2.57)

is of the form (2.1) and contains as the unperturbed system the harmonic oscillator (1.31),
whereas the anharmonicity represents the perturbation

V̂ = gx̂4 . (2.58)

Let us determine the first-order correction to the unperturbed energy eigenvalues (1.54) in
the coordinate representation. According to (2.27) and (2.28) this amounts to evaluating the
integral

E(1)
n = g

∫ ∞
−∞

dx x4
∣∣ψ(0)

n (x)
∣∣2 . (2.59)

Inserting therein (1.56) and introducing the dimensionless coordinate ξ = x/l with the oscillator
length (1.33) then yields

E(1)
n =

g√
π2nn!

(
~
Mω

)2 ∫ ∞
−∞

dξ ξ4 [Hn(ξ)]2 e−ξ
2

. (2.60)

In order to solve the integral a recursion relation of the Hermite polynomials is of use [16,
(8.952.2)]

ξHn(ξ) =
1

2
Hn+1(ξ) + nHn−1(ξ) , (2.61)

which directly follows from the definition of the Hermite polynomials (1.57). Successively
iterating (2.61) yields at first

ξ2Hn(ξ) =
1

4
Hn+2(ξ) +

(
n+

1

2

)
Hn(ξ) + n(n− 1)Hn−2(ξ) , (2.62)

ξ3Hn(ξ) =
1

8
Hn+3(ξ) +

3(n+ 1)

4
Hn+1(ξ) +

3

2
n2Hn−1(ξ) + n(n− 1)(n− 2)Hn−3 , (2.63)

and then finally

ξ4Hn(ξ) =
1

16
Hn+4(ξ) +

2n+ 3

4
Hn+2(ξ) +

3(2n2 + 2n+ 1)

4
Hn(ξ)

+
2n3 − 3n2 + 1

2
Hn−2(x) + n(n− 1)(n− 2)(n− 3)Hn−4(ξ) . (2.64)

Multiplying this expression with Hn(ξ) and integrating over the whole real axis, only the term
in (2.64) contributes due to the orthonormality relation (1.63) of the energy eigenfunctions
(1.56). With this the first-order energy correction of the anharmonic oscillator reads

E(1)
n = g

(
~
Mω

)2
3(2n2 + 2n+ 1)

4
. (2.65)
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Re g

a) b)

Figure 2.2: Comparing schematically analytic properties of convergent a) and asymptotic b)
series.

2.7 General Remarks

Let us finalize this chapter by making some general remarks concerning perturbation theory.
Indeed, this is a useful method in order to gain approximate information of real physical systems.
Perturbation expansions are based on the fact that quite often a physical quantity f can be
exactly calculated for a special value g0 of a coupling constant g. The whole function f(g)

is then determined perturbatively in the deviation g − g0 from this special value g0. For the
following generic discussion we assume without loss of generality that g0 = 0 and that the
respective weak-coupling coefficients fn are known up to some order N :

fN(g) =
N∑
n=0

fng
n . (2.66)

A prominent example for such a weak-coupling series is the anomalous magnetic moment of
the electron ge, the so-called Landé factor, which is expanded in powers of the Sommerfeld
fine-structure constant (1.109). Theoretical calculations have been performed up to the order
N = 3 [19] and yield a numerical value which coincides within the error bars with the exper-
imental value ge = 2.0023193043(74) [20]. According to a comparison of Richard Feynman,
this precision corresponds to a resolution, where the thickness of a single hair is resolvable
by looking from the West to the East Coast of the United States of America or vice versa
[21]. It is this impressive agreement which has established quantum electrodynamics as the
prototype for relativistic quantum field theories. Furthermore, one should be aware that this
theory-experiment agreement for the anomalous magnetic moment of the electron is the most
accurate precise one in all natural sciences.

However, already in 1952, Freeman Dyson pointed out that the quality of this agreement
depends crucially on the smallness of the Sommerfeld fine-structure constant (1.109) [22]. He
discovered that physical quantities in quantum electrodynamics have a vanishing convergence
radius with respect to the Sommerfeld fine-structure constant α. Thus an expansion in powers of
α can never converge for any positive value of α however small it may be. In fact it turns out that
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the expansion of the anomalous magnetic moment of the electron ge in powers of the Sommerfeld
fine-structure constant α is not an example for a convergent but for an asymptotic series, see
Figure 2.2. Whereas a convergent series is expanded around a regular point g0 = 0 in the
complex g-plane and has a finite convergence radius, an asymptotic series is expanded around
a singular point g0 = 0. In the latter case, typically the negative Re g-axis does not belong to
the convergence region. Convergence occurs only in the sector of a circle, so the convergence
radius vanishes per definition. For practical purposes, both convergent and asymptotic series
have in common that they lead to good approximations as long as they are evaluated for small
coupling constants g. The difference between a convergent and an asymptotic series reveals
itself, if one investigates their properties for an increase of the order N . For a fixed value of
the coupling constant g, an increase in N leads to an improved approximation for a convergent
series as its weak-coupling coefficients fn tend to zero or are bounded in the large-order limit
n → ∞. For an asymptotic series one observes, however, that the approximation is improved
for small N but diverges for larger N . The reason for this peculiar behavior is the large-order
behavior of the weak-coupling coefficients fn. They turn out to increase factorially with n in
the limit n → ∞, yielding ultimately the vanishing convergence radius of the weak-coupling
series.

At this stage of the general discussion the question arises whether it might not be possible to
obtain more reliable results from an asymptotic series by performing a certain resummation,
which amounts to a non-perturbative approach. The crudest method to approximate f(g) is via
Padé approximants. These are rational functions with the same power series expansions as f(g).
The Padé method approximates the left-hand cut of the function f(g) in the complex g-plane by
a string of poles. A better approximation can be found by using, in addition, the knowledge of
the large-order behavior of the weak-coupling coefficients fn. This is done by a so-called Borel
transformation, which eliminates in combination with the Padé method the factorial growth
of the coefficients fn [23]. And an even more advanced method is provided by variational
perturbation theory, which systematically allows to convert weak-coupling into strong-coupling
expansions and is applicable to both quantum systems [4] and critical phenomena [24].

It turns out that also the expansion of the ground-state energy of the anharmonic oscillator
(2.57) in powers of the anharmonicity strength g is a prime example for an asymptotic series.
This particular problem allows to go systematically beyond low-order results due to a recursive
solution method for the underlying Schrödinger equation, which was developed implemented
efficiently on a computer by Bender and Wu [25]. Furthermore, this recursive method was used
to determine the large-order behavior for the weak-coupling coefficients of the ground-state
energy and to prove that the perturbative expansion is, indeed, asymptotic [26]. And in Ref. [27]
this calculation was even extended to the 250th perturbative order, so that the exponential
convergence of the corresponding resummation with the help of variational perturbation theory
could be proven [28].





Chapter 3

Time-Independent Degenerate
Perturbation Theory

The second-order result of Eqs. (2.54) and (2.55) reveals why it was essential to assume that
the unperturbed eigenenergies are non-degenerate. Namely, in case of a degeneracy one of
the denominators could vanish, so that the corresponding perturbative result for the energy
eigenfunction or the energy eigenvalues diverges. Therefore, the degenerate perturbation theory
has to be worked out from the scratch.

3.1 Motivation

To this end we consider again a decomposition of the underlying Hamilton operator according
to (2.1) but this time we assume that the unperturbed Hamilton operator Ĥ0 has several
eigenstates with the same energy eigenvalue E(0)

n :

Ĥ0|ψ(0)
nαn
〉 = E(0)

n |ψ(0)
nαn
〉 . (3.1)

Here αn denotes the degeneracy index. It runs from 1 to dn, i.e. the dn eigenstates

|ψ(0)
n1 〉, |ψ

(0)
n2 〉, . . . , |ψ

(0)
ndn
〉 (3.2)

belong to the same energy eigenvalue E(0)
n . According to the basic laws of quantum mechanics,

eigenstates to different eigenenergies are always orthonormal. Furthermore, degenerate eigen-
states can always be chosen orthonormal due to the Schmidt orthonormalization procedure [12].
Thus, we have

〈ψ(0)
nαn
|ψ(0)
mβm
〉 = δnmδαnβm . (3.3)

Solving the eigenvalue problem of the family of Hamilton operators (2.6)

Ĥ(λ)|ψ̃nαn(λ)〉 = Enαn(λ)|ψ̃nαn(λ)〉 , (3.4)
31
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it turns out generically that the degeneracy is lifted completely or at least partially, i.e. also
the energy eigenvalues Enαn(λ) turn out to depend from the degeneracy index αn. Provided
that the perturbation is switched off, i.e. one considers the limit λ→ 0, the energy eigenvalues
Enαn(λ) converge to the unperturbed energy eigenvalues E(0)

n , i.e. we have Enαn(λ) → E
(0)
n .

Thus, for small λ we expect a series

Enαn(λ) = E(0)
n + E(1)

nαn
λ+ . . . , (3.5)

which is similar to the perturbation theory without degeneracies. The crucial difference of the
perturbation theory with degeneracy is, however, that a corresponding expansion does not exist
for the eigenstates:

|ψ̃nαn(λ)〉 6= |ψ(0)
nαn
〉+ |ψ(1)

nαn
〉λ+ . . . . (3.6)

This follows already from the fact that one could have chosen for the considered degenerate
subspace instead of the basis states (3.2) also any linear combination

dn∑
βn=1

c
(0)
nαnβn

|ψ(0)
nβn
〉 . (3.7)

In contrast to that the eigenstates |ψ̃nαn(λ)〉 of the eigenvalue problem (2.6) are in general fixed
provided that the degeneracy is completely lifted. Thus, in the limit λ→ 0 one obtains unique
zeroth-order eigenstates

|ψ̃nαn(λ→ 0)〉 = |ψ̃(0)
nαn
〉 , (3.8)

which generically differ from the original unperturbed eigenstates |ψ(0)
nαn〉. But as they lie within

the considered degenerate subspace spanned the basis states (3.2), they must be represented
by a suitable linear combination of the basis states (3.2):

|ψ̃(0)
nαn
〉 =

dn∑
βn=1

c
(0)
nαnβn

|ψ(0)
nβn
〉 . (3.9)

In the following we will show that the states (3.8) turn out to be eigenstates of the perturbation
V̂ . Once they are found the eigenstates |ψ̃nαn(λ)〉 of the family of Hamilton operators (2.6) can
be represented by the Taylor series

|ψ̃nαn(λ)〉 = |ψ̃(0)
nαn
〉+ |ψ̃(1)

nαn
〉λ+ . . . . (3.10)

3.2 Derivation

Inserting the Taylor series for both the energy eigenvalues (3.5) and the eigenstates (3.10) into
the eigenvalue problem (2.6) we obtain at first

Ĥ0|ψ̃(0)
nαn
〉+ λV̂ |ψ̃(0)

nαn
〉+ λĤ0|ψ̃(1)

nαn
〉+ . . .

= E(0)
n |ψ̃(0)

nαn
〉+ λE(1)

nαn
|ψ̃(0)
nαn
〉+ λE(0)

n |ψ̃(1)
nαn
〉+ . . . . (3.11)
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As the yet to be determined eigenstates |ψ̃(0)
nαn〉 represent a linear combination of the original

unperturbed eigenstates |ψ(0)
nαn〉 according to (3.9), we conclude from (3.1) that the zeroth-order

terms on the left- and the right-hand side of Eq. (3.11) cancel each other. What remains in
lowest order are the first-order terms in (3.11):

V̂ |ψ̃(0)
nαn
〉+ Ĥ0|ψ̃(1)

nαn
〉 = E(1)

nαn
|ψ̃(0)
nαn
〉+ E(0)

n |ψ̃(1)
nαn
〉 . (3.12)

A further simplification arises from multiplying (3.12) from the left with 〈ψ(0)
nγn|, yielding

〈ψ(0)
nγn|V̂ |ψ̃

(0)
nαn
〉+ 〈ψ(0)

nγn|Ĥ0|ψ̃(1)
nαn
〉 = E(1)

nαn
〈ψ(0)

nγn|ψ̃
(0)
nαn
〉+ E(0)

n 〈ψ(0)
nγn|ψ̃

(1)
nαn
〉 . (3.13)

Indeed, taking into account again (3.1) and (3.9) we recognize that the second terms on the
left- and the right-hand side of Eq. (3.13) are equal and, thus, can be dropped:

〈ψ(0)
nγn|V̂ |ψ̃

(0)
nαn
〉 = E(1)

nαn
〈ψ(0)

nγn|ψ̃
(0)
nαn
〉 . (3.14)

This equation allows to determine both the eigenstates |ψ̃(0)
nαn〉 and the energy corrections E(1)

nαn .
To this end we insert the linear combination (3.9) and take into account the definition of the
matrix elements (2.27). Furthermore, in order to simplify the notation we drop the quantum
number n, which characterizes the degenerate subspace under investigation, and obtain

d∑
β=1

c
(0)
αβ

(
Vγβ − E(1)

α δγβ
)

= 0 . (3.15)

Thus, considering α to be fixed, we have d linear equations for the d coefficients cαβ, as γ runs
from 1 to d. This linear system of equations reads explicitly

V11 − E(1)
α V12 . . . V1d

V21 V22 − E(1)
α . . . V2d

...
...

...
...

Vd1 Vd2
... Vdd − E(1)

α



c

(0)
α1

c
(0)
α2
...
c

(0)
αd

 =


0

0
...
0

 . (3.16)

It determines d linear independent eigenvectors

c
(0)
1β , c

(0)
2β , . . . , c

(0)
dβ (3.17)

and d eigenvalues

E
(1)
1 , E

(1)
2 , . . . , E

(1)
d . (3.18)

Non-vanishing eigenvectors (3.17) follow from (3.16) only provided that the following condition
is fulfilled

Det
(
Vγβ − E(1)

α δγβ
)

= 0 . (3.19)
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This so-called secular equation reads in detail∣∣∣∣∣∣∣∣∣∣
V11 − E(1)

α V12 . . . V1d

V21 V22 − E(1)
α . . . V2d

...
...

...
...

Vd1 Vd2
... Vdd − E(1)

α

∣∣∣∣∣∣∣∣∣∣
= 0 , (3.20)

which represents a polynomial of degree d in the energy correction E
(1)
α . Thus, the energy

eigenvalues (3.18) are the eigenvalues of the matrix Vγβ. In case that some roots (3.18) of (3.20)
coincide, the degeneracy is only partially lifted. Inserting the energy corrections (3.18) one by
one into Eqs. (3.16), one obtains linear homogeneous systems of equations determining the
corresponding eigenvectors (3.17). Due to the hermiticity (2.33) of the matrix Vγβ eigenvectors
(3.17) to different energy eigenvalues (3.18) are orthogonal:

d∑
γ=1

(
c(0)
αγ

)∗
c

(0)
α′γ = 0 , E(1)

α 6= E
(1)
α′ . (3.21)

Provided that some energy eigenvalues (3.18) coincide, the corresponding eigenvectors (3.17)
can be chosen to be orthogonal without loss of generality. Together with a proper normalization
we, thus, conclude that the eigenvectors (3.17) can be assumed to be orthonormal:

d∑
γ=1

(
c(0)
αγ

)∗
c

(0)
α′γ = δαα′ . (3.22)

From this and the orthonormality (3.3) of the original basis follows then directly that also the
adapted eigenstates (3.9) turn out to be orthonormal:

〈ψ̃(0)
nαn
|ψ̃(0)
mβm
〉 = δnmδαnβm . (3.23)

In case that we would have started originally with the adapted eigenvectors |ψ̃(0)
mβn
〉 instead of

the original eigenvectors |ψ(0)
mβn
〉, then the matrix Vγβ would be diagonal and the determination

of its eigenvalues would be trivial. Note that the special case of a double degeneracy is treated
in Ref. [1, Chap. 69].

Here we will not discuss in detail higher orders of the degenerate perturbation theory. Is
the degeneracy completely lifted, then higher perturbative orders follow along quite similar
lines as in non-degenerate perturbation theory. However, in case that the degeneracy will be
lifted completely only in some higher perturbative order, the calculations turn out to be more
involved.

3.3 Stark Effect of Hydrogen Atom

In this section we assume that the hydrogen atom as the unperturbed quantum system is
treated non-relativistically as discussed in Section 1.4. According to Eq. (1.105), the energy
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eigenvalues then only depend on the principal quantum number n, so they are degenerate with
respect to the angular quantum number l and the magnetic quantum number m. Note that
relativistic corrections, which would lead to a partial lifting of that degeneracy in form of a
fine-structure splitting, are not considered. Their discussion is relegated to a later stage of the
lecture.

A paradigmatic example for degenerate perturbation theory is provided by the Stark effect of
the hydrogen atom. Thus, we investigate how the energy eigenvalues of the hydrogen atom
(1.105) are perturbatively affected by an electric field E(x) = Eez, which is spatiotemporally
constant and points without loss of generality in z-direction. Due to the fact that the electric
field E(x) is related in electrostatics to the scalar potential Φ(x) via

E(x) = −∇Φ(x) , (3.24)

the latter is given by

Φ(x) = −Ez . (3.25)

The corresponding potential energy V (x) = qΦ(x) reduces then due to the charge q = −e of
the electron to

V (x) = eEz . (3.26)

Thus, the potential energy (3.26) represents a correction of the hydrogen Hamiltonian operator
(1.65). An estimate for the atomic electric field strength is provided by

Eatom =
e

4πε0a2
B

(3.27)

and turns out to be of the order Eatom = 5.8 × 1011 V/m. As this is large in comparison with
experimentally realizable electric field strengths, the correction (3.26) can really be treated as
a perturbation.

As a preparation for the following perturbative calculations we need to know which matrix
elements

zfi =

∫
d3xψ∗nf lfmf

(x) z ψnilimi
(x) (3.28)

vanish or do not vanish. This kind of information is called selection rules. Here the wave
function ψnlm(x) of the electron in the hydrogen atom with the main quantum number n, the
angular quantum number l, and the magnetic quantum number m as introduced in Section 1.4.
In Appendix C we prove that the matrix elements (3.28) are different from zero only provided
that the selection rules

∆l = lf − li = ±1 , ∆m = mf −mi = 0 (3.29)

are fulfilled. As we will see below, these selection rules have the consequence that the leading
correction for the energy eigenvalues due to the perturbation (3.26) depends linearly (quadrat-
ically) on the electric field strength for the first excited state (ground state) of the hydrogen
atom. This effect is named after the German physicist Johannes Stark, who discovered it in
1913 and for which he was awarded with the Nobel Prize in Physics in the year 1919.
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3.3.1 Linear Stark Effect

At first we deal with the first excited state, i.e. n = 2, which has according to (1.117) a fourfold
degeneracy. Thus, we aim at determining the corresponding energy splitting E

(1)
α for these

degenerate states with the quantum numbers α ∈ {(2, 0, 0), (2, 1, 0), (2, 1,±1)}. According to
degenerate perturbation theory as well as Eqs. (2.27) and (3.15) this amounts to determine the
involved matrix elements

Vαβ =

∫
d3xψ∗α(x) eEz ψβ(x) (3.30)

for all four energy eigenfunctions (1.131)–(1.133). In view of a systematic evaluation of these
4× 4 = 16 matrix elements we sort the energy eigenfunctions in the following order:

ψ1(x) = ψ200(x) , ψ2(x) = ψ210(x) , ψ3(x) = ψ211(x) , ψ4(x) = ψ21−1(x) . (3.31)

Thus, the matrix elements are of the form

(Vαβ) =


V200,200 V200,210 V200,211 V200,21−1

V210,200 V210,210 V210,211 V210,21−1

V211,200 V211,210 V211,211 V211,21−1

V21−1,200 V21−1,210 V21−1,211 V21−1,21−1

 . (3.32)

Here we can conclude from the selection rules (3.29) that the majority of matrix elements
vanishes

(Vαβ) =


0 V200,210 0 0

V210,200 0 0 0

0 0 0 0

0 0 0 0

 (3.33)

and that the only non-vanishing matrix elements is given by

V = V200,210 = V210,200 = eE
∫
d3xψ200(x)ψ210(x)z . (3.34)

Taking into account (1.69) and (1.81) this reduces to

V =

√
3eE
4π

∫
d3x

R20(r)R21(r)

r
z2 . (3.35)

Applying again symmetry reasons we conclude∫
d3x f(r)z2 =

1

3

∫
d3x f(r)

(
x2 + y2 + z2

)
=

1

3

∫
d3x f(r)r2 =

4π

3

∫ ∞
0

dr f(r)r4 , (3.36)

so that the matrix element (3.35) leads to

V =
eE√

3

∫ ∞
0

dr R20(r)R21(r)r3 . (3.37)
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Inserting therein the radial energy eigenfunctions (1.128) we get

V =
eEaB

24

∫ ∞
0

dρ (2ρ4 − ρ5)e−ρ . (3.38)

The remaining two integrals are of the form∫ ∞
0

dρ ρke−ρ = k! , (3.39)

so the final result for the non-vanishing matrix element reads

V = −3eEaB . (3.40)

With this the secular equation (3.20) for the considered Stark effect is given by∣∣∣∣∣∣∣∣∣
−E(1) −3eEaB 0 0

−3eEaB −E(1) 0 0

0 0 −E(1) 0

0 0 0 −E(1)

∣∣∣∣∣∣∣∣∣ =
(
E(1)

)2
[(
E(1)

)2 − (3eEaB)
]

= 0 . (3.41)

The corresponding solutions result in

E
(1)
1 = −3eEaB < 0 , E

(1)
2 = E

(1)
3 = 0 , E

(1)
4 = 3eEaB > 0 . (3.42)

where we have taken into account e > 0. Determining the corresponding eigenvectors of the
4 × 4 matrix we obtain the result that the fourfold degenerate energy level n = 2 splits into
three terms:

E1 = E
(0)
2 + 3eEaB , ψ̃

(0)
1 (x) =

1√
2

[
ψ

(0)
200(x)− ψ(0)

210(x)
]
, (3.43)

E2 = E
(0)
2 , ψ̃

(0)
2 (x) = ψ

(0)
211(x) , (3.44)

E3 = E
(0)
2 , ψ̃

(0)
3 (x) = ψ

(0)
21−1(x) , (3.45)

E4 = E
(0)
2 − 3eEaB , ψ̃

(0)
4 (x) =

1√
2

[
ψ

(0)
200(x) + ψ

(0)
210(x)

]
. (3.46)

Thus, the energy levels m = ±1 are not shifted as the corresponding energy eigenfunctions
ψ21±1(x) are mirror symmetric with respect to the plane z = 0, as can be read off from (1.133)
and is illustrated in Fig. 1.2. And the new eigenfunctions in (3.43) and (3.46) follow from
(1.131) and (1.132):

ψ̃1,4(x) =
1

8
√
πa

3/2
B

(
2− r

aB

∓ z√
3aB

)
exp

(
− r

2aB

)
. (3.47)

They reveal that ψ̃1(x) (ψ̃4(x)) amounts to an electron distribution, which is shifted in positive
(negative) z-direction, yielding an energy increase (decrease), respectively, in accordance with
the potential energy (3.26). This partial lifting of the degeneracy for the first excited state of
the hydrogen atom is schematically illustrated in Fig. 3.1.
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Figure 3.1: Partial lift of the degeneracy for the first excited state of the hydrogen atom in a
homogeneous electric field.

3.3.2 Quadratic Stark Effect

Let us consider now also the ground state of the hydrogen atom, which is the only non-
degenerate energy level. Thus, its shift due to the presence of the electric field can be treated
within non-degenerate perturbation theory. In first order the energy correction reads according
to (2.27) and (2.28):

E
(1)
1 =

∫
d3xψ∗100(x)V (x)ψ100(x) . (3.48)

Inserting therein the ground-state wave function (1.130) and the potential energy (3.26), we
recognize that the integral (3.48) vanishes due to symmetry reasons:

E
(1)
1 = 0 . (3.49)

Indeed, this result also follows immediately from the selection rules (3.29). Thus, the ground-
state energy is not shifted linearly with the electric field. Instead the leading contribution for
the ground state turns out to be quadratic in the electric field, which is therefore called the
quadratic Stark effect. Note that this quadratic Stark effect shifts the ground-state energy to
smaller values according to the general remark below Eq. (2.55). In order to determine this
negative shift one would naively expect to have to evaluate the series

E
(2)
1 =

∞∑
n=2

n−1∑
l=0

l∑
m=−l

|V100,nlm|2

E
(0)
1 − E

(0)
n

, (3.50)

which reduces due to the selection rules (3.29) to

E
(2)
1 =

∞∑
n=2

|V100,n10|2

E
(0)
1 − E

(0)
n

. (3.51)

However, this naive expectation is physically wrong. Namely, apart from the discrete spectrum,
which gives rise to the sum in (3.51), one also has to consider the continuum states of the
hydrogen atom, which correspond to scattering states and will be discussed later, see Fig. 3.2.
Therefore, an additional integral over the continuum states has to be added. In such a case of an
unperturbed quantum system having both discrete and continuous eigenstates the second-order
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Figure 3.2: The hydrogen spectrum consists of both a discrete and a continuous part.

correction (2.43) of non-degenerate perturbation theory should read more precisely

E(2)
n =

∑
m6=n

∫
|Vnm|2

E
(0)
n − E(0)

m

. (3.52)

Here we have used a modified notation, which emphasizes that a summation (integration) has to
be performed over all discrete (continuous) quantum numbers [3]. Therefore, directly evaluating
such a second-order perturbative result for the hydrogen atom is extremely complicated.

However, intriguingly, it is possible to circumvent the direct evaluation of (3.52) with the help
of a sum rule, which is derived in Appendix D. It amounts to the result that (3.52) coincides
with

E(2)
n =

2M

~2

[
(VW )nn − VnnWnn

]
, (3.53)

which only involves diagonal matrix elements with respect to the state with the quantum
number n, for which the second-order perturbation has to be determined. In coordinate rep-
resentation V (x) denotes the perturbation of the Hamilton operator and W (x) represents one
solution of the differential equation

∆W (x)ψ(0)
n (x) + 2∇W (x) ·∇ψ(0)

n (x) = V (x)ψ(0)
n (x) . (3.54)

In view of the quadratic Stark effect for the ground state of the hydrogen atom, the differential
equation (3.54) has to be specialized for the spherically symmetric ground-state wave func-
tion (1.130) and the cylinder-symmetric perturbation (3.26). Thus, due to symmetry reasons,
we expect that also the solution of (3.54) is cylinder-symmetric, which justifies in spherical
coordinates the ansatz

W (r, ϑ, ϕ) =
∞∑
l=0

Wl(r)Pl(cosϑ) (3.55)



40 CHAPTER 3. TIME-INDEPENDENT DEGENERATE PERTURBATION THEORY

with the Legendre polynomials Pl(x). Thus, also the Laplace and the nabla operator should be
used in spherical coordinates:

∆ =
∂2

∂r2
+

2

r

∂

∂r
+

1

r2

(
∂2

∂ϑ2
+

cosϑ

sinϑ

∂

∂ϑ
+

1

sin2 ϑ

∂2

∂ϕ2

)
, (3.56)

∇ =
∂

∂r
er +

1

r

∂

∂ϑ
eϑ +

1

r sinϑ

∂

∂ϕ
eϕ . (3.57)

Taking into account the differential equation for the Legendre polynomials (1.77) and the
property of the ground-state wave function (1.130)

∂ψ
(0)
100(r, ϑ, ϕ)

∂r
= − 1

aB

ψ
(0)
100(r, ϑ, ϕ) , (3.58)

the insertion of (3.55)–(3.57) into the differential equation (3.54) yields due to P1(x) = x,
compare with Eq. (1.80):

W ′′
l (r) + 2

(
1

r
− 1

aB

)
W ′
l (r)−

l(l + 1)

r2
Wl(r) = eErδl,1 . (3.59)

These inhomogeneous differential equations are solved, for instance, by

Wl(r) = −1

4
eEaB (r + 2aB) rδl,1 , (3.60)

so that we obtain from (3.55) and (3.60) the result

W (r, ϑ, ϕ) = −1

4
eEaB (r + 2aB) r cosϑ . (3.61)

Using (1.130), (3.26), (3.61) and z = r cosϑ we read off from the selection rules (3.29) that
both matrix elements in the second term of the sum rule (3.53) vanish for the ground state of
the hydrogen atom:

V100,100 = eE
∫
d3x z

∣∣∣ψ(0)
100(r)

∣∣∣2 = 0 , (3.62)

W100,100 = −1

4
eEaB

∫
d3x (r + 2aB) z

∣∣∣ψ(0)
100(r)

∣∣∣2 = 0 . (3.63)

In contrast to that the matrix element in the first term of the sum rule (3.53) reads

(VW )100,100 = −1

4
e2E2aB

∫
d3x (r + 2aB) z2

∣∣∣ψ(0)
100(r)

∣∣∣2 , (3.64)

which reduces due to the symmetry result (3.36) to

(VW )100,100 = − 1

12
e2E2aB

∫
d3x (r + 2aB) r2

∣∣∣ψ(0)
100(r)

∣∣∣2 , (3.65)

Thus, together with (1.130) it remains to solve the radial integral

(VW )100,100 = −e
2E2

3aB

∫
d3x

(
r

aB

+ 2

)
r2e−2r/aB , (3.66)
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yielding, ultimately, due to (3.39) from the sum rule (3.53) the second-order correction of the
ground-state energy in the presence of a homogeneous electric field:

E
(2)
1 = −9Me2

4~2
E2a4

B . (3.67)

We can further interpret this result physically as follows. In the absence of the electric field
both the wave function and the probability density of the electron in the ground state of the
hydrogen atom are spherical symmetric. Therefore, negative and positive center of charge
coincide and the resulting electric dipole moment vanishes. In an external electric field E,
however, the center of charges are separated, which leads to an induced electric dipole moment
p ∼ E in the direction of the electric field. The proportionality coefficient defines the electric
polarizability αP:

p = ε0αPE . (3.68)

The energy of the induced electric dipole in an external electric field follows from

E = −
∫ E

0

p · dE , (3.69)

yielding

E = −1

2
αPε0E

2 . (3.70)

Note that a permanent electric dipole moment would have instead the energy E = −p · E.
Equating (3.67) and (3.70) as well as taking into account the Bohr radius (1.112) yields for the
polarizability of the hydrogen atom in its ground state

αP = 18πa3
B (SI units) . (3.71)

This result in SI units is converted in a corresponding result in cgs units by applying the
formal substitution rule ε0 → 1/(4π). Thus, due to factor ε in the definition of the atomic
polarizability (3.68) we then get

αP =
9

2
a3

B (cgs units) (3.72)

in accordance with [10, 11, 12].





Chapter 4

Brillouin-Wigner Perturbation Theory

So far we have worked out separately the time-independent perturbation theory for non-
degenerate and degenerate quantum systems. In this chapter we show that both perturba-
tive approaches of the previous two chapters can formally be united into a single formalism.
This framework is the Brillouin-Wigner perturbation theory [32], which we work out by fol-
lowing the concise summary provided in Appendix A of Ref. [33]. As a side result it turns out
to be straight-forward to extend non-degenerate perturbation theory to higher orders as we
demonstrate exemplarily for the fourth order.

4.1 General Formalism

The main idea underlying the Brillouin-Wigner perturbation theory is to derive an effective
Hamilton opertor for an arbitrarily chosen Hilbert subspace, which is characterized by a pro-
jection operator P̂ . This is accomplished by formally eliminating the complementary Hilbert
subspace with the help of also introducing a complementary projection operator

Q̂ = 1− P̂ . (4.1)

As any projection operator also P̂ has to fulfill the idempotent property

P̂ 2 = P̂ . (4.2)

From this we conclude that also (4.2) obeys the idempotent property

Q̂2 = Q̂ (4.3)

and that P̂ and Q̂ project into disjunct subspaces P̂H and Q̂H of the Hilbert space H, see
Fig. 4.1:

Q̂P̂ = 0 = P̂ Q̂ . (4.4)

43
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Figure 4.1: The projection operators P̂ and Q̂ decompose the Hilbert space H of a quantum
system into into disjunct subspaces P̂H and Q̂H.

Since we have now two projection operators P̂ and Q̂, we need two conditions to define the re-
spective Hilbert subspaces. So, we start by reformulating the full time-independent Schrödinger
equation

Ĥ|ψn〉 = En|ψn〉 . (4.5)

with the help of the projection operators. To this end we insert the unity operator according
to (4.1) and get

ĤP̂ |ψn〉+ ĤQ̂|ψn〉 = EnP̂ |ψn〉+ EnQ̂|ψn〉 . (4.6)

Multiplying by P̂ the left side of (4.6) and considering the projector operator relations (4.2)
and (4.4) results in

P̂ ĤP̂ |ψn〉+ P̂ ĤQ̂|ψn〉 = EnP̂ |ψn〉 . (4.7)

Conversely, multiplying by Q̂ the left side of (4.6) and using correspondingly (4.3) and (4.4),
we also have

Q̂ĤP̂ |ψn〉+ Q̂ĤQ̂|ψn〉 = EnQ̂|ψn〉 . (4.8)

The next step is to try to find a single equation for P̂ |ψn〉 in a shape similar to a time-
independent Schrödinger equation. In order to eliminate Q̂|ψn〉 from (4.7) we use (4.8) and
take into account again (4.3)

Q̂ĤP̂ |ψn〉+ Q̂ĤQ̂2|ψn〉 = EnQ̂|ψn〉 . (4.9)

From rearranging and factorizing out follows straight-forwardly

Q̂ĤP̂ |ψn〉 =
(
En − Q̂ĤQ̂

)
Q̂|ψn〉 . (4.10)

Thus, a formal solution with respect to Q̂|ψn〉 yields

Q̂|ψn〉 =
(
En − Q̂ĤQ̂

)−1

Q̂ĤP̂ |ψn〉 . (4.11)

A further action of Q̂ results due to (4.3) in

Q̂|ψn〉 = Q̂
(
En − Q̂ĤQ̂

)−1

Q̂ĤP̂ |ψn〉 . (4.12)
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Inserting (4.12) in (4.7) we get a single equation for P̂ |ψn〉:[
P̂ ĤP̂ + P̂ ĤQ̂

(
En − Q̂ĤQ̂

)−1

Q̂ĤP̂

]
|ψn〉 = EnP̂ |ψn〉 . (4.13)

Splitting the Hamilton operator Ĥ into an unperturbed and a perturbed contribution Ĥ0 and
λV̂ , respectively, i.e.

Ĥ = Ĥ0 + λV̂ (4.14)

allows one to rewrite (4.13) according to

P̂ ĤP̂ + P̂
(
Ĥ0 + λV̂

)
Q̂
(
En − Q̂ĤQ̂

)−1

Q̂
(
Ĥ0 + λV̂

)
P̂ |ψn〉 = EnP̂ |ψn〉 . (4.15)

4.2 Specialization

So far we considered the projection operator P̂ to be independent from the unperturbed Hamil-
ton operator Ĥ0. Now we assume in addition that the projection operator P̂ and the unper-
turbed Hamilton operator Ĥ0 commute:[

P̂ , Ĥ0

]
−

= 0 . (4.16)

This means physically that applying Ĥ0 to a state within the subspace characterized by P̂ does
not yield a state outside of that subspace. Furthermore, this has the consequence that there are
states, which are eigenstates of both the projection operator P̂ and the unperturbed Hamilton
operator Ĥ0. This justifies to assume that a projection operator P̂ with the property (4.16) is
of the form

P̂ =
∑
k∈N

|ψ0
n〉〈ψ(0)

n | (4.17)

with |ψ0
n〉 solving the unperturbed eigenvalue problem

Ĥ0|ψ0
n〉 = E(0)

n |ψ0
n〉 (4.18)

and N representing some set of quantum numbers n. Indeed, it turns out that (4.17) fulfills
the idempotent property (4.2) as the projection operator for some unperturbed energy state

P̂n = |ψ0
n〉〈ψ(0)

n | (4.19)

obeys the identity

P̂nP̂n′ = δnn′P̂n (4.20)

due to the orthonormality of the unperturbed eigenstates

〈ψ(0)
n |ψ(0)

m 〉 = δn,m . (4.21)
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Furthermore, we obtain for the complementary projection operator (4.1) the representation

Q̂ =
∑
k∈N̄

|ψ0
n〉〈ψ(0)

n | (4.22)

with N̄ denoting the complement of N .

After this specialization we conclude from (4.16) by taking into account (4.4)

Q̂Ĥ0P̂ = P̂ Ĥ0Q̂ = 0 , (4.23)

Inserting (4.23) into (4.15) we finally obtain a single equation for P̂ |ψn〉:

P̂

[
Ĥ + λV̂ Q̂

(
En − Q̂ĤQ̂

)−1

Q̂λV̂

]
P̂ |ψn〉 = EnP̂ |ψn〉 . (4.24)

It represents the basis of the Brillouin-Wigner perturbation theory. The resulting equation
(4.24) is of the form of a time-independent Schrödinger equation

P̂ ĤeffP̂ |ψn〉 = EnP̂ |ψn〉 , (4.25)

where we have introduced the effective Hamilton operator

Ĥeff = Ĥ + λ2V̂ Q̂
(
En − Q̂ĤQ̂

)−1

Q̂V̂ . (4.26)

Since Ĥeff is sandwiched by P̂ in (4.25), everything that goes in or out of Ĥeff must involve the
Hilbert subspace P̂ projects into. However, Ĥeff contains according to (4.26) also the projection
operator Q̂, so one has to go beyond the Hilbert subspace P̂ projects into.

4.3 Resolvent

Inserting (4.14) into the effective Hamilton operator (4.26) yields

Ĥeff = Ĥ0 + λV̂ + λ2V̂ Q̂R̂(En)Q̂V̂ , (4.27)

where we have introduced the resolvent

R̂(En) =
[
En − Q̂

(
Ĥ0 + λV̂

)
Q̂
]−1

Q̂V̂ . (4.28)

Using the general property (ÂB̂)−1 = B̂−1Â−1 the resolvent (4.28) can be expanded in a series
with respect to λ:

R̂(En) =
(
En − Q̂Ĥ0Q̂

)−1

Q̂
∞∑
s=0

[
λQ̂V̂ Q̂

(
En − Q̂Ĥ0Q̂

)−1
]s
. (4.29)

In the case that λ approaches zero the effective Hamilton operator (4.27) reduces to the un-
perturbed Hamilton operator Ĥ0. Furthermore, the first perturbative order λV̂ in (4.27) is not
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contained in the resolvent R̂(En) but directly emanates from the perturbed Hamiltonina (4.14).
In contrast to that, all higher orders in (4.27) originate from the resolvent term. In particular,
s = 0 gives the second perturbative order, s = 1 goes up to the third perturbative order, and
so on. This fundamental difference of origin of perturbative orders is already evident in (4.6),
where the term ĤP̂ gives rise to the zeroth and the first perturbarbative order, and the term
ĤQ̂ gives rise to all higher orders. In other words, the zeroth and the first perturbative order
are within the Hilbert space P̂ projects into, while for all higher oders the Hilbert subspace Q̂
projects into must be taken into account.

For later applications we calculate explicitly all correction terms of the effective Hamiltonian
up to the order λ4. To do so, we have to take the sum over s in the resolvent (4.29) up to s = 2

and obtain with (4.27)

Ĥeff = Ĥ0 + λV̂ + λ2V̂ Q̂R̂(0)(En)Q̂V̂ + λ3V̂ Q̂R̂(0)(En)Q̂V̂ Q̂R̂(0)(En)Q̂V̂

+λ4V̂ Q̂R̂(0)(En)Q̂V̂ Q̂R̂(0)(En)Q̂V̂ Q̂R̂(0)(En)Q̂V̂ + . . . . (4.30)

Here we have used as an abbreviation

R̂(0)(En) =
(
En − Q̂Ĥ0Q̂

)−1

. (4.31)

Now we use (4.17), (4.19), and (4.22) in order to obtain the matrix element of the resolvent
(4.31) as

〈ψ(0)
l |R̂

(0)(En)|ψ(0)
l 〉 =

1

En − E(0)
l

, n ∈ N , l ∈ N̄ . (4.32)

Indeed, expanding formally the left-hand side of (4.32) into a geometric series, using the idem-
potent property (4.3), and taking into account n ∈ N , l ∈ N̄ leads straight-forwardly to the
right-hand side. Inserting (4.32) in (4.30) yields, finally, the effective Hamiltonian

Ĥeff = Ĥ0 + λV̂ + λ2
∑
l∈N̄

V̂ |ψ(0)
l 〉〈ψ

(0)
l |V̂

En − E(0)
l

+ λ3
∑
l,l′∈N̄

V̂ |ψ(0)
l 〉〈ψ

(0)
l |V̂ |ψ

(0)
l′ 〉〈ψ

(0)
l′ |V̂(

En − E(0)
l

)(
En − E(0)

l′

)
+λ4

∑
l,l′,l′′∈N̄

V̂ |ψ(0)
l 〉〈ψ

(0)
l |V̂ |ψ

(0)
l′ 〉〈ψ

(0)
l′ |V̂ |ψ

(0)
l′′ 〉〈ψ

(0)
l′′ |V̂(

En − E(0)
l

)(
En − E(0)

l′

)(
En − E(0)

l′′

) + . . . . (4.33)

This representation of the effective Hamiltonian Ĥeff has no operators anymore in the denom-
inators and, thus, can be used as a starting point for further calculations. And we recognize
that each perturbative order consists of one term.

Now we determine an equation for the perturbed eigenenergy Em. To this end we choose
n, n′ ∈ N and formulate (4.25) with the help of the projection operator (4.17):∑

n,n′∈N

|ψ(0)
n 〉〈ψ(0)

n |Ĥeff |ψ(0)
n′ 〉〈ψ

(0)
n′ |ψm〉 = Em

∑
n′∈N

|ψ(0)
n′ 〉〈ψ

(0)
n′ |ψm〉 . (4.34)
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Then we multiply the left-hand side by 〈ψ(0)
n′′ |, yielding with the help of the orthonormality

(4.21)

〈ψ(0)
n |ψm〉

∑
n′∈N

(
〈ψ(0)

n |Ĥeff |ψ(0)
n′ 〉 − Emδn,n′

)
. (4.35)

In order to obtain a non-trivial solution ψ(0)
n′ |ψm〉 6= 0 from (4.35), we have to demand

Det
(
〈ψ(0)

n |Ĥeff |ψ(0)
n′ 〉 − Emδn,n′

)
= 0 . (4.36)

where the determinant has to be performed with respect to n, n′ ∈ N . Note that (4.36) defines
Em as a zero of a polynomial of finite order. Furthermore, we recognize that the effective
Hamiltonian (4.36) contains explicitly the perturbed eigenenergy Em being determined from
(4.36). Thus, Eq. (4.36) represents a self-consistency equation for Em.

4.4 Specific Cases

Now we specialize (4.36) to the specific cases, which often appear in concrete applications. To
this end we assume that the projection operator (4.17) consists of one or two states, respectively.

4.4.1 One-State Approach

At first we consider the special case that the projection operator P̂ contains only one state,
namely

P̂ = P̂n (4.37)

In this case, where n = n′ = m, Eq. (4.36) simplifies to

En = 〈ψ(0)
n |Ĥeff |ψ(0)

n 〉 . (4.38)

Inserting the effective Hamilton operator (4.33) into (4.38) we get

En = E(0)
n + λVnn + λ2

∑
l 6=n

VnlVln

En − E(0)
l

+ λ3
∑
l,l′ 6=n

VnlVll′Vl′n(
En − E(0)

l

)(
En − E(0)

l′

)
+λ4

∑
l,l′,l′′ 6=n

VnlVll′Vl′l′′Vl′′n(
En − E(0)

l

)(
En − E(0)

l′

)(
En − E(0)

l′′

) + . . . . (4.39)

Note that, due to the nonlinear appearance of En, Eq. (4.39) represents a self-consistency
equation for the perturbed energy eigenvalue En. Inserting on the right-hand side of Eq. (4.39)
a Taylor expansion ansatz

En = E(0)
n + λE(1)

n + λ2E(2)
n + λ3E(3)

n + λ4E(4)
n + . . . , (4.40)
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a systematic expansion with respect to λ yields straight-forwardly the result of non-degenerate
perturbation theory up to fourth order:

En = E(0)
n + λVnn + λ2

∑
l 6=n

VnlVln

E
(0)
n − E(0)

l

+ λ3

 ∑
l,l′ 6=n

VnlVll′Vl′n(
E

(0)
n − E(0)

l

)(
E

(0)
n − E(0)

l′

) − Vnn∑
l 6=n

VnlVln(
E

(0)
n − E(0)

l

)2


+λ4

 ∑
l,l′,l′′ 6=n

VnlVll′Vl′l′′Vl′′n(
E

(0)
n − E(0)

l

)(
E

(0)
n − E(0)

l′

)(
E

(0)
n − E(0)

l′′

) − 2Vnn
∑
l,l′ 6=n

VnlVll′Vl′n(
E

(0)
n − E(0)

l

)2 (
E

(0)
n − E(0)

l′

)
+
∑
l 6=n

VnlVln

E
(0)
n − E(0)

l

∑
l′ 6=n

Vnl′Vl′n(
E

(0)
n − E(0)

l′

)2 + V 2
nn

∑
l 6=n

VnlVln(
E

(0)
n − E(0)

l

)3 + . . .

 . (4.41)

Thus, starting with the third order more than one term appears in the respective order. Fur-
thermore, since we have n 6= l, l′, l′′, the denominator is never zero, so that no divergence occurs
in this perturbative representaton for the perturbed energy eigenvalue En.

4.4.2 Two-State Approach

Now we consider the situation that the projection operator P̂ consists of two states:

P̂ = P̂n + P̂n′ . (4.42)

Thus, we read off from Eq. (4.36)

Det

(
〈ψ(0)

n |Ĥeff |ψ(0)
n 〉 − Em 〈ψ(0)

n |Ĥeff |ψ(0)
n′ 〉

〈ψ(0)
n′ |Ĥeff |ψ(0)

n 〉 〈ψ(0)
n′ |Ĥeff |ψ(0)

n′ 〉 − Em

)
= 0 , (4.43)

It turns out that the two-state approach contains degenerate perturbation theory as a special
case. In order to illustrate this connnection, we restrict the effective Hamilton operator (4.33)
in (4.43) up to first order:

Det

(
〈ψ(0)

n |Ĥ0 + λV̂ |ψ(0)
n 〉 − Em 〈ψ(0)

n |Ĥ0 + λV̂ |ψ(0)
n′ 〉

〈ψ(0)
n′ |Ĥ0 + λV̂ |ψ(0)

n 〉 〈ψ(0)
n′ |Ĥ0 + λV̂ |ψ(0)

n′ 〉 − Em

)
= 0 . (4.44)

And we specialize to a twofold degeneracy of the unperturbed Hamilton operator Ĥ0 with
E

(0)
n = E

(0)
n′ , so we have

Em = E(0)
n + λE(1)

nαn
+ . . . . (4.45)

In the diagonal of the matrix in (4.44) we then get due to (4.18) and the normalization of the
unperturbed energy states (4.21)

〈ψ(0)
n |Ĥ0|ψ(0)

n 〉 = E(0)
n = 〈ψ(0)

n′ |Ĥ0|ψ(0)
n′ 〉 . (4.46)

Correspondingly, the non-diagonal elements of the matrix in (4.44) simplifies due to (4.18) and
the orthogonality of the unperturbed energy states (4.21):

〈ψ(0)
n |Ĥ0|ψ(0)

n′ 〉 = 0 = 〈ψ(0)
n′ |Ĥ0|ψ(0)

n 〉 . (4.47)

Thus, we conclude that (4.44)–(4.47) yields the secular equation (3.20).





Chapter 5

Time-Dependent Perturbation Theory

This chapter contrasts the previous time-indendent perturbative theories with a correspond-
ing time-dependent perturbative calculation. After exploring the general properties of time-
dependent perturbation theory in first-order, we will apply it to deal with the intricate in-
teraction between light and matter. To this end we model the individual atoms quantum
mechanically, but treat light still classically. Thus, we neglect here the corpuscular character
of the electromagnetic field, which is dealt with in a quantum optics lecture and leads to new
intriguing phenomena. For instance, treating light classically we find that the probability for
an atomic transition does not depend upon whether the initial or the final atomic state is en-
ergetically higher or lower. This symmetry is only broken by considering the light quantum
mechanically, which leads, ultimately, to the three elementary processes for the interaction of
light and matter as discovered by Albert Einstein in 1916 within his rederivation of the black-
body radiation formula of Max Planck. In particular, a full quantum mechanical treatment
of the light field yields the fundamental result that absorption and induced emission happen
to be identical as a consequence of an incident electromagnetic wave, but the spontaneous
emission can even occur randomly in the absence of any photons and, thus, is exclusively of
quantum mechanical origin. Note that these perturbative results are only valid provided that
the population transfer between the initial and the final state is small.

5.1 General Theory

Let us assume that the considered quantum mechanical system is described by a time-dependent
Hamilton operator Ĥ(t). Then an immediate consequence of the time dependence is that there
are now no stationary solutions, i.e. the time-dependent Schrödinger equation

i~
∂

∂t
|ψ(t)〉 = Ĥ(t)|ψ(t)〉 (5.1)

can not be solved via

|ψ(t)〉 = e−iEnt/~ |ψn〉 (5.2)
51
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with an eigenvalue En and an eigenstate |ψn〉 of Ĥ(t). In general it is not even possible to find
an analytical solution of (5.1). In order to obtain at least an approximative solution of (5.1)
we have to specialize to the case that Ĥ(t) decomposes into an unperturbed time-independent
Hamilton operator Ĥ0 and a time-dependent perturbation V̂ (t) according to

Ĥ(t) = Ĥ0 + V̂ (t) . (5.3)

For a small enough perturbation we expect physically the following scenario. Once the quantum
system is initially at time t = 0 in an eigenstate |ψ(0)

n 〉 of Ĥ0, then V̂ (t) initiates for t > 0 a
transition from that eigenstate |ψ(0)

n 〉 to another eigenstate |ψ(0)
m 〉. In order to investigate such

a transition in more detail, we assume that the eigenvalue problem (2.3) of the unperturbed
Hamilton operator Ĥ0 is solved and that the eigenstates |ψ(0)

n 〉 represent an orthonormal basis.
Due to the completeness relation (2.5) the solution of the time-dependen Schrödinger equation
(5.1) can then be expanded as follows

|ψ(t)〉 =
∑
n

cn(t) e−iE
(0)
n t/~ |ψ(0)

n 〉 , (5.4)

where cn(t) denote some time-dependent expansion coefficients. Note that it is a matter of
taste whether the exponential factor e−iE

(0)
n t/~ is explicitly used as in Eq. (5.4) or whether it

is implicitly included within the expansion coefficients cn(t). In the former (latter) case the
differential equation for cn(t) will turn out to become a little bit simpler (more involved).
Furthermore, due to normalization reasons, the time-dependent expansion coefficients cn(t)

satisfy the condition ∑
n

|cn(t)|2 = 1 . (5.5)

Inserting the ansatz (5.4) into the time-dependent Schrödinger equation (5.1) yields∑
n

i~
∂cn(t)

∂t
e−iE

(0)
n t/~ |ψ(0)

n 〉 =
∑
n

cn(t) e−iE
(0)
n t/~ V̂ (t)|ψ(0)

n 〉 . (5.6)

Multiplying from the left with 〈ψ(0)
m | and taking into account the orthonormality (2.4) of the

stationary states |ψ(0)
n 〉 then leads to coupled first-order ordinary differential equations for the

time-dependent expansion coefficients

i~
∂cn(t)

∂t
=
∑
m

eiω
(0)
nmt Vnm(t)cm(t) (5.7)

with the matrix elements

Vnm(t) = 〈ψ(0)
n |V̂ (t)|ψ(0)

m 〉 (5.8)

and the transition frequencies

ωnm =
E

(0)
n − E(0)

m

~
. (5.9)
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As an initial condition respecting the normalization condition (5.5) we require that only the
initial state with the quantum number i is occupied:

ci(0) = 1 ; cn(0) = 0 , for n 6= i . (5.10)

As time progresses, the state i becomes less occupied, while the occupation of a previously
unoccupied state f increases. The probability for a transition of the atom from state i to state
f at time t > 0 is given by

Pi→f (t) = |cf (t)|2 . (5.11)

So far we have not implemented any approximation. The intermediate result (5.7) is a rep-
resentation of the underlying time-dependent Schrödinger equation (5.1) in the eigenbasis of
the unperturbed Hamilton operator Ĥ0. Mathematically Eq. (5.7) is an infinitely large coupled
system of first-order differential equations, which can only be solved analytically in exceptional
cases. Therefore, numerical or analytical approximative solution methods are generically used.

5.2 Iterative Solution

In the case of time-dependent perturbation theory, it is assumed that the perturbation V̂ (t) is
small, so (5.7) can be solved iteratively. To this end we expand the time-dependent expansion
coefficients perturbatively

cn(t) = c(0)
n (t) + c(1)

n (t) + c(2)
n (t) + . . . , (5.12)

where c(k)
n (t) is supposed to be of kth order in V̂ (t). With this Eq. (5.7) yields up to second

order

∂c
(0)
n (t)

∂t
= 0 , (5.13)

∂c
(1)
n (t)

∂t
= − i

~
∑
m

eiωnmt Vnm(t)c(0)
m (t) , (5.14)

∂c
(2)
n (t)

∂t
= − i

~
∑
m

eiωnmt Vnm(t)c(1)
m (t) , (5.15)

which can, indeed, be solved iteratively. In zeroth order we get in accordance with the normal-
ization condition (5.5)

c(0)
n (t) = c(0)

n (t0) = δni , (5.16)

while the first order results in

c(1)
n (t) = − i

~

∫ t

t0

dt′eiωnit
′
Vni(t

′) . (5.17)
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Correspondingly follows for the second order

c(2)
n (t) =

(
− i
~

)2 ∫ t

t0

dt′
∫ t′

t0

dt′′
∑
m

eiωnmt′ Vnm(t′)eiωmit
′′
Vmi(t

′′) . (5.18)

The total probability (5.11) for a transition from the initial state i to the final state f 6= i is
determined from these expansion coefficients as follows:

Pi→f (t) =
∣∣∣c(0)
f (t) + c

(1)
f (t) + c

(2)
f (t) + . . .

∣∣∣2 . (5.19)

In case that the final state f differs from the initial state i, we have c(0)
f (t) = 0 due to (5.16),

so the transition probability (5.19) reduces to

Pi→f (t) =
∣∣∣c(1)
f (t) + c

(2)
f (t) + . . .

∣∣∣2 . (5.20)

This means that Pi→f (t) dependes in lowest order quadratically from the perturbation V̂ (t).

5.3 Short Perturbation

Let us consider as an initial application a perturbation V̂ (t), which acts only shortly, i.e. V̂ (t)

is only non-vanishing during a finite time interval 0 ≤ t ≤ T . Physical examples are provided,
for instance, by the disturbance, which is caused by the recoil of an emitted photon or by a
particle flying by. Inserting in such a case (5.17) into (5.20), the transition probability reads
then

Pi→f (T ) =
1

~2

∣∣∣∣∫ T

0

dteiωfit Vfi(t) + . . .

∣∣∣∣2 . (5.21)

As the Fourier transformed of the time-dependent matrix element is given by

Vfi(ω) =

∫ ∞
−∞

dteiωt Vfi(t) =

∫ T

0

dteiωt Vfi(t) + . . . , (5.22)

the transition probability (5.21) results in lowest order in [1, Chap. 84]

Pi→f (T ) =
|Vfi(ωfi)|2

~2
. (5.23)

5.4 Quench of Perturbation

Another application is provided by a quench, where the perturbation operator V̂ (t) is suddenly
switched on at time t0 = 0. In addition, we assume that this happens monochromatically,
i.e. the perturbation must be of the generic form

V̂ (t) = Âe−iωt + Â†eiωt , (5.24)



5.4. QUENCH OF PERTURBATION 55

Figure 5.1: Comparison of length scales: electromagnetic wavelength versus extension of an
atom.

where Â is some general time-independent operator. A prominent example for such a case
occurs once a hydrogen atom is affected by an electromagnetic plane wave, where the major
contribution stems from the interaction with the electric field, so the interaction with the
magnetic field is approximately negligible. Provided that the hydrogen atom is located without
loss of generality at the origin x0 = 0, its interaction with the electric plane wave is given by

V̂ (t) = −d · E(t) . (5.25)

Here the electric dipole moment of the electron in the hydrogen atom reads

d = −ex (5.26)

and the electric field is described by

E(t) =
E0

2
ei(k·x−ωt) + c.c. , (5.27)

where the amplitude vector E0 = Ee contains both the amplitude E and the polarization vector
e. Thus, Eqs. (5.25)–(5.27) are of the form (5.24) with identifying

Â = −1

2
E0 · d eik·x . (5.28)

Let us consider more closely the absolute value of the wave vector k, i.e. |k| = 2π/λ, which is
determined by the wavelength λ. In the optical range the wavelength varies between 400nm
and 700nm, so we obtain the following estimate for an atom with an extension in the range of
an Angström, see Fig. 5.1:

k · x ≈ |k| · |x| ≈ 2π

600 nm
· 1Å ≈ 10−3 � 1 . (5.29)

This means that the electric plane wave (5.27) does not change over the extension of an atom
and is, therefore, approximately homogeneous. This leads to the so-called dipole approximation,
where we can approximately neglect the spatial dependence in (5.28), so we get

Â = −1

2
E0 · d . (5.30)
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The electric dipole moment (5.26) and, thus, due to (5.30) the perturbed Hamilton operator
(5.24) have odd parity, so that the diagonal matrix elements (5.8) vanish:

Vnn(t) = 0 . (5.31)

Therefore, the first-order correction (5.17) for the initial state i vanishes

c
(1)
i (t) = − i

~

∫ t

0

dt′Vii(t
′) = 0 (5.32)

and results in ci(t) = c
(0)
i (t) = 1 up to the first order. For the final state f 6= i, on the other

hand, we get

c
(1)
f (t) = − i

~

∫ t

0

dt′eiωfit
′
Vfi(t

′) . (5.33)

With the perturbed Hamilton operator (5.24) and (5.30) follows then

c
(1)
f (t) =

i

2~

∫ t

0

dt′
[
(dif · E0)∗ ei(ωfi+ω)t′ + dfi · E0 e

i(ωfi−ω)t′
]
, (5.34)

where the evaluation of the elementary integral yields

c
(1)
f (t) =

1

2~

[
(dif · E0)∗

ei(ωfi+ω)t − 1

ωfi + ω
+ dfi · E0

ei(ωfi−ω)t − 1

ωfi − ω

]
. (5.35)

Due to (5.26) here the dipole matrix element

dnm = −exnm (5.36)

depend the matrix elements of the coordinates

xnm = 〈ψ(0)
n |x̂|ψ(0)

m 〉 . (5.37)

Thus, in case that the electric amplitude vector E0 of the plane wave points along the z-axis,
the selection rules from Appendix C can be used to find out, which matrix elements (5.36) are
non-vanishing for the hydrogen atom. In the case ωfi > 0 the second term in (5.35) dominates,
as it is resonant. Thus, one can neglect the first term, as it is anti-resonant. This yields the
so-called rotating wave approximation, which is ubiquitous in quantum optics:

c
(1)
f (t) =

1

2~
dfi · E0

ei(ωfi−ω)t − 1

ωfi − ω
. (5.38)

Due to the initial condition c
(0)
f (t) = 0 we conclude that cf (t) = c

(1)
f (t) holds up to the first

order and that the transition probability (5.19) is given in lowest order according to

Pi→f (t) =
∣∣∣c(1)
f (t)

∣∣∣2 =
|dfi · E0|2

~2

sin2 (∆t/2)

∆2
. (5.39)

Here the detuning ∆ is defined by the difference between the frequency ω of the electromagnetic
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Figure 5.2: Definition of the detuning ∆ between the light field frequency ω and the atomic
transition frequency ωfi according to (5.40).

Figure 5.3: Time dependence of the transition probability (5.39).

field and the atomic frequency ωfi for the transition from the initial and to the final state

∆ = ω − ωfi . (5.40)

In the case of ∆ > 0 (∆ < 0) one speaks of blue (red) detuning, whereas ∆ = 0 denotes
the resonance case, see Fig. 5.2. Note that the result (5.39) depends quadratically on the
detuning ∆. Thus the transition probability Pi→f (t) for absorption and induced emission
coincide, which is an artefact of having treated the electric field classically. In order to analyze
the time dependence of the transition probability Pi→f (t) in (5.39) further, we obtain for a
non-vanishing detuning, i.e. ∆ 6= 0 that its maximum occurs at

Max
t

Pi→f (t) = Pi→f

( π
∆

)
=
|dfi · E0|2

~2∆2
. (5.41)

In the resonance case ∆ = 0 we obtain instead that the transition probability (5.39) increases
quadratically with time t:

Pi→f (t) =
|dfi · E0|2 t2

4~2
, (5.42)

see Fig. 5.3. However, in order that this perturbative treatment remains valid, we have to
demand that Pi→f (t) must be small. In the non-resonant case ∆ 6= 0 this leads due to (5.39)
to a minimal value for the absolute value of the detuning ∆, namely

Max
t

Pi→f (t)� 1 =⇒ |dfi · E0|
~

� |∆| , (5.43)
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Figure 5.4: Dependence of the transition probability (5.39) as a function of the detuning ∆.

while in the resonant case ∆ = 0 we read off from (5.42) that one is restricted to short times:

Pi→f (t)� 1 =⇒ t� 2~
|dfi · E0|

. (5.44)

Considering the transition probability (5.39) as a function of the detuning ∆, we are reminded
of a slit diffraction function, see Fig. 5.4. In particular, the transition probability Pi→f (t) has
a sharp maximum at ∆ = 0 with a height proportional to t2 and a width proportional to 1/t.
Thus, the area under the curve increases linearly with t:∫ ∞

−∞
d∆

sin2 (∆t/2)

∆2
=
t

2

∫ ∞
−∞

dx
sin2 x

x2
=
πt

2
. (5.45)

Here we applied the substitution x(∆) = ∆t/2 and used the definite integral∫ ∞
−∞

dx
sin2 x

x2
= π , (5.46)

which is derived in Appendix E. From Fig. 5.4 and (5.45) we then conclude the following
representation of the delta function:

lim
t→∞

sin2 (∆t/2)

∆2
=
πt

2
δ(∆) . (5.47)

Thus, taking into account the definition of the detuning in (5.40), the transition probability
(5.39) converges in the long-time limit t→∞ towards a delta function:

Pi→f (t)→
πt |dfi · E0|2

2~2
δ(ω − ωfi) , t→∞ . (5.48)

This suggests to introduce in the long-time limit t→∞ a transition rate:

Wi→f = lim
t→∞

dPi→f (t)

dt
(5.49)

which yields

Wi→f =
π |dfi · E0|2

2~2
δ(ω − ωfi) . (5.50)
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Figure 5.5: Summing the transition rates in (5.51) over all possible final states f .

In practice, however, there will be several final states f , so that the respective transition rates
have to be summed up, see Fig. 5.5:

Wi→[f ] =
π

2

∑
[f ]

|dfi · E0|2

~2
δ(ω − ωfi) . (5.51)

This result is referred to in the literature as Fermi’s golden rule. In practice, however, it can
also be that the incoming light consists of different frequency components, so that the field
amplitude E0(ω) becomes frequency dependent. In this case, we obtain from (5.51) for the
transition rate

Wi→f =
π

2~2

∫ ∞
−∞

dω |dfi · E0(ω)|2 δ(ω − ωfi) . (5.52)

Provided that E0(ω) is varying slowly, the transition rate (5.52) reduces to

Wi→f =
π

2~2
|dfi · E0(ωfi)|2 . (5.53)

5.5 Adiabatic Switching on of Perturbation

Let us consider now another relevant situation. In a laboratory one generically has to switch on
some potential during an experiment. In order to not disturb the set up too much, the potential
switched on has to be small and the switching on of the potential has to occur adiabatically,
i.e. extremely slowly. In the following we describe such an adiabatic switching on process by
considering the family of potentials [9, Sect. 5.9]

V̂ η(t) = eηt V̂ , t ≤ 0 , η > 0 . (5.54)

Here the inverse of the family parameter η represents the time scale upon which the switching on
process occurs. In particular we are interested in performing the limit η ↓ 0 as this corresponds
to an adiabatic swichting on:

lim
η↓0

V̂ η(t) = V̂ . (5.55)
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Figure 5.6: The family of potentials (5.54) connects the unperturbed system (5.56) with the
perturbed system (5.57) in an adiabatic way (5.55).

Indeed, during the time evolution the family of potentials (5.54) connects the unperturbed
system, where the potential is absent, in the infinitely distant past

lim
t→−∞

V̂ η(t) = 0 (5.56)

with the perturbed system, where the potential is fully switched on, at zero time

lim
t→0

V̂ η(t) = V̂ , (5.57)

as is illustrated in Fig. 5.6. Applying time dependent perturbation theory to this scenario
necessitates to determine the matrix elements (5.8) for the family of potentials (5.54), which
yields

V η
nm(t) = eηt Vnm , Vnm = 〈ψ(0)

n |V̂ |ψ(0)
m 〉 . (5.58)

In the following first-order calculations we proceed such that we consider the family parameter
η as being fixed and perform the adiabatic limit η ↓ 0 only at the very end.

5.5.1 First Case

At first we reconsider the previous situation that the final state differs from the inital state,
i.e. f 6= i. Inserting (5.58) into (5.17) and specializing to the initial time t0 = −∞ leads to the
integral

c
(1)
f (t) = − i

~
Vfi

∫ t

−∞
dt′e(iωfi+η)t′ . (5.59)

Here we recognize that the family parameter η < 0 guarantees the convergence of the integral,
which amounts to

c
(1)
f (t) = − i

~
Vfi

e(iωfi+η)t

iωfi + η
. (5.60)
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Thus the probability for a transition from i to f 6= i determined by (5.20) results to

Pi→f (t) =
|Vfi|2

~2

e2ηt

ω2
fi + η2

(5.61)

and the corresponding transition rate reads then

dPi→f (t)

dt
=
|Vfi|2

~2

2η

ω2
fi + η2

e2ηt . (5.62)

Now the adiabatic limit η ↓ 0 can be evaluated, yielding a time independent transition rate

Wi→f = lim
η↓0

dPi→f (t)

dt
. (5.63)

Indeed, taking into account the representation of the delta function

lim
η↓0

1

π

η

ω2
fi + η2

= δ(ωfi) , (5.64)

the resulting transition rate is given by

Wi→f =
2π|Vfi|2

~2
δ(ωfi) . (5.65)

With this we have reproduced within the adiabatic switching approach Fermi’s golden rule
(5.50) for a vanishing frequency ω = 0. Note that (5.50) and (5.65) differ by a factor 4 due to
having previously assumed that the time dependent perturbation has the generic form (5.24).

5.5.2 Second Case



62 CHAPTER 5. TIME-DEPENDENT PERTURBATION THEORY



Chapter 6

Different Pictures

In quantum mechanics one distinguishes different pictures for describing the underlying dy-
namics. To this end one has to take into account that in quantum mechanics, in the end, only
the expectation values for observables are important in view of a comparison with experimental
measurements. Thus, the time evolution could be distributed differently between the states and
the operators as long as at each instant one and the same expectation value is determined in the
respective picture. In the Schrödinger picture the states evolve in time, whereas the operators
are generically time independent. Complementary to that the Heisenberg picture deals with
time dependent operators and time-independent states. And the Dirac picture allows for time
dependences for both operators and states, where the former (latter) ones evolve according to
the unperturbed Hamilton operator (perturbation). It turns out that the Dirac picture provides
an independent appproach for time-dependent perturbation theory.

6.1 Schrödinger and Heisenberg Picture

We start with recapitulating the Schrödinger picture and restrict ourselves for the sake of sim-
plicity to the case of a time-independent Hamilton operator ĤS. The corresponding equations
of motion for both the time-dependent state |ψS(t)〉 and a time-independent operator ÔS read

i~
∂

∂t
|ψS(t)〉 = ĤS |ψS(t)〉 , (6.1)

i~
∂

∂t
ÔS = 0 . (6.2)

The formal solution of the Schrödinger equation (6.1) is given by

|ψS(t)〉 = e−iĤSt/~ |ψS(0)〉 . (6.3)

Here we identify the initial state |ψS(0)〉 in the Schrödinger picture with the state |ψH〉 in the
Heisenberg picture:

|ψS(0) = |ψH〉 . (6.4)
63
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Thus, the transformations from the Schrödinger to the Heisenberg picture and vice versa are
defined according to the relations

|ψS(t)〉 = e−iĤSt/~ |ψH〉 ⇐⇒ |ψH〉 = eiĤSt/~ |ψS(t)〉 . (6.5)

From (6.1) and (6.5) we then read off that the state in the Heisenberg picture |ψH〉 is time-
independent:

i~
∂

∂t
|ψH〉 = −ĤS e

iĤSt/~ |ψS(t)〉+ eiĤSt/~ i~
∂

∂t
|ψS(t)〉 = 0 . (6.6)

In order to determine the operator ÔH(t) in the Heisenberg picture, we demand that the ex-
pectation values do not change once we perform a transformation from the Schrödinger to the
Heisenberg picture:

〈ψS(t)|ÔS|ψS(t)〉 = 〈ψH|ÔH(t)|ψH〉 . (6.7)

Inserting (6.5) into (6.7) we obtain

〈e−iĤSt/~ ψH|ÔS|e−iĤSt/~ ψH〉 = 〈ψH|eiĤSt/~ ÔSe
−iĤSt/~|ψH〉 = 〈ψH|ÔH(t)|ψH〉 , (6.8)

so we determine, indeed, formally the time dependence of the operator ÔH(t) in the Heisenberg
picture:

ÔH(t) = eiĤSt/~ ÔS e
−iĤSt/~ . (6.9)

Thus, multiplying an operator in the Schrödinger picture ÔS from the left with eiĤSt/~ and from
the right with e−iĤSt/~ yields the corresponding operator in the Heisenberg picture ÔH(t). For
instance, for the Hamilton operator ÔS = ĤS we obtain from (6.9) the result that it does not
change its form when we perform the transformation from the Schrödinger to the Heisenberg
picture:

ĤH(t) = eiĤSt/~ ĤS e
−iĤSt/~ = ĤS . (6.10)

Furthermore, for the operator in the Heisenberg picture ÔH(t) we determine from (6.2), (6.9),
and (6.10) the Heisenberg equation of motion

i~
∂

∂t
ÔH(t) = eiĤSt/~

[
−ĤSÔS + ÔSĤS

]
e−iĤSt/~ + eiĤSt/~ i~

∂

∂t
ÔS e

−iĤSt/~ , (6.11)

which reduces to

i~
∂

∂t
ÔH(t) =

[
ÔH(t), ĤS

]
−

=
[
ÔH(t), ĤH(t)

]
−
. (6.12)
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6.2 Dirac Picture

The starting point of perturbation theory is the assumption that the Hamilton operator of the
system under consideration is time-dependent and can be split into two parts in the Schrödinger
picture:

ĤS(t) = Ĥ
(0)
S +H

(int)
S (t) . (6.13)

Here Ĥ(0)
S represents the unperturbed time-independent Hamilton operator andH(int)

S (t) denotes
the perturbative part of the Hamilton operator, which is assumed to be time-dependent. In the
Schrödinger picture the time-dependent state vector |ψS(t)〉 fulfills the Schrödinger equation

i~
∂

∂t
|ψS(t)〉 = ĤS(t) |ψS(t)〉 . (6.14)

Thus, the time dependence of |ψS(t)〉 is determined by the mutual influence of both the un-
perturbed and the perturbed Hamilton operator Ĥ(0)

S and H(int)
S (t), respectively. The idea for

introducing the Dirac picture is now to take into account (6.12) and to redo the temporal
evolution with the unperturbed Hamilton operator Ĥ(0)

S according to

|ψD(t)〉 = eiĤ
(0)
S t/~ |ψS(t)〉 ⇐⇒ |ψS(t)〉 = e−iĤ

(0)
S t/~ |ψD(t)〉 . (6.15)

In order to determine the operator ÔD(t) in the Dirac picture, we require that the expectation
values do not change during the transition from the Schrödinger picture to the Dirac picture:

〈ψD(t)|ÔD(t)|ψD(t)〉 = 〈ψS(t)|ÔS|ψS(t)〉 . (6.16)

Inserting (6.15) into (6.16) then actually leads to determine the operator ÔD(t) in the Dirac
picture

〈ψD(t)| eiĤ
(0)
S t/~ ÔS e

−iĤ(0)
S t/~ |ψD(t)〉 = 〈ψD(t)|ÔD(t)|ψD(t)〉 , (6.17)

yielding finally

ÔD(t) = eiĤ
(0)
S t/~ ÔS e

−iĤ(0)
S t/~ . (6.18)

For example, for the unperturbed Hamilton operator ÔS = Ĥ
(0)
S follows that it does not change

its shape during the transition from the Schrödinger picture to the Dirac picture:

Ĥ
(0)
D (t) = eiĤ

(0)
S t/~ Ĥ

(0)
S e−iĤ

(0)
S t/~ = Ĥ

(0)
S . (6.19)

With (6.15) and (6.18) we have, thus, defined the Dirac picture both for the state vectors and
the operators. It remains to investigate their respective equations of motion. Based on the
equation of motion of a state vector in the Schrödinger picture (6.14) together with (6.13)

i~
∂

∂t
|ψS(t)〉 = ĤS(t)|ψS(t)〉 =

[
Ĥ

(0)
S + Ĥ

(int)
S (t)

]
|ψS(t)〉 (6.20)
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and taking into account (6.15) we then obtain

i~
∂

∂t
|ψD(t)〉 = eiĤ

(0)
S t/~

[
i~
∂

∂t
|ψS(t)〉 − Ĥ(0)

S |ψS(t)〉
]

= eiĤ
(0)
S t/~ Ĥ

(int)
S (t)|ψS(t)〉 (6.21)

which reduces to the equation of motion of the corresponding state vector in the Dirac picture,
which is called the Tomonaga-Schwinger equation:

i~
∂

∂t
|ψD(t)〉 = Ĥ

(int)
D (t) |ψD(t)〉 . (6.22)

Here the interacting part of the Hamilton operator is transferred from the Schrödinger picture
to the Dirac picture according to (6.18):

Ĥ
(int)
D (t) = eiĤ

(0)
S t/~ Ĥ

(int)
S (t) e−iĤ

(0)
S t/~ . (6.23)

Furthermore, starting from the equation of motion of an operator in the Schrödinger picture
(6.2) we use (6.18) and (6.19) in order to derive the equation of motion of the corresponding
operator in the Dirac picture

i~
∂

∂t
ÔD(t) = eiĤ

(0)
S t/~

[
ÔSĤ

(0)
S − Ĥ

(0)
S ÔS

]
e−iĤ

(0)
S t/~ , (6.24)

which reduces to

i~
∂

∂t
ÔD(t) = [ÔD(t), Ĥ

(0)
S ]− = [ÔD(t), Ĥ

(0)
D (t)]− . (6.25)

While in the Dirac picture the dynamics of the state vectors is determined by the interacting
part of the Hamilton operator according to (6.22), only the unperturbed Hamilton operator
enters the dynamics of the operators according to (6.25).

6.3 Time Evolution Operator

In the Dirac picture the perturbation affects the dynamics of the state vectors according to
(6.22). In order to investigate this in more detail we introduce the time evolution operator
ÛD(t2, t1), which connects the state vectors |ψD(t1)〉 and |ψD(t2)〉 at two consecutive times t1
and t2, respectively:

|ψD(t2)〉 = ÛD(t2, t1)|ψD(t1)〉 . (6.26)

A similar time evolution operator ÛS(t2, t1) connects the corresponding state vectors |ψS(t1)〉
and |ψS(t2)〉 in the Schrödinger picture:

|ψS(t2)〉 = ÛS(t2, t1)|ψS(t1)〉 . (6.27)

Thus, we conclude

|ψD(t2)〉 = eiĤ
(0)
S t2/~ |ψS(t2)〉 = eiĤ

(0)
S t2/~ ÛS(t2, t1) |ψS(t1)〉

= eiĤ
(0)
S t2/~ ÛS(t2, t1) e−iĤ

(0)
S t1/~|ψD(t1)〉 , (6.28)
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and a comparison with (6.26) leads to a formal expression between the two time evolution
operator ÛD(t2, t1) and ÛS(t2, t1):

ÛD(t2, t1) = eiĤ
(0)
S t2/~ ÛS(t2, t1) e−iĤ

(0)
S t1/~ . (6.29)

Since eiĤ
(0)
S t2/~ and ÛS(t2, t1) generally do not commute with each other, it is important to take

into account the particular operator ordering in (6.29). With the help of the formal expression
(6.29), various properties of the time evolution operator in the Dirac picture can be proved
provided that the corresponding property is fulfilled for the time evoluation operator in the
Schrödinger picture. For instance, it has the initial condition

ÛD(t1, t1) = 1 (6.30)

and fulfills the group property

ÛD(t3, t2)ÛD(t2, t1) = ÛD(t3, t1) . (6.31)

Indeed, we obtain from applying (6.29)

ÛD(t3, t2)ÛD(t2, t1) = eiĤ
(0)
S t3/~ ÛS(t3, t2) e−iĤ

(0)
S t2/~ eiĤ

(0)
S t2/~ ÛS(t2, t1) e−iĤ

(0)
S t1/~

= eiĤ
(0)
S t3/~ ÛS(t3, t1) e−iĤ

(0)
S t1/~ = ÛD(t3, t1) . (6.32)

Furthermore, we read off from evaluating (6.31) for t3 = t1 together with (6.30) the inverse
time evolution operator

Û−1
D (t2, t1) = ÛD(t1, t2) . (6.33)

And we deduce from (6.29) and (6.33) that the time evolution operator is unitary:

Û †D(t2, t1) = eiĤ
(0)
S t1/~ ÛS(t2, t1) e−iĤ

(0)
S t2/~ = ÛD(t1, t2) = Û−1

D (t2, t1) . (6.34)

Finally, we determine which differential equation the time evolution operator ÛD(t2, t1) solves.
Differentiating (6.29) with respect to t2 and taking into account (6.13) yields

i~
∂

∂t2
ÛD(t2, t1) = eiĤ

(0)
S t2/~ Ĥ

(int)
S (t) e−iĤ

(0)
S t2/~ eiĤ

(0)
S t2/~ ÛS(t2, t1) e−iĤ

(0)
S t1/~ . (6.35)

Thus, we conclude from (6.23), (6.29), and (6.35) that ÛD(t2, t1) fulfills the differential equation

i~
∂

∂t2
ÛD(t2, t1) = Ĥ

(int)
D (t2)ÛD(t2, t1) . (6.36)

The initial value problem (6.30) and (6.36) can be formally rewritten in form of an integral
equation:

ÛD(t2, t1) = 1− i

~

∫ t2

t1

dt′1 Ĥ
(int)
D (t′1) ÛD(t′1, t1) . (6.37)
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Figure 6.1: The hatched triangle can be integrated in two ways, which allows to rearrange the
integral (6.39).

Successively reinserting the left-hand side of (6.37) into the right-hand side, one obtains the
von Neumann series

ÛD(t2, t1) = 1− i

~

∫ t2

t1

dt′1 Ĥ
(int)
D (t′1) +

(
−i
~

)2 ∫ t2

t1

dt′1

∫ t′1

t1

dt′2 Ĥ
(int)
D (t′1) Ĥ

(int)
D (t′2) + . . .

+

(
−i
~

)n ∫ t2

t1

dt′1

∫ t′1

t1

dt′2 . . .

∫ t′n−1

t1

dt′n Ĥ
(int)
D (t′1) Ĥ

(int)
D (t′2) · · · Ĥ(int)

D (t′n) + . . . . (6.38)

It is noticeable in the nth summand of the von Neumann series that the time arguments of
the multiple integrals are ordered in decreasing order: t′1 > t′2 > . . . > t′n. According to an
idea of Freeman Dyson, all n integrals can be rewritten such that they are all performed over
the same interval [t1, t2] by using the so-called time-ordered product of operators. To this end
we consider exemplarily the second term in the von Neumann series (6.38) and reorganize it as
follows: ∫ t2

t1

dt′1

∫ t′1

t1

dt′2 Ĥ
(int)
D (t′1) Ĥ

(int)
D (t′2) =

∫ t2

t1

dt′2

∫ t2

t′2

dt′1 Ĥ
(int)
D (t′1) Ĥ

(int)
D (t′2) . (6.39)

Here we use the fact that the hatched triangle in Fig. 6.1 can be integrated in two ways.
Either we first integrate over t′2 and then over t′1 or, conversely, first over t′1 and then over t′2.
Exchanging both integration variables at the right-hand side of (6.39) we conclude

2

∫ t2

t1

dt′1

∫ t′1

t1

dt′2 Ĥ
(int)
D (t′1) Ĥ

(int)
D (t′2) =

∫ t2

t1

dt′1

∫ t′1

t1

dt′2 Ĥ
(int)
D (t′1) Ĥ

(int)
D (t′2) (6.40)

+

∫ t2

t1

dt′1

∫ t2

t′1

dt′2 Ĥ
(int)
D (t′2) Ĥ

(int)
D (t′1) =

∫ t2

t1

dt′1

∫ t2

t1

dt′1 Θ(t′1 − t′2) Ĥ
(int)
D (t′1) Ĥ

(int)
D (t′2)

+

∫ t2

t1

dt′1

∫ t2

t1

dt′1 Θ(t′2 − t′1) Ĥ
(int)
D (t′2) Ĥ

(int)
D (t′1) =

∫ t2

t1

dt′1

∫ t2

t1

dt′1 T̂
(
Ĥ

(int)
D (t′1) Ĥ

(int)
D (t′2)

)
.
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In the last step we assumed that the interacting Hamilton operator in the Dirac picture Ĥ(int)
D (t)

is bosonic, so the time ordering was used for two bosonic operators whose time order is not yet
fixed:

T̂
(
Ĥ

(int)
D (t′1)Ĥ

(int)
D (t′2)

)
= Θ(t′1 − t′2)Ĥ

(int)
D (t′1)Ĥ

(int)
D (t′2) + Θ(t′2 − t′1)Ĥ

(int)
D (t′2)Ĥ

(int)
D (t′1) . (6.41)

Analogous to (6.40), also all other terms in the von Neumann series (6.38) can be rewritten
as multiple integrals over the entire interval [t1, t2] with the help of the time-ordered product
of operators. In the case of the nth-order term, one has to take into account in total n!

permutations of the time arguments. Therefore the generalisation of (6.40) reads

n!

∫ t2

t1

dt′1

∫ t′1

t1

dt′2 · · ·
∫ t′n−1

t1

dt′n Ĥ
(int)
D (t′1) Ĥ

(int)
D (t′2) · · · Ĥ(int)

D (t′n)

=

∫ t2

t1

dt′1

∫ t2

t1

dt′2 · · ·
∫ t2

t1

dt′n T̂
(
Ĥ

(int)
D (t′1) Ĥ

(int)
D (t′2) · · · Ĥ(int)

D (t′n)
)
. (6.42)

This result can be proven by complete induction. With the help of (6.42) the von Neumann
series (6.38) for the time evolution operator is finally given by the Dyson series

ÛD(t2, t1) =
∞∑
n=0

1

n!

(
−i
~

)n ∫ t2

t1

dt′1 · · ·
∫ t2

t1

dt′n T̂
(
Ĥ

(int)
D (t′1) · · · Ĥ(int)

D (t′n)
)
. (6.43)

We can explicitly verify that the Dyson series (6.43) solves the differential equation (6.36).
Differentiating (6.43) with respect to t2 we obtain due to the symmetry of the integrand with
respect to the integration variables t′1, t′2, ..., t′n:

i~
∂

∂t2
ÛD(t2, t1) =

∞∑
n=1

i~
n!

(
−i
~

)n
n

∫ t2

t1

dt′1

∫ t2

t1

dt′2 · · ·
∫ t2

t1

dt′n−1

×T̂
(
Ĥ

(int)
D (t′1) Ĥ

(int)
D (t′2) · · · Ĥ(int)

D (t′n−1)Ĥ
(int)
D (t2)

)
. (6.44)

Due to the fact that the time t2 is larger than all remaining integration variables t′1, t′2, . . .,
t′n−1 and using the definition (6.41) of the time-ordered product of operators, one can pull the
operator Ĥ(int)

D (t2) out of the time ordering and obtain together with (6.43)

i~
∂

∂t2
ÛD(t2, t1) = Ĥ

(int)
D (t′2)

∞∑
n=1

1

(n− 1)!

(
−i
~

)n−1 ∫ t2

t1

dt′1

∫ t2

t1

dt′2 · · ·
∫ t2

t1

dt′n−1

×T̂
(
Ĥ

(int)
D (t′1)Ĥ

(int)
D (t′2) · · · Ĥ(int)

D (t′n−1)
)

= Ĥ
(int)
D (t2)

∞∑
n=0

1

n!

(
−i
~

)n ∫ t2

t1

dt′1

∫ t2

t1

dt′2 · · ·
∫ t2

t1

dt′n

×T̂
(
Ĥ

(int)
D (t′1)Ĥ

(int)
D (t′2) · · · Ĥ(int)

D (t′n)
)

= Ĥ
(int)
D (t2)ÛD(t2, t1) . (6.45)

Formally, the Dyson series (6.43) can be summed up to a time-ordered exponential function:

ÛD(t2, t1) = T̂ exp

{
−i
~

∫ t2

t1

dt Ĥ
(int)
D (t)

}
. (6.46)

By taking into account that the time evolution operator (6.46) is defined by the Dyson series
(6.43) one can calculate perturbatively the cross sections of scattering processes as will be
worked out in the next chapter.





Appendix A

Functional Derivative

Here we provide a concise introduction into the functional derivative [14]. It generalizes the
definition of a partial derivative for a finite number of variables to the case, where a continuum
of variables exists. And it allows straight-forwardly to determine the Euler-Lagrange equations
from the Hamilton principle of Lagrangian mechanics.

A.1 Definition

At first we consider a function x of a finite number of degrees of freedom:

x = x(t1, . . . , tN) . (A.1)

The partial derivative of x with respect to the variable tj, i.e.

∂x(t1, . . . , tN)

∂tj
, (A.2)

then denotes the change of the function (A.1) with respect to the variable tj, where all other
variables t1, . . . , tj−1, tj+1, . . . , tN remain constant. The total change of the function x, i.e.

dx(t1, . . . , tN) =
N∑
j=1

∂x(t1, . . . , tN)

∂tj
dtj , (A.3)

is then additive in all possible changes of the function, where only one variable changes and
all the other variables remain constant. Specializing (A.3) to an infinitesimal change in one
variable, i.e. dtj = εδij, yields

x(t1, . . . , ti + ε, . . . , tN)− x(t1, . . . , ti, . . . , tn) = dx(t1, . . . , tN) = ε
∂x(t1, . . . , tN)

∂ti
. (A.4)

Thus, the partial derivative follows from the limit of a difference quotient:

∂x(t1, . . . , tN)

∂ti
= lim

ε→0

x(t1, . . . , ti + ε, . . . , tN)− f(t1, . . . , ti, . . . , tn)

ε
. (A.5)
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Now we generalize this concept of differentiation from a finite number to a continuum of vari-
ables. Therefore, we regard now a functional

F = F
[
x(•)

]
, (A.6)

i.e. a mapping of a function x(t) to a real or a complex number. The functional derivative

δF
[
x(•)

]
δx(t)

(A.7)

should then describe how the functional F changes provided that the function x(t) is only
changed at a single point x(t). Thus, the functional derivative (A.7) becomes in this way an
ordinary function, which depends on the variable t. In analogy to (A.3) the total change of the
functional F is defined via

δF
[
x(•)

]
=

∫
dt
δF
[
x(•)

]
δx(t)

δx(t) , (A.8)

so it is additive with respect to all local changes of the function x(t) at all instances t. Similar
to the case of a partial derivative also the functional derivative can be determined from the
limit of a difference quotient. To this end we introduce a local perturbation of the field x(t) at
time t′ with strength ε according to

δx(t) = εδ(t− t′) (A.9)

and determine from (A.8) and (A.9)

F [x(•) + εδ(• − t′)]− F [x(•)] = δF [x(•)] =

∫
dt
δF [x(•)]
δx(t)

δx(t) = ε
δF [φ(•)]
δx(t′)

. (A.10)

In the limit ε→ 0 we obtain
δx[φ(•)]
δx(t′)

= lim
ε→0

F [x(•) + εδ(• − t′)]− F [x(•)]
ε

. (A.11)

From this definition of the functional derivative as a limit of a difference quotient follow several
useful calculation rules. At first, we obtain from (A.11) the trivial functional derivative

δx(t)

δx(t′)
= lim

ε→0

x(t) + εδ(t− t′)− x(t)

ε
= δ(t− t′) . (A.12)

Then we determine from (A.11) the product rule

δ{F [x(•)]G[x(•)]}
δx(t′)

= lim
ε→0

F [x(•) + εδ(• − t′)]G[x(•) + εδ(• − t′)]− F [x(•)]G[x(•)]
ε

= lim
ε→0

{
F [x(•) + εδ(• − t′)]− F [x(•)]

ε
G[x(•)] + F [x(•)] G[x(•) + εδ(• − t′)]−G[x(•)]

ε

}
=
δF [x(•)]
δx(t′)

G[x(•)] + F [x(•)]δG[x(•)]
δx(t′)

. (A.13)

And, finally, combining (A.11) and (A.12) yields the chain rule:

δf(x(t))

δx(t′)
= lim

ε→0

f (x(t) + εδ(t− t′))− f(x(t))

ε
=
∂f(x(t))

∂x(t)
δ(t− t′) =

∂f(x(t))

∂x(t)

δx(t)

δx(t′)
. (A.14)
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A.2 Application

Now we apply the concept of the functional derivative to evaluate the Hamilton principle of
Lagrangian mechanics (1.3). For each component xi(t) of the particle path x(t) we then obtain
for the functional derivative of the action (1.1) due to the chain rule

δA
δxi(t)

=
∑
i′

∫ t2

t1

{
∂L

∂xi′(t′)

δxi′(t
′)

δxi(t)
+

∂L

∂ẋi′(t′)

δẋi′(t
′)

δxi(t)

}
dt′ . (A.15)

Here we use the fact that a total derivative with respect to t′ and a functional derivative with
respect to xi(t) can be interchanged as t and t′ represent independent degrees of freedom:

δẋi′(t
′)

δxi(t)
=

δ

δxi(t)

dxi′(t
′)

dt′
=

d

dt′
δxi′(t

′)

δxi(t)
. (A.16)

Inserting (A.16) into (A.15) allows to perform a partial integration:

δA
δxi(t)

=
∑
i′

[
∂L

∂ẋi′(t′)

δxi′(t
′)

δxi(t)

]t2
t1

+
∑
i′

∫ t2

t1

{
∂L

∂xi′(t′)
− d

dt′
∂L

∂ẋi′(t′)

}
δxi′(t

′)

δxi(t)
dt′ . (A.17)

The appearing functional derivative is defined as a straight-forward extension of (A.12):

δxi′(t
′)

δxi(t)
= δii′δ(t− t′) , (A.18)

so (A.17) reduces to

δA
δxi(t)

=

[
∂L

∂ẋi(t′)
δ(t− t′)

]t2
t1

+

∫ t2

t1

{
∂L

∂xi(t′)
− d

dt′
∂L

∂ẋi(t′)

}
δ(t− t′) dt′ . (A.19)

The boundary terms vanish as the time t, for which we evaluate the functional derivative, is
supposed to be different from the initial (final) time t1 (t2). And, finally, evaluating the time
integral yields together with the Hamilton principle (1.3)

∂L

∂xi(t)
− d

dt

∂L

∂ẋi(t)
= 0 , (A.20)

which coincides with the Euler-Lagrange equations (1.4).





Appendix B

Hypergeometric Functions

In mathematics, the hypergeometric function is a special function represented by a series,
which includes many other special functions as specific or limiting cases. This means that
many functions appearing in theoretical physics applications can be described from a unified
point of view with the help of those hypergeometric functions [15].

B.1 Hypergeometric Differential Equations

The hypergeometric differential equation, which was analyzed by Leonhard Euler and Carl
Friedrich Gauß, reads as follows:

z(1− z)
d2φ

dz2
+
[
c− (a+ b+ 1) z

]dφ
dz
− abφ = 0 . (B.1)

Thus, it represents a homogeneous linear differential equation of second order for a function
φ(z). As it contains three parameters a, b, c, its solutions allow for a variety of functions. In
the following we solve (B.1) with the help of a power series expansion of the form

φ(z) = zσ
∞∑
ν=0

cνz
ν , (B.2)

which contains a yet to be determined index σ. Substituting (B.2) into (B.1) yields at first

z(1− z)
∞∑
ν=0

cν(ν + σ)(ν + σ − 1)zν+σ−2

+
[
c− (a+ b+ 1) z

] ∞∑
ν=0

cν(ν + σ)zν+σ−1 − ab
∞∑
ν=0

cνz
ν+σ = 0 . (B.3)

Here one has to multiply out the respective factors and to reorder the summations in such a
way that terms with the same power are collected. This leads to

c0σ(c+σ− 1)zσ−1 +
∞∑
ν=0

[
cν+1(ν+σ+ c)(ν+σ+ 1)− cν(ν+σ+ a)(ν+σ+ b)

]
zν+σ = 0 . (B.4)
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The vanishing of this equation implies that all coefficients have to be zero. With this we obtain
the index equation

σ(c+ σ − 1) = 0 (B.5)

and the recurrence relation

cν+1 =
(ν + σ + a)(ν + σ + b)

(ν + σ + c)(ν + σ + 1)
cν . (B.6)

The latter can be solved straight forwardly by putting without loss of generality c0 = 1 and
yields

cν =
(a+ σ)ν(b+ σ)ν
(c+ σ)ν(1 + σ)ν

, (B.7)

where we have introduced as a useful abbreviation the Pochhammer symbol

(a)ν = a(a+ 1) · · · (a+ ν − 1) , ν = 1, 2, . . . , (B.8)

(a)0 = 1 . (B.9)

For instance, the factorial represents an example for a Pochhammer symbol

(1)ν = 1 · 2 · · · (ν − 1) = ν! . (B.10)

An alternative definition of the Pochhammer symbol is based on the Gamma function [16,
(8.310.1)]

Γ(x) =

∫ ∞
0

dt tx−1 e−t , x > 0 . (B.11)

Performing a partial integration we obtain the useful recursion formula

Γ(x+ 1) = xΓ(x) , x > 0 . (B.12)

Thus, applying (B.12) recursively, we conclude that the Gamma function interpolates between
the factorials:

ν! = Γ(ν + 1) . (B.13)

And we read off from (B.12) that the Pochhammer symbol (a)ν can also be defined with the
Gamma function via

(a)ν =
Γ(a+ ν)

Γ(a)
, (B.14)

which contains both (B.8) and (B.9) as special cases. Inserting (B.7) into (B.2) we obtain for
the solution of the hypergeometric differential equation:

φ(z) = zσ
∞∑
ν=0

(a+ σ)ν(b+ σ)ν
(c+ σ)ν(1 + σ)ν

zν . (B.15)

Furthermore, we read off from the index equation (B.5) that there are two possible values for
the index σ:
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• The first value amounts to σ1 = 0, so (B.15) reduces together with (B.10) to the hyper-
geometric function

φ1(z) = 2F1(a, b; c; z) =
∞∑
ν=0

(a)ν(b)ν
(c)ν

zν

ν!
. (B.16)

The indices appended to 2F1 indicate that we have in the series (B.16) two Pochhammer
symbols in the numerator and one Pochhammer symbol in the denominator. Therefore,
a natural generalization of the hypergeometric function reads

pFq(α1, . . . , αp; β1, . . . βq; z) =
∞∑
ν=0

(α1)ν(α2)ν · · · (αp)ν
(β1)ν(β2)ν · · · (βq)ν

zν

ν!
. (B.17)

Note that (B.16) does only exist provided that none of the factors in the denominator
(c)ν = c(c + 1)(c + 2) · · · (c + ν − 1) vanishes. Thus, we have to demand c 6= −n with
n = 0, 1, 2, . . .. Conversely, in case of a = −n or b = −n with n = 0, 1, 2, . . . the series
terminates after a finite number of terms, yielding a polynomial of degree n.

• Correspondingly, the second possible value for the index reads σ2 = 1 − c. Thus, the
second solution of the hypergeometric differential equation amounts to

φ2(z) = z1−c
2F1(a+ 1− c, b+ 1− c; 2− c; z) . (B.18)

In view of its existence we have to demand c 6= 2, 3, . . ..

As the hypergeometric differential equation (B.1) is both linear and of second order, its general
solution is given by a superposition of both solutions (B.16) and (B.18):

φ(z) = A 2F1(a, b; c; z) +B z1−c
2F1(a+ 1− c, b+ 1− c; 2− c; z) . (B.19)

Note that basically all elementary functions can be represented in terms of hypergeometric
functions. An exemplary selection is provided, for instance, in Ref. [16, Sect. 9.12]. Further-
more, software packages like Mathematica, which symbolically process for instance differential
equations, are today capable of working with hypergeometric functions.

B.2 Confluent Hypergeometric Differential Equation

An important special case of the hypergeometric differential equation (B.1) follows from imple-
menting the linear transformation x = bz. This substitution converts (B.1) to

x
(

1− x

b

) d2φ

dx2
+

(
c− x− a+ 1

b
x

)
dφ

dx
− aφ = 0 . (B.20)

Performing here the limit b→∞ yields the Kummer differential equation, which is also called
the confluent hypergeometric differential equation:

x
d2φ

dx2
+ (c− x)

dφ

dx
− aφ = 0 . (B.21)
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The derivation of (B.21) implies that its general solution follows from (B.19) according to

φ(x) = lim
b→∞

[
A 2F1

(
a, b; c;

x

b

)
+B

(x
b

)1−c
2F1

(
a+ 1− c, b+ 1− c; 2− c; x

b

)]
. (B.22)

Inserting therein the series expansion for the hypergeometric function (B.16) and taking into
account the Pochhammer symbol (B.8) we recognize that the evaluation of the limit b → ∞
boils down to the calculation

lim
b→∞

(b)ν
bν

= 1 , lim
b→∞

(b+ 1− c)ν
bν

= 1 . (B.23)

Redefining the constant B′ = B/b1−c and omitting the prime then yields for the general solution
of the Kummer differential equation (B.21)

φ(x) = A 1F1(a; c;x) +B x1−c
1F1(a+ 1− c; 2− c;x) . (B.24)

Here the series expansion of the confluent hypergeometric function

1F1(a; c;x) = lim
b→∞

2F1

(
a, b; c;

x

b

)
(B.25)

turns out to be

1F1(a; c;x) =
∞∑
ν=0

(a)ν
(c)ν

xν

ν!
, (B.26)

which is a special case of (B.17) with one Pochhammer symbol both in the numerator and in
the denominator.

B.3 Asymptotic Properties

The hypergeometric function (B.16) represents a series with a finite radius of convergence. It
can be inferred from the ratio test for convergence

R = lim
ν→∞

∣∣∣∣ cνcν+1

∣∣∣∣ , (B.27)

which yields by taking into account the coefficients (B.7) the result R = 1. But the solution of
the hypergeometric differential equation can also be extended beyond its region of convergence,
i.e. for |z| > 1. A convergent series representation of 2F1(a, b; c; z) for |z| > 1 is derived in detail
for instance in Ref. [17] and leads to the transformation formula [16, (9.132.2)]

2F1(a, b; c; z) =
Γ(c)Γ(b− a)

Γ(b)Γ(c− a)
(−z)a 2F1

(
a, 1− c+ a; 1− b+ a;

1

z

)
+

Γ(c)Γ(a− b)
Γ(a)Γ(c− b)

(−z)b 2F1

(
b, 1− c+ b; 1− a+ b;

1

z

)
. (B.28)
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From this one can read off the asymptotic behaviour |z| → ∞ of the hypergeometric function
due to its property 2F1(a, b; c; 0) = 1, which follows straight forwardly from its series expansion
(B.28), yielding

2F1(a, b; c; z) −→ Γ(c)Γ(b− a)

Γ(b)Γ(c− a)
(−z)a +

Γ(c)Γ(a− b)
Γ(a)Γ(c− b)

(−z)b , |z| → ∞ . (B.29)

Now we work out the corresponding consequences for the confluent hypergeometric functions
(B.25). At first we apply the ratio test for convergence to the series (B.26) and find that
the confluent hypergeometric function 1F1(a; c;x) has the convergence radius R = ∞, i.e. it
converges for all real numbers x. Its asymptotic behaviour follows from combining (B.25) and
(B.28):

1F1(a; c;x) =
Γ(c)

Γ(c− a)
(−x)−a lim

b→∞

Γ(b− a)

Γ(b)
ba 2F1

(
a, 1− c+ a; 1− b+ a;

b

x

)
+

Γ(c)

Γ(a)
lim
b→∞

Γ(a− b)
Γ(c− b)

(
− b
x

)b
2F1

(
b, 1− c+ b; 1− a+ b;

b

x

)
. (B.30)

In order to evaluate both limits in (B.30) one needs the asymptotic representation of the Gamma
function [16, (8.327)]

Γ(z) = zz−1/2e−z
√

2π

(
1 +

1

12z
+

1

288z2
+ . . .

)
, |z| → ∞ , (B.31)

which is also known as the Stirling formula. With this we get for the first line of (B.31)

Γ(b− a)

Γ(b)
−→ b−a , b→∞ , (B.32)

whereas in the second line we obtain

Γ(a− b)
Γ(c− b)

−→ (−b)a−c , b→∞ . (B.33)

Taking into account the series of the hypergeometric function (B.16) yields furthermore

lim
b→∞

bν

(1∓ b± a)ν
= (∓1)ν . (B.34)

It turns out that (B.32) and (B.34) allow to evaluate the limit in the first line of (B.31), but
the calculation of the second line needs one additional step. To this end we use one of the
transformation formulas for hypergeometric functions [16, (9.131.1)]

2F1(a, b; c; z) = (1− z)c−a−b 2F1(c− a, c− b; c; z) . (B.35)

It mixes the parameters a, b, and c in such a favourable way that applying (B.33) and (B.34)
allows to also evaluate the limit in the second line of (B.31) by taking into account the limit
representation of the exponential function

ex = lim
b→∞

(
1 +

x

b

)b
. (B.36)
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As a result we find for the confluent hypergeometric function the asymptotic expansion [18,
p. 269]

1F1(a; c;x) =
Γ(c)

Γ(c− a)
(−x)−a 2F0

(
a, 1 + a− c; −1

x

)
+

Γ(c)

Γ(a)
xa−cex2F0

(
1− a, c− a;

1

x

)
. (B.37)

Here we introduced the generalized hypergeometric function

2F0(a, c;x) =
∞∑
ν=0

(a)ν(c)ν
xν

ν!
, (B.38)

which is a special case of (B.17) with two Pochhammer symbols in the numerator and none in the
denominator. From (B.37) we read off the asymptotic behaviour of the confluent hypergeometric
function due to the property 2F0(a, c; 0) = 1 following from (B.38):

1F1(a; c;x) −→ Γ(c)

Γ(c− a)
(−x)−a +

Γ(c)

Γ(a)
xa−cex , |x| → ∞ . (B.39)

This result is crucial for concluding from the Dirichlet boundary condition that the eigenenergies
of various quantum problems are quantized. For instance, we apply (B.39) for the quantization
condition of both the harmonic oscillator in Section 1.3 and the hydrogen atom in Section 1.4.



Appendix C

Selection Rules

In this Appendix we calculate the selection rules (3.29) for electric dipole transitions in the
hydrogen atom. To this end we have to investigate for which quantum numbers the dipole
matrix elements (3.28) do not vanish. Here the wave functions of the electron in the hydrogen
atom are needed, which are given in spherical coordinates by (1.69). In the following it turns
out that the selection rules are not affected by the radial wave function Rnl(r), only the angular
dependences are decisive, which are determined by the spherical harmonics Ylm(ϑ, ϕ). Namely,
evaluating (3.28) in spherical coordinates, this matrix element factorises according to

zfi = Ir · Iϑ,ϕ (C.1)

into the radial component

Ir =

∫ ∞
0

dr r3Rnf lf (r)Rnili(r) (C.2)

and the angular component

Iϑ,ϕ =

∫ π

0

dϑ sinϑ

∫ 2π

0

dϕY ∗lfmf
(ϑ, ϕ) cosϑYlimi

(ϑ, ϕ) . (C.3)

Inserting (1.75) into (C.3) yields

Iϑ,ϕ =

∫ π

0

dϑ sinϑ

∫ 2π

0

dϕNlfmf
P

(mf )

lf
(cosϑ)e−imfϕ cosϑNlimi

P
(mi)
li

(cosϑ)eimiϕ , (C.4)

where the normalization constants are abbreviated according to

Nlm =

√
2l + 1

4π

(l −m)!

(l +m)!
. (C.5)

Inserting the recurrence relation the associated Legendre polynomials (1.78) into the angular
integral (C.4)

Iϑ,ϕ =

∫ π

0

dϑ sinϑ

∫ 2π

0

dϕNlfmf
P

(mf )

lf
(cosϑ)e−imfϕeimiϕ (C.6)

×
{
li + 1−mi

2li + 1

Nlimi

Nli+1mi

Nli+1mi
P

(mi)
li+1 (cosϑ) +

li +mi

2li + 1

Nlimi

Nli−1mi

Nli−1mi
P

(mi)
li−1 (cosϑ)

}
.

81



82 APPENDIX C. SELECTION RULES

Taking into account the normalization constants (C.5), we yield the side calculation

li+1 −mi

2ll+i

Nlimi

Nli+1mi

=

√
li + 1 +mi

(2li + 1)(2li + 3)(li + 1−mi)
, (C.7)

li +mi

2li + 1

Nlimi

Nli−1mi

=

√
li −mi

(2li + 1)(2li − 1)(li +mi)
. (C.8)

With this the angular integral (C.6) goes over into

Iϑ,ϕ =

∫ π

0

dϑ sin(ϑ)

∫ 2π

0

dϕY ∗lfmf
(ϑ, ϕ)

{√
li + 1 +mi

(2li + 1)(2li + 3)(li+1 −mi)
Yli+1mi

(ϑ, ϕ)

+

√
li −mi

(2li + 1)(2li − 1)(li +mi)
Yli−1mi

(ϑ, ϕ)

}
. (C.9)

Thus, the orthonormality of the spherical harmonics (1.82) leads to

Iϑ,ϕ=

{√
li + 1−mi

(2li + 1)(2li + 3)(li + 1−mi)
δlf ,li+1

+

√
li −mi

(2li + 1)(2li − 1)(li +mi)
δlf ,li−1

}
δmf ,mi

(C.10)

so the Kronecker symbols imply the selection rules (3.29) for the matrix elements of the z-
component (3.28).



Appendix D

Sum Rules

Here we derive sum rules, which represent a basic method to formally evaluate sums or inte-
grals over discrete or continuous quantum numbers appearing in expressions of non-degenerate
perturbation theory. Concerning a concrete application we have the second perturbative or-
der (3.52) in mind, which is needed for determining the quadratic Stark effect in Subsection
3.3.2. But we follow Ref. [30] and present the derivation in such a general way that it could
straight-forwardly be extended also to higher perturbative orders.

D.1 Derivation

We start with considering the unperturbed time-independent Schrödinger equations for two
different energy eigenvalues E(0)

n 6= E
(0)
m :[

− ~2

2M
∆ + Vpot.(x)

]
ψ(0)
n (x) = E(0)

n ψ(0)
n (x) , (D.1)[

− ~2

2M
∆ + Vpot.(x)

]
ψ(0)
m (x) = E(0)

m ψ(0)
m (x) . (D.2)

Both equations can be multiplied with a yet unspecified functionW (x). Afterwards, multiplying
(D.1) and the complex conjugate of (D.2) with [ψ

(0)
m (x)]∗ and ψ(0)

n (x), respectively, the difference
of both expressions turns out to be independent of the potential Vpot.(x) and a subsequent
spatial integral yields∫

d3xW (x)
{

[ψ(0)
m (x)]∗∆ψ(0)

n (x)− ψ(0)
n (x)∆

[
ψ(0)
m (x)

]∗ }
=

2M

~2

(
E(0)
n − E(0)

m

) ∫
d3xW (x)[ψ(0)

m (x)]∗ψ(0)
n (x) . (D.3)

A first partial integration with the help of the Gauß integration theorem leads together with
Dirichlet boundary conditions for the energy eigenfunctions to
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∫
d3x∇W (x) ·

{
ψ(0)
n (x)∇

[
ψ(0)
m (x)

]∗ − [ψ(0)
m (x)]∗∇ψ(0)

n (x)
}

=
2M

~2

(
E(0)
n − E(0)

m

) ∫
d3xW (x)[ψ(0)

m (x)]∗ψ(0)
n (x) . (D.4)

Now we perform for the first term on the left-hand side another partial integration with the
help of the Gauß integration theorem and get∫

d3x [ψ(0)
m (x)]∗

{
ψ(0)
n (x)∆W (x) + 2∇W (x) ·∇ψ(0)

n (x)
}

=
2M

~2

(
E(0)
n − E(0)

m

) ∫
d3xW (x)[ψ(0)

m (x)]∗ψ(0)
n (x) . (D.5)

We assume that a function W (x) could be determined from solving the differential function

ψ(0)
n (x)∆W (x) + 2∇W (x) ·∇ψ(0)

n (x) = V (x)ψ(0)
n (x) . (D.6)

Here V (x) denotes a given function, which represents later on the perturbation in the Hamilton
operator. Then (D.5) reduces to∫

d3x [ψ(0)
m (x)]∗V (x)ψ(0)

n (x) =
2M

~2

(
E(0)
n − E(0)

m

) ∫
d3x [ψ(0)

m (x)]∗W (x)ψ(0)
n (x) . (D.7)

Let us convert this result from the coordinate representation to the representation independent
Dirac notation:

〈ψ(0)
m |V̂ |ψ(0)

n 〉
E

(0)
n − E(0)

m

=
2M

~2
〈ψ(0)

m |Ŵ |ψ(0)
n 〉 . (D.8)

This key formula will now be the starting point for simplifying sums or integrals over discrete
or continuous quantum numbers as they appear in expressions of non-degenerate perturbation
theory.

D.2 Second Order

We demonstrate the generic procedure at first for the second-order perturbative result. To
this end we multiply (D.8) with 〈ψ(0)

n |V̂ |ψ(0)
m 〉 and sum (integrate) over all discrete (continuous)

quantum numbers:

∑
m6=n

∫ ∣∣∣〈ψ(0)
m |V̂ |ψ(0)

n 〉
∣∣∣2

E
(0)
n − E(0)

m

=
2M

~2

∑
m6=n

∫
〈ψ(0)

n |V̂ |ψ(0)
m 〉〈ψ(0)

m |Ŵ |ψ(0)
n 〉 . (D.9)

At the right-hand side of (D.9) we can use the completeness relation of the unperturbed energy
eigenstates ∑

m

∫
|ψ(0)
m 〉〈ψ(0)

m | = 1 (D.10)
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by rewriting it as follows: ∑
m 6=n

∫ ∫
|ψ(0)
m 〉〈ψ(0)

m | = 1− |ψ(0)
n 〉〈ψ(0)

n | . (D.11)

Taking into account the notation for the matrix elements (2.27), Eq. (D.9) reduces with the
help of (D.11) to the sum rule that the second-order perturbative result (3.52) can be recast
into the form (3.53), which is due to (2.28) equivalent to

E(2)
n =

2M

~2

[
(VW )nn − E(1)

n Wnn

]
. (D.12)

D.3 Third Order

Intriguingly this procedure is not restricted to the second perturbative order but can also be
extended straight-forwardly to higher orders. To this end we use the hermiticity (2.33) of the
matrix element (2.27) and derive from (D.8) the complementary result

〈ψ(0)
n |V̂ |ψ(0)

m 〉
E

(0)
n − E(0)

m

=
2M

~2
〈ψ(0)

n |Ŵ |ψ(0)
m 〉 . (D.13)

On the one hand, combining (D.8) and (D.13) then yields

〈ψ(0)
n |V̂ |ψ(0)

l 〉
E

(0)
n − E(0)

l

〈ψ(0)
l |V̂ |ψ

(0)
l′ 〉
〈ψ(0)

l′ |V̂ |ψ
(0)
n 〉

E
(0)
n − E(0)

l′

=

(
2M

~2

)2

〈ψ(0)
n |Ŵ |ψ

(0)
l 〉〈ψ

(0)
l |V̂ |ψ

(0)
l′ 〉〈ψ

(0)
l′ |Ŵ |ψ

(0)
n 〉(D.14)

Summing (integrating) over the discrete (continuous) quantum numbers l, l′ gives with applying
(D.11) twice ∑

l,l′ 6=n

〈ψ(0)
n |V̂ |ψ(0)

l 〉〈ψ
(0)
l |V̂ |ψ

(0)
l′ 〉〈ψ

(0)
l′ |V̂ |ψ

(0)
n 〉(

E
(0)
n − E(0)

l

)(
E

(0)
n − E(0)

l′

)
=

(
2M

~2

)2 〈
ψ(0)
n

∣∣∣Ŵ(1− |ψ(0)
n 〉〈ψ(0)

n |
)
V̂
(

1− |ψ(0)
n 〉〈ψ(0)

n |
)
Ŵ
∣∣∣ψ(0)

n

〉
, (D.15)

which yield with taking into account the matrix element (2.27)∑
l,l′ 6=n

VnlVll′Vl′n(
E

(0)
n − E(0)

l

)(
E

(0)
n − E(0)

l′

) =

(
2M

~2

)2[ (
VW 2

)
nn
− 2Wnn (VW )nn +W 2

nnVnn

]
. (D.16)

On the other hand, another combination of (D.8) and (D.13) amounts to

〈ψ(0)
n |V̂ |ψ(0)

l 〉
E

(0)
n − E(0)

l

〈ψ(0)
l |V̂ |ψ

(0)
n 〉

E
(0)
n − E(0)

l

=

(
2M

~2

)2

〈ψ(0)
n |Ŵ |ψ

(0)
l 〉〈ψ

(0)
l |Ŵ |ψ

(0)
n 〉 , (D.17)

which leads with the matrix element (2.27) and (D.11) to∑
l 6=n

VnlVln(
E

(0)
n − E(0)

l

)2 =

(
2M

~2

)2 [ (
W 2
)
nn
−W 2

nn

]
. (D.18)



86 APPENDIX D. SUM RULES

Thus, we obtain for the third-order perturbative result from (4.41)

E(3)
n =

∑
l,l′ 6=n

VnlVll′Vl′n(
E

(0)
n − E(0)

l

)(
E

(0)
n − E(0)

l′

) − Vnn∑
l 6=n

VnlVln(
E

(0)
n − E(0)

l

)2 (D.19)

by combining and (D.16) and (D.18) the sum rule

E(3)
n =

(
2M

~2

)2 [ (
VW 2

)
nn
− 2Wnn (VW )nn − Vnn

(
W 2
)
nn

+ 2W 2
nnVnn

]
. (D.20)

Taking into account (D.12) this amounts to

E(3)
n =

(
2M

~2

)2
[(
VW 2

)
nn
− 2

2M

~2
E(2)
n Wnn −

(
2M

~2

)2

E(1)
n

(
W 2
)
nn

]
. (D.21)

D.4 General Perturbative Order

It is now straight-forward to derive in the same way the corresponding sum rule also for the
fourth perturbative order, which is contained in (4.41). Therefore, we leave this task to the
interested reader. Instead, we aim at developing another strategy to directly obtain the fourth-
order sum rule. To this end we go one step back and revisit the second- and the third-order sum
rule (3.53) and (D.20) with the aim to generalize it to any perturbative order. The common
property of the sum rules (3.53) and (D.20) is that they all consist of expectation values of
operators with respect to the unperturbed eigenstate |ψ(0)

n 〉 for which the respective perturbative
energy correction is obtained. Furthermore, it is obvious that the kth perturbative correction
of the energy eigenvalue E(k)

n involves the expectation value with one operator V̂ and k − 1

operators Ŵ :

E(k)
n =̂

(
VW k−1

)
nn
. (D.22)

In the second-order sum rule (3.53) we recognize that E(2)
n is given by

E(2)
n =

2M

~2
(VW )c

nn , (D.23)

where we have introduced the variance

(VW )c
nn = (VW )nn − VnnWnn , (D.24)

which is the second cumulant. Therefore, it is suggestive to conjecture that the third-order
sum rule (D.21) coincides with

E(3)
n =

(
2M

~2

)2 (
VW 2

)c

nn
, (D.25)

where a third cumulant appears.
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Note that expectation values, also called moments, and cumulants represent basic quantities in
probability theory to describe the properties of probability distributions. Let us explain their
respective definitions in the context of our current problem. To this end we consider a set of N
operators: Ô1, Ô2, . . . , ÔN . Then their respective expectation values are defined by the moment
generating function(

ez1O1+z2O2+...+zNON

)
nn

=
∞∑
l1=0

∞∑
l2=0

· · ·
∞∑

lN=0

zl11
l1!

zl22
l2!
· · · z

lN
N

lN !

(
Ol1

1 O
l2
2 · · ·O

lN
N

)
nn
, (D.26)

while the cumulants are defined by the cumulant generating function

ln
(
ez1O1+z2O2+...+zNON

)
nn

=
∞∑
l1=0

∞∑
l2=0

· · ·
∞∑

lN=0

′ z
l1
1

l1!

zl22
l2!
· · · z

lN
N

lN !

(
Ol1

1 O
l2
2 · · ·O

lN
N

)c

nn
. (D.27)

Here the prime sign denotes that the term with l1 = l2 = . . . = lN = 0 is excluded from the
summation [31]. Moments and cumulants can be expressed by cumulants and vice versa. In
order to obtain their respective relations it is possible to apply a recursive procedure. To this
end we start with O1 and get its first moment, which coincides with its first cumulant:

(O1O2 · · ·ON)nn = (O1)nn (O2 · · ·ON)nn + . . . . (D.28)

Then we take all possible second-order cumulants of O1 with any other observable O2, . . . , ON :

(O1O2 · · ·ON)nn = (O1)nn (O2 · · ·ON)nn

+
N∑
l1=2

(O1Ol1)
c
nn

(
O2 · · ·Ol1−1Ol1+1 · · ·ON

)
nn

+ . . . . (D.29)

And then one has to go to all higher cumulants in the same way until, finally, the Nth-order
cumulant appears:

(O1O2 · · ·ON)nn = (O1)nn (O2 · · ·ON)nn

+
N∑
l=2

(O1Ol)
c
nn (O2 · · ·Ol−1Ol+1 · · ·ON)nn + . . .+ (O1O2 · · ·ON)c

nn . (D.30)

Note that for determining the remaining moments one has to use recursively (D.30) until at
the right-hand side only cumulants appear.

Let us apply this recursive procedure to our situation. At first we get

(VW )nn = VnnWnn + (VW )c
nn , (D.31)

which recovers the second cumulant (D.24). And then we obtain

(VW 2)nn = Vnn
(
W 2
nn

)
+ 2 (VW )c

nnWnn +
(
VW 2

)c

nn
, (D.32)

so combining (D.21), (D.25), and (D.32) reproduces, indeed, our previous result (D.22). As
this proves our conjecture (D.25) for the third-order sum rule, we extend it to any perturbative
order:

E(k)
n =

(
2M

~2

)k−1 (
VW k−1

)c

nn
. (D.33)

Again we leave it to the interested reader to verify this conjecture also for the fourth order.





Appendix E

Useful Integrals

Here we deal with two integrals, which appear occasionally in theoretical physics.

E.1 First Integral

At first we determine the integral ∫ ∞
−∞

dx
sinx

x
, (E.1)

where the integrand is known as the sinc-function. To this end we consider the family of
auxiliary integrals

I(a) =

∫ ∞
0

dx
sinx

x
e−ax , a > 0 , (E.2)

which vanish in the limit that the family parameter a tends to infinity:

I(∞) = 0 . (E.3)

The partial derivative of (E.2) with respect to a then yields the elementary integral

∂I(a)

∂a
= −

∫ ∞
0

dx sinx e−ax , (E.4)

which is straight-forwardly calculated, for instance, as follows:

∂I(a)

∂a
= −Im

∫ ∞
0

dx e−(a−i)x = −Im 1

a− i
= −Im a+ i

a2 + 1
= − 1

a2 + 1
. (E.5)

Integrating (E.5) with respect to a and implementing (E.3) we get b = π/2 and with this

I(a) =
π

2
− arctan a . (E.6)

Thus, due to (E.2), evaluating (E.6) at a = 0 leads to the wanted integral (E.1):∫ ∞
−∞

dx
sinx

x
= 2 I(0) = π . (E.7)
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E.2 Second Integral

Now we deal with the integral, which appears in (5.45):∫ ∞
−∞

dx
sin2 x

x2
, (E.8)

where the integrand is the square of the sinc-function, which occurs, for instance, also at the
slit diffraction. Again we proceed by considering a family of integrals

J(b) =

∫ ∞
−∞

dx
sin2(bx)

x2
, (E.9)

which fulfill the property

J(0) = 0 . (E.10)

Performing here the derivative with respect to the family parameter b yields

∂J(b)

∂b
=

∫ ∞
−∞

dx
sin(2bx)

x
, (E.11)

which reduces with the substitution z(x) = 2bx to the integral (E.7). Thus, we obtain a result,
which turns out to be independent of b:

∂J(b)

∂b
= π . (E.12)

Integrating (E.12) with respect to b and taking into account (E.10) we finally obtain∫ ∞
−∞

dx
sin2 x

x2
= J(1) = π . (E.13)
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