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- ON THE PROPERTY OF APPROXIMATION OF TWO-

DIMENSIONAL LOCAL RINGS
GERHARD PFISTER (R.D.G.)

In this paper we'll prove for a certain class of local rings the property
of approximation (cf. [8]). ‘

A Joeal ring A is called a ring with property of approximation (and we’ll
write shortly 4 € AF) if the following holds : :

Let T= (Ts,. .., T,) be some variables, F' = (Fyye ooy Fr) € A[Ty,. .., To]”
some polynomials and ¢ an positive integer.

Suppese there is & § = (Yy,---; ¥a) € A®, A the completion of 4, such
that F(y) =0, then there iS 2 Y = (Y. Yu) € A" sUCh that F(y) =0
and y = ¥ mod m_%.

What examples of rings with property of approximation do we know ?
Theorem (M. ARTIN): Let R be an excellent henselian discrete valuation
ring, A the henselization of a ring of finite type over R in a maxtmal ideal,
then A € AE. .

(ci. [3]). _
Theorem (M. ARTIN): Let K be a valued field of characteristic 0, A an
analytic algebra over K, then A€ AE.

{ef. [2]). : . o
Theorem: Let K be a complete valued field of characteristic p, A an
analytic algebra over K, then A € AR,

(cf. [1], [4], [7] and [8]).

we'll prove the following theorein :

Let C be a complete discrete valuation ring with a prim element p, Y
a variable. _

Let A be an universal japanese ring with the following properties :

(i) C[Y]c 4 = C[[Y]], 4 is local noetherian, m_4 = (p, Y);
(i) 4= 0[¥Y1;
(iii) A is algebraically closed in ¢ [[Y1].

Then 4 € AE.
Proof: Let T =(T,..., Tn) and let Fy,..., F.e A[T]
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Suppose there ig = (1 :
for o b &= (t,..., 1ty
M& fix an integer ¢> 0.

ow we need the following lemma :

‘ . g a:

.WH MIEMM ] Emﬁsm. up : There is a prime ideal Y= (Gy...,@)S A[T
2= .., m) SOMe new variables, and a z — (z NI G L,

e following properties : ’ o F) € A with

), tie A = C[[Y]] such that Fyiy =0

(1) Y 2) = 0; v = kernel(A[T, Z] — A4, 7 -1, 7 —2);
7

(ify Fyey for all-i;

(iii)

there is a Ri(y) X Bi(y)-minor § of the JACOBIAN matrix
0(Gy. .., Gy)[0(T, Z) such that P doesn’t devide 3(i, z)
, @),

We don’t want to prove this 1
Ve ¢ 018 lemma here. One ca
wwmﬂmww %M \mwumﬁooiomwob%bm lemma in ARTIN’S proof (ef. [3]). Al
ean HoEBM Héaammw pmwboao mouawwH lemma proved in [4] or mmu_. Nwwww%wwm
e Ppose without restricti ity
T Ve o Suppose iction of generality that
- , ' generate ernel of the map 4 ) i
drowm s a xﬁxv\m.ww%oa 0 of the q»oowﬁzw EpWMMIvP el
. ey B such th. ) is ivisibl ‘ i ,
Wﬁmg of the mmm& generated d@%ﬁ GWAMVMMVHQ@ fivisible by p (r is here e
OW we apply WEIERSTRASS preparation theorem and get

n get it as a direct genera-

wmva = NAM). + No_hleJ.lHrT. ot NnoV

with a unite he C[[Y]] and % o)
Letg = Yo3xi)) mﬁqmmq. Lere
e divide the Z; by g using again the preparation theorem and get

mHHwHHH@H.HMN we mmﬁ «& Q.N\Jsu. IT .NHMN éwdw .Nﬁs.w e Q_”HMNu ‘NJ”_. W

Now we have b = gliy + liy, iy O[T ].

0 =Fyt) = gFy(8) + Py (1),

WM %ﬁ.mmu B%md%o divisible by g.
S denote the JACOBIAN matrix associat
. ekl WX & ed to I = y !
m“wm MW%EHIJ Nww@ corresponding madtrixes of Nw W %@:. . .Nwwuvaw vw | cWN 4
00w hoose (T i, v v S STty £ )

N inor co ing i .
Then 8y, = § + gH for a suitable mm, H.mmwum%%ﬂba ?0 & and denote it by &n.

S0 8r, (1) = 8() + gH(I) = s(i)(1 Y3~ H(1)),

] 3my(t) = 8({) - unit.
S0 we get finally that V°3%(i) divides Fiy(t) for all

N

dividing Fuyt) ). ¢ (because g was
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~ Now let’s remember that i, = gly + iy, g and ;€ O[Y], and Fyy, 8%, €

e O[Y, T1. So we can apply the classical approximation theorem from
M. ARTIN (cf. [3]) and get the existence of m_..: i & CCY such that t = gl +
+ Fiy iy = 1y mod (p, Y)°
and Y°5%,(7) divides Fio(f).
So we have

Pu(i) = gFald) 4 Fioll) = gFud) + Y3RDL

for a suitable L.
On the other hand we have

(i) 3() — S(F) =g + b, i.e. 3(I) = ()L + YSHA D).

This means Y°3%(t) = ¢ - unit.

~

(ii) Su () = (1) & gHE) = 3(I) - unit 4 gH(E) = () unit.
So we have finally
Ye8(f) divides Fy(f) for all 4.

Now we can apply NEWTON’s lemma to all these F; defining. We get the
existence of a ¢t e A™ such that Fy(f) = 0 for all F, appearing in the defi-
nition of & and 7 = ¢ mod 3(t)(p, Y)°. Using the JACOBIAN criterion one
can show now similarly to the proof of M. ARTIN that for all ¢ big enough
this implies F(¢) = 0 for all ¢;

Remark: With almost the same idea one can prove that for any excel-
lent henselian discrete valuation ring € the ring C[[Y]] has the property
of approximation.

Remark: Let ¢ be a complete discrete valuation ring with residue
field of characteristic 0, {w;};er a family of elements of C[[Y]], then the
algebraic closure of C[Y, {w;}ie,]in C[[Y]]is aring satisfying the assump-
tions of the above theorem. This is not true if € is of characteristic p >0,

ef. [9].
Received 18.11.1977
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