i

a domplete charactedizatton’ of one dimensional rings with the property of
proximation and & positive solutlon in dimension 3 for a question of M. Artin [2]..
uﬁwumn&»ﬁ one obtains many examples of three dimensional rings with the property

approximation.

Let (4, m) be a local noetherian ring (all the rings are supposed
to be commutative with identity). 4 is called a ring with the property
of approximation (shortly 4 € AP) if the following condition holds (cf.
[4], [10]). “Let f= (fi,...,fs) be an arbitrary system of polynomials
in some variables ¥ = (Y,,.., Yy) with coefficients in 4. Then every
solution y of f in A (A denotes the completion of 4) can be well appro-
ximated in the m-adic topology by a solution of f in 4, i.e. for every
positive integer ¢ there exists a solution y of fin A such that y = ¥ mod
me 4. :

Clearly, the noetherian local complete rings are trivial examples
of AP-rings. More general, we call an extension of rings 4 «— B algeb-

raically pure if every system of polynomials with coefficients in A has a
solution in B iff it has one in A (cf. [12]). It is easy to see that A € AP
iff the extension 4 — A is algebraically pure. .

‘Which rings with the property of approximation do we know?

1) Let” R be a field or an excellent henselian discrete valuation
ring, then the ring of algebraic power series R(T), T = (Ty,..., T,),
i.e.the henselization of B[ Ty, is an AP-ring as M. Artin proved (cf. [4]).

2) Let B be a valued field of characteristic 0, or a complete valued
field in characteristic p >0, then the ring R{T}, T = (T,,..., T,
of convergent power series with coefficients in R is an AP-ring, as M.
Artin, M. André and others proved (see [3], [1], [14], 71 19D.

3) A one dimensional local, noetherian, reduced ring is an AP-ring

iff it is henselian and universally japanese (this is an easy consequence of
R. Elkik’s theorem [6]).

4) A two dimensional local regular ring is an AP-ring iff it is henselian
and universally japanese (cf [9], [13]), (conversely all AP-rings are hen-
selian and universally japanese [4], [8]).

Remark that in all these examples of AP-rings with dimension > 3
the Weierstrass Preparation Theorem holds.

In [2], M. Artin put the following question.

i) Let B bea complete discrete valuation ring and X= X,..., X)),
T=(T,,..., T, some variables. .

, Does 4: = RB[[X]KT) have the property of approximation?
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In [8], a positive answer to.i) is given, but the proof is wrong. We
see that for A the Weierstrass Prepazation Theorem does not hold, if
n, s > 1. A has also not ‘“‘enough” automorphisms, i.e. a formal power.
geries % 0 mod p (p denotes a local parameter in R) cannot be regula-
rized by an automorphism of A (as it happens in A). These facts make i)
difficult. However the case #n = 0 of i) is already known (see 1)) and clearly
it is enough to prove i) for s =1 and all n > 1.

A positive answer of i) would give some interesting examples of
AP-rings in dimension 3 but first of all it would yield some nice applica-
tions in deformation theory, based on the following consequence of i):

“Tet K be a field and f = (f; ,- - .,f») a0 arbitrary system of polyno-
mials with coefficients in E<(X), X = (X,..., X,). Suppose f has a
formal solution ¥ = (¥, ,..., ¥y) such that y; e K[[X,,..., Xn]] where
the natural numbers n, satisfy 1 <m; < ... < ny<n. Then ¥ can
be well approximated by solutions of f in K(X> having the same pro-
perty”.

Tu the present paper, whichisan improved version of [11], we show
that R [[X1] (T), n, -8 =1, is-an AP-ring for an arbitrary complete dis-
crete valuation ring R. This gives us many interesting examples of AP-
rings in dimension three : let 4 be a two dimensional AP-ring which is
supposed to be a domain in unequal characteristic case or arbitrary in
equal characteristic case, then ALTY is also an AP-ring.

1, RINGS WITH THE PROPERTY OF APPROXIMATION

1.1, TurorREM. Let (4, m) be an one ‘dimensional local noetherian
ring. Then A is an AP-ring iff A is henselian and universally japanese.

The proof is given in Section 2. . )

1.2. REMARK. The equivalence stated by (1.1) does not hold for
three dimensional local rings. Indeed, if we consider A to be the henseli-
zation of the ring R constructed by C. Rotthaus (see §1 [15]), then Afw,4d
is an integral domain but A/wyA is not (see §4 [15]). Thus 4 is not an
AP-ring (see [8]). o

Let R be a complete discrete valuation ring and X, T some variab-
les. .

1.3. TaEoREM. R [[X]]1<T) is an AP-ring.

The proof is given in section 3.

1.4. COROLLARY. If A is a two dimensional AP-ring which is supposed
to be an integral domain in unequal characteristic case, then ALT)is AP-ring
too, (AT denotes the henselization of the local ring A[ T )z))-

Proof. First we consider the case in which 4 is a local complete
ring. Then, by the Cohen Structure Theorem, A is a finite extension of
@ local complete regular ring B of dimension two).

By (1.3), B{T) is an AP-ring and thus A¢T) is also AP-ring, since
it is a finite extension of B{T) (apply (1.2) chapter II from [9]).

Now, if A is an AP-ring, then the morphism 4 < A is algebraically
pure. Thus the morphism ALTY = A[[T]] is. still algebraically pure by
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gﬁﬂﬂmu& [121. As ALT) is an AP-ring (see above), $he morphism
ATy «» A[[T]] is still algebraically pure. Consequently, A(T) < NQHS”:

" i8 algebraically pure and thus A{T) is an AP-ring.

o ~ QE.D.

i Hm.m COROLLARY. W, A %.W 9&38 dimensional noetherian locally complete
main (or more general an AP-domain), then A(T) i torial i ;

also factorial. : ’ (0 s factoréal df AL 1156
Proof. By (1.4) A(T) is an AP-ring and it is enough ¢ 1 i

chapter V [9]. d 1 enough to apply (5.7)

1.6. REMARK, If A is a two dimensional AP-ring which is supposed

Wo Ma% domain in unequal characteristic case, then the following statements
old i :

1) every prime ideal ¢ = A(T) extends to a prime ideal QM [[T11;
deal .mv a prime ideal ¢ < A{T) is regular iff gA[[T]] is a regular prime

’. .

3) every primary decomposition of an ideal a < ATy, a =¢, n
N ...Nn ¢° having p, = Vg as associated prime ideals, extends to
a primary decomposition ad [[Tl=¢ 4 [T n ... n ¢4 [T]]

having p, A[[T]] = _\S A [[TT] as associated prime ideals ;

4) A(T> is an universally catenary ring. .

For the proof we apply (5.1), (6.2), (5.5), chapter V [9].

1.7. REMARK. With the same methods used in the proof of Theorem
1.3 one can also prove that for any one dimensional local AP-ring A
which is supposed to be a domain . in unequal characteristic case #Am_v,
has also the property of approximation. ’

-1.8. THEOREM. Let K be a field and X , Z, T vari
[X, Z]] is an AP-ring. If K isa ema\:& field ow Qwass&%@mwﬁw%«o&mﬁ Mm erwN
Wﬁuw .M&g& field of characteristic p >0, then K{T}[[X, Y]] is also an
-ring. :
The proof is similar to the proof of (1.3) (cf. Remark (3.3)).

2. PROOF OF THEOREM (i1.1)

Let B = A[Y]/y be an A4-algebra of finite type.
The set of prime ideals g € Spec B such that the morphism A - B,

_is not smooth form a closed set defined by an ideal H,. By a result of

R. Elkik (see [6]), there exists a function d : INx IN — IN with the follow-
ing property. . .
" “For every y € AY such that f(y) = 0 mod m#® and Hyy) > m’
there exists a solution 4 of fin A such that ¥ = y mod m®". ’
Now, let f=(fi,...,fn) be an m_uwwa.mz.% system of polynomials
from A[Y], ¥ = (¥y,..., ¥y)and y ¢ A¥ a ,,formal” solution of f.
Adding some polynomials to N we may suppose that f generates the

kernel of the map o: A[Y]—> A given by P ~ P (y). We consider the
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ideal H,(y) ®enerated in A by elements of the form P(y), P eH, We

have the following cases
Case 1. ht H(y) =1 or Hy) = 4.
Case 2. ht H/(y) = 0. .

Qs&ﬁ,ﬁm\@Mm@ﬂ&-@ﬁ%@a%&o@:@smwﬁ ms@vulzm km
Denote t = max {d (s, ¢), 2s} and choose ¥’ e AY such that y = y mod

mA. By Taylor’s formula, we get. flyy = 0 mod m#ed and m* A <

c H/ (%) = Hiy) A +m?» A. It results m’ 4 < H,(y). 4 and thus
m?* < Hyy). Consequently, there exists a solution ¥ € AY of f such
that y = 7 mod m¢. If H(y) = A then the morphism A - A[Y]/y
is smooth and we may apply the Implicit Function Theorem.

Case 2. We shall use the following lemma to reduce this case to the

first one (case 2 can only appear if A is not reduced).

2.1. LEMMA. Let B < A be an A-algebra of finite type. Then there
is a B-algebra B’ — A of finite type such that B, is a smooth A, -algebra
for all minimal primes p € Spec A. . *

Apply (2.1) to our sitnation B: Im o= A[Y]/s , the isomorphism
being induced by o. _

Then there exists a B-algebra B’ < A of finite type; let us put
B~ AlY, X/,, X=(X,..., X))y 9= 1915 -+5,9) > wdﬁm Isomor-
phism being given by Y ~»y, X ~&, &= (B,..., %) € AT, such that
ht H(y, %) =1or H(y,s =A4.

Now ag in first case we get a solution (y, ) € A¥" of ¢ = 0. In
particular, y is a solution of f = 0.

Proof of Lemma 2.1. Let M be the set of minimal primes of 4 and

m.Hh/C %.aonoEﬁosmmA#rv mlp.wfvm&kw mwtdgaopwg%&
fem .
induced by the canonical maps

=LPQrY= B ®h}m.%n|v.=h ®\»kA.ﬁ.

PEM PEM PEM
(Remark that ] 4 ® 44, ~J1 4 ,
PEM pEM P PO .
Now we see, that it is sufficient to prove that JI 4 » isa filtered

: PEM P
inductive limit of smooth finite type IT 4, -algebras or equivalently to
: PEM
prove that A 2 is a filtered inductive limit of smooth finite type A -algeb-
b2l .

ras for all p e M. Indeed, then there exists a smooth 87 4 -algebra

).

Bc 8§t Aof finite type which contains §' B and we may choose

~

B' < A tobe a B-algebra of finite type such that 87 B'~ B.

Tinally, it remains to prove that 4 4 is a filtered inductive limit

of smooth finite type A4,-algebras, p € M. Let %< K be the residue
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extension of 4, A » and K’ < K a finitely generated k-exten-

p4

sion. K’ is a movm_SEm extension of k¥ (A universally japanese implies .

XK/k separable).. Choose. & = (@,,..., %) € K" algebraically indepen-
dent over ¥ and y € K’ algebraically separable over k(x) such that
K' = k(z, y). Let N. = (X;,...,Xy), Y be variables and F(Y)e A4,
[X, Y] be a polynomial, which lifts the irreducible polynomial of y over
k(x). Let (Z; y) be a lifting of (x, y) to 4 4 We have F(x, y) € pA and
oF ’

oY
F(z,y') =0 m_cm> y' =y mod pA. Let ¢ be the kernel of the map
t: A, [X, Y]~ k»sm given by P~ P(%,y). It results ht (g)’=1 be-
causeq < (F)+ pA, [ X, Y]and so Cy = A,[X,Y]/qis a smooth 4 ,-algebra

of finite type. Now we remark that A 4 is the reunionof {(Cy),»cx |
P

(%, ¥) & %%.. x»e» being local @HWMEQP there exists ¢y’ € Nam such that

K'c K and K'[k finite type, separable} and so A 2 is a filtered induc-:
. . . 3 B )
tive limit of A, -algebras of the type (Cx),, 9 & pCOx- .

3. PROOF OF THEOREM (1.3)

Let F = (Fy,..., F,) be a system of m-polynomials in variables
Y = (¥y,..., Yy)over A:= E[[X]] (T) such that is has a solution

Y= ¥y,..-»¥y) in A =R [[X, T]}. Adding some polynomials to F
we may suppose that F' generates a prime ideal p which is contained

in the kernel of the morphism o: A [¥] - A given by P~ P(y)
(for example let F be a system of generators of Ker o). Denote r = ht (p).
If g=1(gy,-..,9,) is a system of polynomials from p, then we consider

the ideal A(g, y) < A generated by all X r-minors of the matrix A%lmt@v .

Also we denote A(F,y) by A(p, ¥) or A(p, o). We shall prove in
some steps that F has a solution in 4.

Step 1. Desingularization step. Reduction to the case ht (A(F, ¥)) > 2

In order to get this reduction it is enough to apply the following
lemma, which is in fact Proposition 3 from [13] *.

3.1. LEMMA. Let A, A’, A < A’ be noetherian factorial rings such
that every prime element from A remains prime in A’ and the extension
Q(A) = Q(A’) is separable. Suppose A’ is regular complete local ring and
for every prime element g from A’ the morphism' Agpna—> Ayu 18 formally
smooth. Then every morphism o : A[Y]—> A", Y =(Y,,..., Y,) can
be extended to a morphism o : A[XY,U] » A, U= (Uy,..., Uy)

" such that for & prime ideal p, Keryc = p = Ker o, hi(A(p, o)) > 2.

* See [13].
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Indeed, we may apply (3.1) for 4’ = A (the hypothesis of (3.1)
being fulfilled because 4 is an excellent henselian regular local ring) and

we may suppose that F generates p.

Step 2. Application of Elkik’s théorem .

We.choose an ideal a < A of height 2 such that A(F,y) = oA H
for example we can take a = 4 n A (F, ¥), because for every prime ideal
b < A of height two we have ht (b n 4) > 2. Indeed, i b = (p, X)4,
then b = (p, NK» and we have b n A = (p, X), p being a local para-
meter of R.If b ¢&.(p, X) A,then b containsa T-regular power series h.
Thus the canonical B,m% R[[X1] — A [(R) is finite by Weierstrass Prepara-
tion Theorem and b must have a nonzero intersection with R[[X]] because
of ht (b/ (h)). = 1, Let i be the monic polynomial from B [[X]] [T] which

is a multiple of h.. We have ht (h, bn R [[X]]) =2 and so ht (b n A)=2.

Now, let v, ,. .., v, be a system of generators of a and choose some
¢ X r-minors (r = ht p) of the matrix Amv“ M, ..., M, and some
elements ;€ A such that

vo=Y, M) wy, = 1, ..t
F=1
Consider the following system of equations over A
F=0 .

(Vs
M EuA H\v Q.S = Uy
i=1

where U = (U;) are some variables. Let v : IN x IN— IN be a function
such that Elkik’s theorem holds (cf. [6]) in A with respect to a and the
system F = 0 (we may suppose v (¢, m )= 2 for all ¢, m), i.e. if F(y)=0
mod o™ and A(F, §) o a™ for some % €AY then there is a y e AV,
y = 4§ mod o and F(§) = 0. The pair (¥, %) i8 a formal solution of

() and induces for any ¢ > 1 a formal solution of (+) In the ring 4/ate!

A ~ (Ajae"). We remark that A4/e¥e! is an AP-ring (cf. (1.1)) and
by a solution

thus (y, %) can be approximated modulo (p, X, Ty
cof (+)in Ajave), ie. there exists (%, %) in A such that

F(j) = 0
- H«HO&, Qiam:

i
&

W E“@v This

i=1

7
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and =9, 4=4u ¥ v |
Y=Y u=u mod (p, X, T). Consequently, there exist d,

k=1,...,} such that vee

s o~ o~ ¢
Y M, (y) vy =0+ Y v

h.ﬂ_ k=1
and so v; € A(F, §) for all i, Thus we have
F(y) = 0 mod aval
A(F, §) > a.
Applying Elkik’s theorem we get a solution y € AY for F such

mod a®and especially ¥ = 7 mod (p, X, T)
, T)e.

3.3.. _
3..REMARK. One can prove Theorem (1.8) with the same methods

MNMQ Mwwﬁowwo% of (1.3). Questions could only arige in first part of S
s o one can use the same idea because K{T H@ P X
(X, Z]| > K [[X, Z]] <T>. (OIS, 70> Eex

that y = y
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