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INVARIANTS OF SINGULARITIES AND NEWTON POLYHEDRON

Gerhard Pfister
Berlin, GDR

The idea of my talk is to explain with some examples how to
compute discrete invariants of singularities using the Newton
polyhedron., We will restrict ourselves to the hypersurface case
and mainly to the results of Danilov ([2],[3]), Kouchnirenko ([&]
and Varchenko (i3]).

Let £ : ¢®—> ¢ be a polynomial, £(0) = O and O an isolated

singular point of the set of zeros of f.

Tet T={tec, Itjcdh B={xed® (xi¢¢ } for suitable §¢
(0c §=g&«1) and denote Bnf (T «{03) resp. Bnf '(t) by
X and Ka. respectively. We know (Milnor) that £ : ¥ —T+{0}
is a locally trivial ¢™-fibration and the fibre K,« is a

bouquet of m  {(n-1)-spheres.

We are interested in the following invariants:

- The Milnor number m = dim g Axe.av ,

-~ the characteristic polynomial resp., the w ~function of the
monodromy h : mtﬁxa.ov - me.«.av (induced by the action
of W (T N30Y4)), Z.(2) = (1-2) det (1a-20) " (vecause,
for imolated singularities, maﬁxe.ov =0 if q40, n -1).

~ the Hodge-numbersg of the Milnor fibre X + and espscially the

intersection form on m“L ﬂxﬂ.wv
"

(we consider m“.k_ oAav as the dual space of H -1 On,nv via the
perfect pairing Q.Nv = ‘m §AY | the intersection form is
€
< L] "
defined by S({,') = ({3 (1)) and § : H(X;) —> H(X;) the
canonical map),

- the dimension m(f) of wum\clooamambe gtratum of the semi-
universal deformation of f (the modality)
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Ponl; and @y @y X, = m (I) the uniqus equations

defining eﬁm; hyperplanes H.._ m 1uﬁC Acbu_bsm&%umn&.u»um
a4 Bu (I) to be integers with greateat common divisor 1 and

E.._AHV positive). A_..HQ.: ,»m the (1-1)-dimensional volume of
_..u (I) in H_u (requiring that the (1-1)-dimensional cube defined

by a base of the lattice H__._D 3% has volume 1),

The following theorem holdas:

Theorem: (1) \c u <ﬂ~. Amosown»umnwo‘ﬁmuv

(2) , A Wm (Varchenko, (13])

For more general statements and results (especially if f is
degenerate) cf. [8), [14]. For corresponding results for complete
intersections cf. [5], (63, 7], ana [9].

Different proofs of the theorem of Kouchnirenko wewre given by
Oka cf. [10] and in [9], too. .

There are also some similar results for ‘the case of non-isolated
singularities given by Oka (ecf.[11]).

2, Idea of the Proof of Theorem (1)

The idea of Kouchnirenko is to consider the Milnor number as the
dimension of the vector space G X, ,..., X, /QN,,... .ﬁnvw.\k..v.

to o,oEuwoa this vector space with ¢ Hx._..... Kb&. which is
easier to handle, via an exact sequence ~ the Koszul complex

o AWm. sesoy Wm... ) - and to choose a good uuwdumawob on aHx:....xs.b.
which is related to the Newton boundary and allows to compute

the dimensions of the graded modules in the sequence in terms of
the Newton boundary.

More precisely, choose a homogeneous map h : wwl.v m+ such

" that r:..&v =1 (if ?.....1& are vectors in the normal di-

rection to the compact faces D._.....Du of maximal mwaobmuou
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For simplicity we suppose f to be .oo.n<obwob¢. i. es ,.hao......ﬂw.
Oseesy) ¥ O for all i.

Let - be the convex hull in _ww of U (k+ RY), supp £
+ kesuppf - ' .

is the set of all indices of 2® such that the corresponding 00 =
efficient of £ is different from O,

Let _JH,.um ‘the union of compact faces of I . We call Iy the
Newton boundary of the Newton polyhedron [ + of f.

In order to get nice results we add some more assumptions on f.
Let no ‘be the principal part of £, i.e. iIf £ = = mwww

(k a vector om n positive integers, x = (X,s+..,X,) and

Kk kq "] “n

x‘=x1 ..o x 1), then £ = z a, x5, £ is said to be

. n. o rer k

£

non-degenerate if for any face 4 ¢ j._». the restrictions of
Xy A to A have no common zero in. (@ :mcwvb (equivalent
to «E..m condition is ‘to require that the corresponding ideal in
the conic ring C ﬂMbu. which is generated by all monomials Nw
with k in the cone Pp defined by A , is primary to the ideal
(X)n¢[2,7, cf. [8] ).
Now let us suppose £ to be non-degenerate. To the Newton.poly-
hedron of £ we will now associate the Newton number

(Kouchnirenko [87] ) and the 3 —function w_‘zmuobm.nwo. [14] ):
4

-V = w A.L vb..w_n_ <w+?._ vb. <b.§o r|&.5mbmwobmw<owpamom
+ ks4 . ’

the compact polyhedron . behind ﬁm (the cone over r ¢ with'
the origin as a vertex). <_h is tne sum of k-dimensional
volumes of . A I, with 12 {1,...,n},4#%I=k and

L, ol R
Iy = fx = (X0000X JER, , x; =0 if i¢1r}.

@
- 3 (2)= T w:EA . wrﬁ =T w—.?_mdﬁvse:ﬁ@

-1 VHI.—

with j(I), Bu.S; and i_,uAH:.mmwwbom as follows:
Let _..,_AHV.....JAHV be the (l-1)-dimensional faces of
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is not exact (because the W.Iml are not on the Newton vosbnmuwv.
*

The idea of Kouchnirenko is to first consider £, =X, 28

of :
instead of ox; *

Knowing that dim as:.:..x ﬁ\ﬁxd.‘.@uﬂ..:.xnmmﬁv = n! <n '

one can compute the Milnor number by induction: sm"_..bm the fact
that dim QHX,_....-KBH\A.W._.W.“-NN.-..-.va = dim aa._-..- Xtﬂ\
Ama.oo-nmbv + QM.E prd..-nn.xuﬂ \Am»ﬂ-wm..oc.ﬁnmuv H

aim 00X h.. o X /(X2 L, X, 26y =" a,,

oX, Ro%  1e{1,...,n}
PSR Byt ppe plep adrpe S axn
stOOKOH

Now let us consider the Koszul complexes

COX ypunnsx @), €% (F,0u0Fy, X,

o (g, .....w;». Ap) mn resp. m»o the inertial form of

.wH in & and A, 5 respectively.,

- o¥ (£g0eeertpy

If the Kosgmul complex c* Am.g.....mn.. A ) is acyclic in positive
dimension, then the exact sequence

C¥ (£gperensty, CIX X T — aOX,,...., X7/
AWA.....valoo

gives us, by passing to the graduations, the m.ch._" gequence

0‘ Am_-t-qun N \AH :w-oovﬂ vnmﬂﬁﬁpx.—.onnnxﬁ\
Qr_.....w ))—>0.
To prove that C* Am.d.....mb..u ) is exact is one of the main ' *°
steps in Kouchnirenko's proof. The idea is to compare this
Koszul complex with C* A&AD.....&bP' Ap)e A, is Cohen

Macaulay and wF.....w na generate an mp-primary ideal (f is
hon-degenerate) so that the last Koszul complex is maeawuc in

dimension n-dim A, ., A diagram chase shows that

a

guch that A-n DVH‘_ Hﬂ-oﬁbwa then W?CHBHBA&F..V.
Choose & positive integer N (minimal) such that Nenlz®= s P
has integral values. ¢ defines a filtration on aﬁx_.....x q:

a, - { mmaﬁx;.....xnﬂ¢ A*Am_.ﬁb g) >a} .

One can easily check that g, ' Aq, < Aq +az » nOo A =0

and for all integers n there are q(n) such that (XqseeesXy e >n¢c‘
Let us denote the corresponding graded ring by E.

The multiplication in X can be described by using the cones mb
defined by the faces A € _JW in the following way:

ﬂf w,bm 3 n,4n, if ny uy &P, for a Ag _...n

0 otherwise

(because Ahb._+bmv = AAP_V + ﬁﬁnmv iff n,,n,6 B, .&ou. a
suitable A& P,).

So the restriction to the cone P, yields a canonical map
.=.>«H|.v>bnah.w>u. .
Moreover, the restrictions to the cones, equipped with a suit-
able sign, give us the following exact sequence

OI'.PIQ@ PPl@ Ap=> o000 =@ bDI‘O-
aey acY, AeY,

Yy = MD A face of 7, dim4 = k-1, A 4 coordinate
hyperplane } .

This sequence allows to express the mu_.sabm.wom of the .graded
components of A X via those of the Ap 5 iee. in ferms of the

Newton boundary. .lml
The Koszul complex now connects aﬁx._.....xbﬁ \A\wxa veres Sy
with ¢[X ..., X,

There arises a problem,as the corresponding graded Koszul complex

"




dimg aﬁxd.....xus.\w?..........nuv - uﬁmﬂ.... 7y @® \ Tai

« = p s, (012 v;
. =t <.n
which proves Kouchnirenko's theorem.

Another pessibility to. buoqm.zmnoUbuuobwo.m theorem is to mamenmu

, the Milnor number as the dimension of 024 bu..m + 29571
= 0P/ag A AP the module of relative &uwoumnﬂmpm

th. [91).

This gives us the vommwwwwueu to mmnmumwwno Kouohnirenko's result

coomcmm Greuel proved that in the cage.of- oosbwmwm intersections,

too, one gets the Milnor number as the dimension of this vector

space: Let £ = Awﬂ.....w ) be a complete intersection, w» alge-

braic power mmuwmm in ua.....u having an isolated singularity

at 0, then the Milnor number Cp(Ee, ) - dim, hwwlw /

.D.bnw.. + W .D.blw. hv QF/ af A fota! +...+n&wb|uld..

Greuel (cf. [5]) also gave the exact sequences which aonnect
the above module with the free modules P
adf
0> 0l . a2 gk —ay

4 £
P £ n-k and f's= nﬂ._.....wwr._v
olaﬁhuilvb 4, S b.%lw.lv bm-& \QDMNNVO
and .
wd.....ww is a regular sequence in b.wnw / d D.WL?;

The idea is now to extend the H.ﬂ_.ﬂ.mepob of the Newton ,uo:bmmné
to the bm in order to get exact graded sequences., Similar to
Kouchnirenko we get the same troubles because the differential

is not compatible with the filtration. So it is useful te congider
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cx ama.....wu. X ) is acyclic.

To compute the dimension dim aHK._.....xBﬁ /(€ eeerfy) =
= QE Wﬂ‘ﬁﬁﬁxﬂonoovx H \AH oo-.oﬂ vv = M dim WH-P H\AW.—notn.Wiﬂ.\

1t is useful to consider the Poincaré mouuom (F= @ ¥, >

1

mnav = M EE.. X)) 19 ; Pgra=1T By ;

0 —s ' — ﬂ ~» B —» 0 exact with maps of degree zero implies

Mﬂ. - .MH + WHS =0 ).

Using the exact sequence given by the wummon Koszul complex
we get

() "
B/ (Bl 7 EETIO-

.amwum the exact sequence given by the conic rings A, we get

- —yRdinA . (my,
P (D) pnM_,n ( Ay

A l coordinate
hyperplene

Por g face A & @.. which is a simplex one can show that

oL
1 ]
Py (™) = 2 aim

(1-plt) dim Ay je P(A)N U Aa ? + w?: -
q=1

Ama the vertexes of A ).
This means that for any face A

By, () (r) s |- ama )t V4,

the volume of the cone over A with vertex O.

Finally we get




with @, = set of simplexes of a subdivision of the Newton
boundary _....m into simplexes such that all the edges
of these simplexes are exactly the points of
J. n supp £, which are contained in an l-dimensional
coordinate hyperplane, but not in a lower dimensional
one
-and
<D (1) = M J -
jeBla)s Hpa+ _
. pc‘_ Amn + P(A))

Ama the vertexes of A v...

Altogether we get

P (1) =
n-1 n-2 n=1 =
.D-H \m..D.H .-.H.HNH

= (-1 ¢ S (prdimest gaqp-tdmest, (o

~ 0414n-1
de 6,

= M| - ABV
* PM d\ab.m_..m +wbw|\_ Tt

“ M I. kﬂlﬂgb Id
as ocblausﬁbu.w Va (1)

2 X
= 5 (1) v
k=n k

gives us Kouchnirenko's formula on the right hand side,

In general we get the following result:

Let £ be as above a complete intersection with isolated singu-
Hmuw.«%~1hvoob<maobﬂ (definition as in the hypersurface case).
Let £, 1t/ be the inertial form of w“.r in a graded ring induced

by the Newton boundary of £ and of degree m; ,M = (=2, My )
M cees
M M !
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o P , X,
the logarithmic complex SL*  given by a uNHANd pooi s X balnm
i

. 1
and 4 = Z X, med mwﬂ equipped with the filtration of

¢ OAA.....Kbvme.wb by the Newton boundary (as in the hypersurface
case we associate to the complete intersection f the Newton

vo“_.qwmnuouw {7, as the convex hull in Sﬂ of wnrﬂuvw g (k4 BU.

supp £ = \J supp f£,, and the Newton boundary —..w as the union
of ooswmomwmmomm of _...+v. -

-

We also consider aPf e .mv as a canonical submodule with the
induced filtration.

S »
Let us denote the graded modules corresponding to L1* resp. L
by 07" resp, &LF .
Our aim is to prove that

_.. adf, _ _
°I-I'bm |l|I|WI' lou"b%"b%lo

0 — off] —» 83 v ... - AF" —~ SFF aRF—

are exact and

ﬂ.....mw Hmmuomﬁmummnnmboﬁwb ..m.WLn / n.m.w‘lw..a

(" denotes as usually the passing to the inertial forms in & ).

Since €1 P ig not a free Hnsonﬁ.m in general, we’ firstly un.o.qo,
that the corresponding segquences for um.x are exact and that
.m.m < NMW is a graded submodule. Then we can deduce the
above exact sequences and we are able to compute the Poincaré
series. -

In the-case of k = 1 one gets e.g8.

(r) = (1-T%) P

P
n-1,, 02 n-1 =n-1 n=2
mmw /a0g™ + £9; Ly /a0,

P ; v :
- P = _qyt (b=l _qyi-dimA -1 7Y
ap = 25 1 G W.« (-1) Aoy a
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Let V be defined by £(x) = 1, then the cohomology of the

Milnor fibre is given by H* (V,C). M defined ag in the hypersurface case, and let us suppose that
To get the mixed Hodge structure on E*1(V), we choose a Me z~.
ooaumo.nwwwomﬁob V DV (which is almost smooth and has a pure £ is called non-degenerate if the ideal generated by the
: T <V : s -minors of (x, 2 (@) and HADV HAB is

Hodge structure; and similarly Vie= V ™ ), for details i ox, J=1y 00,8 reees
ow. Steenbrink [12] . Then we consider the logarithmic complex o -primary in ¢[P(a)] for any s and any face A & s ﬂ;v

4 (log V,g ).This complex is locally generated by muul. _ ; »m the restriction of w?v to afp(a)] ).
Xy eee0dXpy 12 Voo ¢ x; = 0. The two filtrations If we now put the Newton number of £ to be

n P m-p _ o, 41 “ +1
W (ag (20 Ve ) - 13 (log V) A 237, : v (£) = MA g S w eLenS Vg (-1)2~k+1

. ot =4~k
#° (AR (log Vo ) = { O 2200
\' .b.d. (log V) ymZp, A.<m defined as in the hypersurface case),

then we get the following theorem:
give us via the spectral sequence
Let £ be_as above and non-degenerate, then \.Ahv = v(£).

d...m:u.L._.H.. 8=V .nuws_.bld O*(10g V. )) =>E ~Twv,a)
W [n-1] v Remark:
(which degenerates at mmv the mixed Hodge structure (1) If £ is degenerate, one can show as Noc.oubwumuwo that M2z v,
Gmb..u (V,e),%,F). (2) wocobbuhmuwo gave and example (cf. [8]) of a degenerate f
bulawomf an with \,eu V.

k Hv< ’ ’ (3) Brianfon proved that £ being degenerate on a maximal face

Our case is easy because W([n-1] b.qﬂ.._.om ={ R7 k=01, implies m >V o
0 ken-1 ., (4) There are "enough" non-degenerate £, i.e. the set of all

This means iﬂbl..._m;lv.ulrv =0 ,p>n, principle parts of f (parametrized by its éoefficients)

contains a Zarisk-open dense set (Kouchnirenko,(cf. [8Jor[9]):
-, 201 e, K < and non-degenerence on maximal faces is even an open
w1t HI (v, (logV,)/ £15) condition (Okaf10]).

= H 22 (v_,0) (-1)

n

The Hodge Kumbers

-1
T&.w the uomuncm map R, 0 —> .D.Qll.ﬂ oL Qow VIvaA .DNNI;
<.l PY < , if <oo is defined Hoom“_.: by x lo. then

AHL- A &n >...> mu H_< Xy Aee.ndxy Spyennriy ef2, o ,m For m.wauu.wow.«w let us restrict ourselves to the case of & quasi-
% w 1 2 I W sosommbmosm hypersurface f of weight r:..... S\ , l.e.
W,
if H has a pure Hodge meuno»..ﬁ.m of swpmg n, then H(-1) means ; v x;..... YX) = K.Of.....x ), for the mmnmu.m__. case
the twisting with Tate's Hodge structure to get a morphism of of. Dapilov Hu.._ .
133
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Now one can prove that q defined by P = f-x d el = 0 in m!
is a compactification of V and Ve is nm».ubmn .cw f= o in E,.
< and (ol are quasi-smooth, i.e. they are Hoomwww described
by conic rings of simplexes (or locally in ¢® a quotient w\m.
BS ¢ an open ball, G¢ GL,(G) a finite subgroup), thus B* v,¢)
resp. mk? ,®) have a pure Hodge structure of weight k (e£.[21).
Por this situation Steenbrink could compute the Hodge decompo-
gition explicitly and got the following nice result:

Theorem: let .mma. o & 1c¢22} be a mononial base of

eIX ..., %0/ (3 28,

s&a gocey \WXS

n
wy = 2 -] axnnax, 100 - Zegrnwy,

rational differential forms, £ & I, and 4« the
images of the W, inH ~1(V,¢) via the residue map,
Then the mixed Hodge structure Amb.. (V), W, F) can be
described as follows:

pAdod B I A B e

(1) Geyp B (V,0) = 0 4 k § n-1,n,
(2) .T_\._..w , pel{e)e p+1, 1is_a base of mﬁd h.« 2\.3.

(3) T?L , 1() = p, iz a base of mvw m...M ga-? v, €).

As a corollary one gets for even n the rank and signature of
the intersection form S:

rank (S) = % {pel, i_:&i.
gign (S)= # [P¢I, P4 2, m%m even §
# {pe1, 17, [1(p)] odd ]

knowipg that the residue map maps the rational n forms with
pols of order n-1-p to the primitive part of P ),
knowing the behaviour of the intersection form on primitive
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Hodge structures, i.e. if e.g. me = @ B2 | then

p+g=n
By(=1) = @  Hy(-1)P*?  and Hy(~1)P?9 = 5P~1,971 ).
p+a=n42
w1 mgnbt.mblm - gt ¥, €

We can especially see that the non-zero f in the spectral
gequence is the residue map.

This means that the mixed Hodge structure is given by the long
exact sequence

=G0 — vie) B 5Py 00,

W oo
ies Gy, E*'(y,€) =0 for k $n-1, n,

W
Ge. . B2 (v,0) = @@ @,e) — 1% v, ,

n-1

6" 5 v,0) = mEv,0) — B2 (v, ,6) (1))

(by the way, these images are just r-imitive cohomology groups
umﬂ? they come from primitive oormcaowomw groups, i.e.

e, B ,0) ¥ Brin®T (7,00, 67 B2V, 0) % Brin®R,0)(-1
The compactification we choose in the following way:

C..
Let wy = .mur ?H the weights of £), us, d integers, msuu.;mp.

Let P, resp. Py be the weighted projective spaces corres-
ponding to the weights AZ._..... r\bv and T\d.....s\b.. m..v. res-
pectively: The weights (or the polyhedra A resp. N defined
by them, or, what is the same, the Newton boundary A of £ resp.
A of P= wlumiv define filtrations on AHK‘_..... XB...— resp,
e@?.....Xbﬁ u (defined as above via the Newton boundary)
and give mummcm&woum on GLX,,...,X ] resp. ahxa.....xbiu
by putting _xu..— = W, ,i=1,...,0, and 1x

Then, by definition (cf. [2],[12])

B, = Proj a?.:..x:u. B, = Pro] onf..:.xntu .

ni_ =
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w
cohomology (i.e. if hﬂbl._ mbl._Q\.ev = @ HP*d | then

(=1)2(8=1)/2 3P-% g(x.3) >0 if xeH™% and S(x,y) =0
if xeH??, yen™* with (p,q) ¢ (+,¢) J and knowing
that the canonical mixed Hodge structure on mﬂn._ (V,¢) is just
the dqual of the mixed Hodge structure on g1 v,¢).

In his Oslo talk in 1976, 'Mixed Hodge Structures on the Vanishing
Cohomology', Steenbrink showed how to get the mixed Hodge struc-
ture of the Milnor fibre in general for a hypersurface by using
1imits of Hodge structures. Using toric varieties (i.e. &
generalization of the weighted projective space coming from a
simplex to any polyhedron), Danilov could express Steenbrink's
oobmducowwmb in terms of the Newton polyhedron {cf. Huuv.

Applied to our special case (quasi-homogeneous hypersurface)

we get for instance:

(1) BPY(y ) =0 if pq or p+q + dima-1
(uP? = Hodge numbers = dim HI( ,aP)).

~ .
(2) s Amwaev (-EBTH | 2p, aina-1,

Te

BPP( V) = { (-1)P X (v, )

2p =dimA -1
<s y &P Y

= G0 (-)HBTHPH5p S aimA-1,
CEY

. N dime ~
pPrdimA-1-p _ (din8=1-p fy (v 0P )4 5 () (1T}

and cea
p _ _q1y8ine din% _1yk dimZ31 ~ .w
x (.20 )= N.Ww ((-1) (o1 )+ Z =17 (i yw(k?)
with
w(kT) = 4 integral points of k% 1lying in the interior
of kT,
136
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« The constant Stratum of the Semi-universal Deformation

In hie telk et the Congress in Vencouver 1974 Arpold ssked
whether the \t -conatant stratum of an isolated hypersurfece
gingulerity is smooth. :

We cen give an answer for quesihomogeneous hypersurfaces

(cf. B, Martin, G, Pfister, The smoothness of the \rloouneubﬁ
stretum of @ quasihomogeneous hypersurface, to eppear).

Theorem: Let f be @ qussihomogeneous polynomial (or more general
semi-quasihomogeneocus) defining an isolsted singulerity at 0¢& ﬂu.
then the \. -constant stratum of the semi-universel deformation
of £ is .amooth,

As a corollary we obtain thet the modality of £ (=dimension of
the \.. -constent stretum) is equal to the inner modality.

To prove this we use the results of Kouchanirenko (of. [8.7)

and Greuel end Hemm (cf. / 5_7) connecting the Milnor number

of £ with the Newton number en study the behaviour of the

¥ewton number under deformations:

Let 4, € R be the face defined by f (i.e., the intersection
of the hyperplene defined by the coefficients of £ with ﬁ”... ).
We choose a monomiel base

!'*u N’-*ﬁwmahw OﬁﬁNlN-lﬂ\ A\U&ﬁu. lt.o\ww‘v
end let B, s{ &€ B , & striotly under A o § .

Then the \. -constent stratum of the semi-universal deformation
. ok
Pat+ 2 T, X% of £ is given
deB * : & by
the equations T, =0 ,4€ B, .

References

1. V.I. Arnold: The index of a singular point of a vector
field, the Petrovskii-Oleinik inequalities
and mixed Hodge structures, Funkt. Anal.
Prilos, 12 (1), 1-14 (1978).

2, V.I, Danilov: The geometry of toric varieties, Uspekhi Mat,
Nauk, 33 (2), 85-134 (1978). 137



3

3.

4.

m.

10.

1.

i2.

13.

14.

8

V.I. Danilov: Newton polyhedra and vanishing cohomology,

M. Demazurej

G.M. Greuel;

Punkt. Anal. Priloz. 13 (2), 32-4T. (1979).

H. Pinkham; B. Tessier: Seminaire sur les
Singularités des Surfaces, Lecture Notes T71.

H.A. Hamm: Invarianten quasihomogener voll-
stindiger Durchschnitte, Inv. math. 49,
67-86 (1978).

4.G. Khovanski: Newton poiynedra and the Euler-Jacobi formula,

Uspekhi Mat. Nauk 33 (6), 245-246 (1978).

A.G. Knovanski: Newton polyhedra and toric varieties,

A.G. Kouchni

Funkt. Anal. Priloz. 11 (4), 56~67 (1977) and
12 (1), 51-61 (1978).

renko: Polyedres de Newton et mombres de Milnor,
Inv. Math, 32 (1), 1-32 (1976).

B. Martin; G. Pfister: Milnor number of complete intersections

M. Oka:

M. Okas:

and Newton polyhedron, Preprint INCREST
(Bucuresti) 71 (1979).

On the bifurcation of the multiplicity and
topology of the Newton boundary, J. Math. Soc.
Japan 31 (3}, 435-450 (1979).

On the topology of the Newton boundary II,
J. Math. Soc. Japan 32 (1), 65-92 (1980).

J.H.M. Steenbrink: Intersection form for quasi-homogeneous

singularities, Composito Math. 34, 211-223 (19717

A.N. Varchenko: Zeta~function of monodromy and Newton's

diagram, Inv. math. 37, 253-262 (1976).

A.N. Varchenko: A formula for the ranks of the homology

groups of the boundary owumn isolated singu-
larity of a surface in L~ and the Newton
aiagram, Funkt. Anal, Friloz. 13 (1),

65-66 (1979).

Cerhard Pfister
Humboldt-Universitit

Sektion Mathematik

108 Berlin, Unter dem Linden 6
DDR




