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0. Introduction 

In his paper “On the solution of analytic equations” (cf. [2]) M. ARTIN proved 
the following famous approximation theorem : Let k be a valued field of characte- 
ristic 0 and f ( X ,  Y ) = ( f , ( X ,  Y ) ,  , . . , f,(X, Y ) )  convergent power series in X =  
= (Xi,  . . . , A-,), Y = ( Y , ,  . . . , Y N )  with coefficients ink. If the equationf(X, Y )  = 
= O  has a formal solution, ij=(jji,  . . . , g N ) ,  i j i € k [ [ X ] ]  formal power series in X, 
then there exists for any integer c f l 0  a convergent solution y=(yI,  . . . , gN), 
yi€k(x) convergent power series in X ,  of the equation f ( X ,  Y)=O such that 
yi-gi mod X c .  

With similar methods M. ARTIN proved the analogous theorem for algebraic 
power series (the case n= 1 was already considered by M. J. GREENBERG, cf. [7]) 
in [3]. The main idea of ARTIN’S proofs is the application of the \I’EIERSTRASS 
preparation theorem and.the implicit function theorem (resp. NEWTON’S lemma) 
in order to  be able to apply induction on 12 (the number of the indeterminates). 
This gave us the idea t o  generalize ARTIN’S proof to classes of rings with the prepa- 
ration theorem and some other “good” properties (cf. 1123, [13]). The reason for 
such a generalization was to  get a common proof for ARTIN’S approximation 
theorems in the algebraic and analytic case. Furthermore we wanted to  prove the 
approximation theorem for convergent power series over a valued field of charac- 
teristic p =- 0 (For the case of the field being completely valued such an a1)proxirna- 
tion theorem was also proved by M. ANDRI~ [l], U. JAHNER [8], M. VAN DER PUT 
[lo] with different methods). In  [lo] we developed the idea to  consider classes of 
rings with the preparation theorem to the so-called WEIERSTRASS categories and 
proved the approximation theorem for rings of these WEIERSTRASS categories. 

1. DENSF and L. LIPSHITZ pointed out that  some details of this proof were in- 
complete resp. incorrect and invented W-systems being similar to [ 131 but more 
general (i.e. families of regular local rings with the preparation theorem and some 
more good Imperties) and proved the approximation theorem for rings of a 
W-system (cf. [Sj).’) 

5 )  The autlzoru would like to thank Nr. DENEF andMr. LIPYHITZ for their interest,in our ~VEIER- 
STRAYS categories and for their hints with reRpect to some problems in our proof of the approxi- 
mation theorem. 
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Among other things this paper aims at generalizing slightly the notion of 
WEIERSTRASS categories of [lo] in order to get also a connection to  [5]  and to 
give a complete proof of the approximation theorem. Furthermore we want to 
prove ELKIK’S approximation theorem (cf. [a]) for WEIERSTRASS categories. In the 
first three chapters we will give a general definition of a WEIERSTRASS category 
and its properties. Especially we will characterize smooth morphisms, prove the 
implicit function theorem and NEWTON’S lemma. In chapter 4 we will prove 
ELKIK’S approximation theorem for WEIERSTRASS categories. 

To get an idea of a, WEIERSTRASS category we will give the definition for the 
local case here. Let R be a field or a henselian discrete valuation ring and by C, 
let us denote the category of all NOETHERian HENsELian local rings over R with 
the same residue field. A full subcategory HR of CR is a WEIERSTRASS category if 
it has the following properties : 

I )  Each morphism in H, is a WEIERSTRASS-morphism, i.e. if for a, morphism 
in A - B  in Ha the morphism A-Blm,B is finite, then A -  B is A-finite. 

2) H R  contains free objects, i.e. if AEHR and if (Ti, . . . , T,) is a finite se- 
quence of indeterminates, there exists the free A-algebra A {{TI, . . . , T,)} in H, 
(this means that for any A-algebra BEHR and t l ,  . . . , t ,CrnB there exists exactly 
one A-morphism A{(T , ,  . . ., T,)} + B  in HR mapping the Ti onto the ti). More- 
over, the kernels of the canonical morphisms A { { T l ,  . . . , T,})-A[T,, . , . , T,]/ 
(T,, . , . , T,)” are the ideals (T,, . . . , T,)” A{(T,, . . . , T,}} .  

3) Any AEH, is a quotient of some R{(T,, . . . , T%}}. In [lo] we called a 
WEIERSTRASS category HR excellent iff for all AEH, the morphism Spec A‘- 
+ Spec A is formally smooth.2) In this paper we will consider a more general situa- 
tion. We call H, semi-excellent iff for all A EH, and T = (Ti, . . . , T,) the mor- 
phism Spec A’[[T]]-Spec A[T]  is formally smooth in all p €  Spec A[T]  being 
kernels of a suitable morphism A[T]-B’ ,  BEH,. 

The notation of a semi-excellent WEIERSTRASS category is in principle a gene- 
ralization of the excellent WEIERSTRASS categories of [ 101 and the W-systems of 
DENEF and LIPSHITZ [5 ] .  We do not know if a semi-excellent WEIERSTRASS cate- 
gory is already excellent. But it is useful to have this apparently more general 
notion because of the following example : 

(1) Let k be a quasicompletely valued field (i.e. the completion I% of k with res- 
pect to the valuation is a separable extension of k) and Hk the category of analy-tic 
k-algebras, then Hk is semi-excellent (cf. [17]). Hut we do not know if an analytic 
k-algebra is excellent in case of char (k) = p  =-0. This only seems to be known up to 
now if k is already complete. Further examples of excellent WEIERSTRASS cate- 
gories are (cf. [lo]) : 

( 2 )  The category H, of HENsELian rings of finite type over R, R a field or an 
excellent discrete valuation ring. 

(3) The category HR of all NOETHERian HENSELian local R-algebras that are 

2) We denote the completion of A by A‘ =I$ A/Iv 
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complete with respect to the m,-adic topology such that,  for all A EH,, A/m:A 
is HENSsLian of finite type over R / m i c  for all c Z 1, where II is a complete dis- 
crete valuation ring of characteristic 0. 

(4) Let {R,},,, be a filtered system of fields or a complete discrete valuation 
ring such that the corresponding residue field extensions are separably, and R = 
=lim R, be a field or an excellent discrete valuation ring, H, the category of all 

I2-algel)ras lim R, [[XI, . . , , X,]] and their quotients. 
+ 
V € I  

3 
a €1 

The main result of this paper will be the following theorem (cf. Theorem 6.) : 
Remi-excellcnt N’EIERSTRASS categories have the property of approximation, 

i.e. ARTIN’X approximation theorem holds: Let ( A ,  m) be a local ring from a semi- 
excellent WEIERSTRASS category and j = ( f i ,  . . . , f,) an arbitrary system of 
polynomials in some variables Y = (Y, ,  . . . , Yn-) with coefficients in A (or, more 
general by fie A {{ Y ) } ) .  Then every solution jj of f in A’ (the completion of A) can 
be well approximated in the tn-adic topology by a solution of f in A (i.e. for every 
positive integer c there exists a solution y off  in A such that y- j j  mod mcA). lye  
would like to express our gratitude to Miss REHRENDT and Miss SUBIRGE for typ- 
ing the manuscript of this paper. 

1. Basic definitions 

M‘e denote by C the category of a11 HENsELian pairs ( A ,  IA) such that - n I ~ = o .  
V = O  

We call a morphism (A, I ) -+(B,  J )  in C a WEIERSTRASS morphism if it has the 
following property: ( W )  : For any closed ideal KC, B (with respect to the I-adic 
topology) such that the morphisme A -B/K + I B  is finite, the morphisme A- B/K 
is A-finite. 

Remark. I n  most cases the property ( W )  implies the stronger property ( W’) : 
For any separated B-module E (with respect t o  the I-adic topology) of finite type 
such that E/IE is of finite type over A,  the module E is of finite type over A .  

(1)  A’ and B are NoETHERian rings 
(2) A is complete with respect to the I-adic topology 
More precisely, assume that A‘ is NoETmRian, let ( A ,  I )  + (B ,  J )  be a WEIERSTRASS 
morphism in C and let E be a B-module of finite type with annihilator ideal N G  B 
such that all ideals 

Proposition 1. Property ( W )  implies ( W’) in the following cases 

B P + N / A 7 ~ B / N ~ E n d , ( E )  ( v = l ,  2, . . .) 
are closed in the I-adic topology of End,(E), the following properties are equivalent 
(i) E is  of finite type over A 
(ii) EIIE is of finite type over A 
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Proof of ( 2 ) .  If p i ,  . . . , p,EE and 

E = A p I + .  . .+ApN+IE,  

then E = Apl+.  . . + A p x  since A is complete. For the latter assertion we infere 
from (ii) the property 

E’=A’p,+. . .+A’pnT, 

hence End,, (8) is of finite type over A‘ and by hypothesis B‘lNB‘g End,, ( E ‘ ) s  
End,, (E’). Therefore B‘INB’ is finite over A‘ and B’/NB’+ IB’= S’lN + IB’ is 

finite over A, hence BIN is finite over A by ( W )  and since E is of finite type over 
BIN, it is also of finite type over A .  

Statement (1)  is a special case of the latter assertion. Now we consider ;t s u b  
category H of C, and we define the notion of a free pair with respect to H in the 
obvious way as follows: If (A ,  I ) ,  (B ,  J) are pairs in H and T = (T i ,  . . . , T,) is a 
finite sequence of elements of J, we call (B ,  J )  free over ( A ,  I )  with generators 
Ti, . . . , T, if for any morphism (A ,  -T)+(C, K )  in H and any sequence ( t i ,  . . . , t,&), 
t & K ,  there exists exactly one A-morphism 

f : ( B ,  J ) - ( C ,  K )  such that f (T i )= t i .  
Obviously, (B ,  J) is uniquely determined by this property and we will denote it hy 
( A ,  1) {{Ti, . . . , T , } } = ( A { { T 1 ,  . . . , TTL}},  TI, . . . , T,})) or simply 1jy 
A { ( T , ,  . . . , T,}} if there is no confusion about the ideal J .  

Now the essential notion of our paper is the following notion of a, WEIERSTRASS 
category. 

Definition. A full subcategory H of C is  called a WEIERSTRASS category, W-cate- 
gory for short, if it satisfies the following axioms 
(W 0) $’or each morphism ( A ,  I )  .-t (B ,  J )  in H the rings BII‘B arc NO ETHER^ and 

(W 1 )  Each morphisme in H i s  a WEIERSTRASS morphism 
(W 2) H is closed with respect to finite morphisms in C, i .e.  if  ( A ,  I)CH and if 

( A ,  I)+(B, J )  i s  a finite morphism in C and if A/I-B/J i s  surjective, then 
(B, J )  belongs to H 

(W 3) H contains free objects. If ( A ,  I )  E H and if (T , ,  . . . , T,) is a finite sequence of 
indeterminutes, there exists the free pair ( A ,  I )  {{Ti, . . . , T,)} in H, which 
inoreover satisfies the property: The kernels oi the canonical morphisms 

(which contain (T,, . . . , TJ) are the ideals (TI, . . . , T,,)”A {{TI, . . . , T,}) . 
Furthermore we define a semi-excellent W-category H as a W-category, where all of its 
objects are noetherian local rings (A ,  I )  such that for any set of indeterminutes T = 
=(Ti, . . . , T,) the morphism Spec A’[[T]]- Spec A[T]  is formally smooth in all 
p Spec A [  7’1 being kernels of a suitable morphism A [  TI + R‘, BE H. 

AII -r BIJ is surjective 

A{(T,,  . . . , T,L}} -A[Ti, . . . , Tn3/(T71j . * . 9 T,)” 
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2. Smooth morphisms in WEIERSTRASS categories 

In the following H denotes a fixed U‘-category. IVe first determine the struc- 
ture of formally smooth morphisms in H. Recall that a morphism (A ,  I)-+(B, J )  is 
called formally smooth if for any local ARTINian ring (B, m) and any (small) 
extension ( R ,  m)-(R,  fi) of ARTIN-rings it holds that:  If 

( A ,  4 - (R, nt) 

(B, J )  -T+ ( R ,  5) 
1 /Y7 1 

is a commutative diagram of morphisms (without the dotted arrow), the mor- 
phism 

We want to describe the structure of formally smooth morphisms in H. To do 
this we first somewhat generalize the construction of free objects. Let ( A ,  I )  be a 
pair in H and let E be a projective A-module of finite presentation 

can be lifted to an ( A ,  I)-morphism p : ( B ,  J ) - (B ,  m). 

E=AT1+.  . .+AT,/A,(T) A + .  . .+A,(T) A 

A{{E}}=A{(T}}/iZ,A{{T}J+. - *+il ,A{{T}}  

(Ai, . . . , Ar linear forms in T ) .  By ( A ,  I )  {{E}}  = ( A ( { E } } ,  I {{E}})  we denote the 
following pair : 

I { ( E } }  = I A  {{E}} + T J { { E ) }  + - - + T,A{{E}} 
We want to show that ( A ,  I )  {(E}} EH. Clearly I { { T } }  =IA{ (T} }  + T,A{{T}}  +- 
+. . .+T,A{{T}}  by axiom (W 3) (observe I S I { { T ) } ,  T EI{{T}} and A { { T } } /  
/ I ( {T})  -A11 is surjective by axiom (W 0)). Furthermore ( A  ( ( E } } ,  I { { E } } )  is 
HaNsELian and therefore it remains to show that B=A{{E} }  is separated in the 
J=I{{E}}-adic topology. To prove this we embed ( A { { g } } ,  I { { E } } )  into ( A { { T } } ,  
I { ( T } } ) .  As E is projective, there exists a projection operator 

Z :  A T , $ .  . .@AT,+ATi@.  . .@AT, 
with the kernel AIZi(T) + . . . + AAr( T ) .  The operator n can be lifted to an (A ,  I ) -  
morphism 

If B ‘ = 5 ( A { ( T } } ) ,  J’=E(I{{T}}) ,  then the pair (B’, J ’ ) s ( A { { T } } ,  then I { {T}} )  is 
in IF (by (W 2 ) )  If U =  (Uf, . . . , U,) are indeterminafss, we define a (B’, J’)- 
morphism by 

If f (T)  E A { ( T } }  and %(f(T))  = 0, the corresponding element f (  U )  E B’{{ U>) is con- 
tained in the kernel of the morphism B‘ {{ U ) }  -+ B‘, U ,  ++. n( T,) ,  hence we can write 

5 :  A { { T } }  + A { { T ) } ,  5(T,)=z(T,) . 

r,: q ~ q } + ~ { { ~ l } *  p(V,)=T,  * 

(by (W 3)) 
11 

f( U )  = c (L‘, - 4T”) s:c U )  
v = 1  
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(g:( U )  E B’{{ U}} ) and we obtain (applying the morphism p) 
12 

f(T)=C ( T v - 4 K ) )  g:(T) * 

K e r ( 3  =c (TY-4TY))A{{Tl} 

v =I 

Therefore 
n 

V = i  

=.i A,(T) A { m }  
@=l 

and 

Now we can describe the structure of formally smooth morphisms. 

Theorem 1. For any pair ( A ,  I )  C H  we h v e  
(1) I f  E is a projective A-module of finite type, the morphism ( A ,  I )  -. ( A ,  I )  { {E} }  i s  

formally smooth. 
(2) I f  (A, I ) - (B ,  J )  is  a formally smooth morphism in H and if A is H E N S E L ~ U ~  

with respect to the ideal Ii= J n  A, the pair (A ,  Ii) is  contained in H and there 
em%s a projective E-module of finite type such that (B ,  J )  =(A, I i ){{S}} .  

To prove the first part of the theorem we can replace everything by the I-adic 

(B, J)=(B’, J’)EH. 

and I {{E)} -adic completion respectively. But the algebra, respectively 

A{{E)}’=A’I/TIJ/A,A’//T//+. . .+AA’YTIJ 
is obviously formally smooth over A’. 

Proof of assertion (2). We replace (A ,  I) by (A ,  Ti) (contained in H by axiom 
( W 2)), hence we can assume : A/I  z B/J.  

Step I. The module 8= J/J+IB is projective and of finite type over A=A/I.  
Obviously E is an A-module of finite type since B = B/IB is Noetherian. We have 
to show that for any epimorphism M + N  of A-modules of finite type any homo- 
morphisme ji : E+iv can be lifted t o  a homorphism p : E-N. Let m be any maxi- 
mal ideal of A and assume that m”M=myN=O for suitable Y. Consider the epi- 
morphism of local ARTINian algebras R =A/m”@M-+W = A / m @ N  (M2=N2= 0 )  
and the homomorphisms of rings s : B-A, s(b) = b  mod J B  (observe BIJB =A) 
and t : B-r R, t ( b ) =  (s(b)  mod my, i?. ( ( b - ~ ( 6 ) )  mod JZB)). As B is formally smooth 
over A, we can lift t to  an homomorphism t : B + R and t induces a lifting p : & M 
of the homomorphismp. This implies that for any maximal ideal m of A the m-adic 
completion of E is projective over the m-adic completion of A, by faithfully flat 
descent we infere therefore that E is projective. 

Step 11. Constructi0.n of a surjection. (A ,  I )  {{B}}-+(B, J ) .  Since ‘ (A ,  I )  is 
HENsELian, we can lift idempotent elements in any finite A-algebra ,%‘ from I!%/I~ 
to ,%‘. Now E is a direct summaad of a free A module AN and we can lift the cor- 
responding projection operator in End(AN)/I End(AN) to End (AN). Hence E 
can be lifted (uniquely up to an isomorphism) to a projective A-module# of finite 
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type. Since E =  J / J 2 +  IB ,  we can lift the isomorphism EIIErE to an A-linear 
homomorphism s : E -+ J and s induces a morphism ( A ,  I )  { {E}} -. (B ,  J ) ,  also denot- 
ed by s, which is obviously surjective (by axiom ( W 1)) .  

Step 111. The morphism s is injective. It is sufficient to show: for any ideal Q in 
A such that A/& is local ARTINian the induced homomorphism 

s : A { {E}} /&A { {E}} + B/&B 
is injective (since the intersection of all these ideals Q is 0 by axiom ( W 0)). Hence 
we can assume that A is local ARTINian. Since B is formally smooth over A ,  we 
can construct step by step a homomorphism t : B- A { {E)}  such that the diagram 

B 4*A"Ell 
8 7  f 
A w l )  

(with the canonical embedding A{{E} }  c A[[E]]) is commutative, therefore s is 
injective, and the proof of the theorem is finished. 

We want to mention the following consequence. 

Corollary 1. If (A ,  I )  -+ (B ,  J )  is a formally smooth morphism in Hand AII Y BIJ, 
the module HomA(E, I )  acts transitively and free on  the set of sections Hom,,,((B, J ) ,  
( A ,  I ) ) ,  and this set is not empty. 

In  the next section we derive the characterization of formal smoothness by the 
JAcoBIan criterion. For this reason we have to introduce the following facts : 
(1) For any morphism (A ,  I)+(B, J) in H the pair (B, J )  can be written u p  to iso- 

.morphy in the form 
n 

B = A { { T } } / K ,  J=IB+z TvB . 
v = l  

We have to choose representatives t i ,  . . , , t, of generators of the A-module 
T/J=+IB. Then we put T=(Ti ,  . . . , TJ and define A{{T}}-B by Ty+t,,, 
K=ker (A{{T}}+B). By axiom ( W l )  we infere B = A { { T } } / K  and Jisgenerated 
by the image of the ideal I and the elements tv. 
(2) If E i s  any A{{T}}-module separated with respect to the I-adic topology, the 

module of derivations i s  

Der,(A{{T}}, E)gHom,{{T')) ( &  v = i  A((T}}  d T 3 )  , 
induced by a universal derivation 

Proof .  The pair B= A {{T)}  + A  { {T}} E ,  J = I {{T)}  + EA{{T)} defined by s2= 0 

@={q I ~~Hom(,i,~)((A{{T}}, I {{T}} ,  (B, J ) ) q  modE=idA{{!P))) 

belongs to H by axiom (W 2). The A{(T}}-module 
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is isomorphic to the module Der,( A { { T } }  , A { { T } }  ) by associating the morphism 
q~ : f H f + & ( f )  to a derivation 6. Especially to any T,, we can associate the mor- 
phism Ti-Ti (i =I=v), T, ,HT,+E,  the corresponding derivation is denoted by 

-~ . If D : A{(T} }  +E is any derivation, we consider Do( / )  = D ( f )  - 2 D(T,) .  

From the axiom (W 3) we infer that A{(T}} / (T")  A { { T } }  is isomorphic to ACT]/ 
(T)YA4[T], hence Do(f) C (T)'E for any integer v ,  and as E is separated, we get Do = 0, 

a 
aTV v = l  aTv 

q.e.d. 

3. Quasiprojective schemes over WEIERSTRASS categories 

We want to  study systems of equations of the type P ( T ,  U )  = 0 ,  where T = 
= ( T i , .  . . ,  T n ) ;  U=(U,,  . . . , Um)andP(T,  U)<A{{T}}[U]".Inotherwords,ina 
slightly more general formulation we study schemas of the type 

X-Spec (B)-Spec(A) , 

where ( A ,  I ) - + ( B , J )  is a morphism in H and Spec (B)-Spec ( A )  is induced by 
this morphism, and where X-Spec ( B )  is a quasiprojective schema of finite pre- 
sentation over B, i.e. X i s  a subschema of some projective scheme P ( E ) ,  where E is 
a B-module of finite presentation and where X is locally closed in P ( E )  and locally 
defined in P(E) over B by a finite number of equations. 

If E is generated by Bay p elements, we can find a closed embedding P ( E ) c  
c P p  X Spec(B) of finite presentation, hence we can assume that X c P p  x Spec (B) .  
Moreoverjf B = A { { T ) } / K ,  we can assume X C P P X  Spec A{(T} ]  to belocally clos- 
ed and locally defined by K and by finite many polynomial equations with coeffi- 
cients in A{(T) ) .  

We prove the JAcoBIan criterion for this mixed situation, then we prove the 
existence of sections of X over A (theorem on implicit functions) and its generali- 
zation (the analogue of NEWTONS Lemma). By p we denote the projection 

p :  X-Spec ( A ) .  

If x ~ X  is a point such that p(x)E V ( I ) ,  we call p formally smooth at z (or X for- 
mally fimooth over A in the point x )  if the niorphism of pairs ( A ,  I ) - (8x,z ,  m*,,) 
(which is not in H )  is formally smooth. 

Theorem 2. Assume that ( A ,  I)eIi, T = ( T 1 , .  . . , T,J,  and XSP=Amx 
Spec A { { T } }  is  a locally closed submherna, p : X- Spec ( A )  the corresponding mor-  
phism. Let U f ,  . . . , Urn be afjine coordinates in A". If xEX, p(x)E V ( I ) ,  then the 
schema X is formally smooth over A in  x if and only if the following condition is satis- 
f ied: 
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(J) There exist functions f i ,  . . . , fk,A((T}} [ U ]  which generate the kernel of the 

homomorphism OL,z-+O>,x and szcch that the JACOBICZTZ matrix - -- (z), __ ( x )  
(::j aUjL afi  ) 

has the rank k .  (If f€O>,, ,  we denote by f ( x )  the residual class o f f  in Op,x/m,,,). 
Proof .  1 . )  Assume the condition (J) to be satisfied and assume that R, 

R = R/tR are local ARTINian A-algebras such that mRt = 0, and p : fl is a 
morphism of local rings. We can lift the composition Op,z-tOx,x !!. R to a mor- 
phism Y : OF,% - R (by lifting the imges of Ti, Uj) .  If the function f on P is in the 
kernel of Op,,-Ox,x, the image ~ ( f )  has the form v(f)=ta(f) ,  where a(f )Ek=R/m 
(since t is annihilated by mR). For any choice of elements a,, . . . , a,, bi, . . , , b, 
the map 

af af 
j=l aTj h = I a Uh 

v ' ( f ) = v ( f ) + t  aj-- ( X ) + t  C b, ~ - (z) 

is a morphism of A-algebras O,,x - R. If condition (J) is satisfied, we can choose 
at, . . . , a,, bi, . . . , b, in such a way that 

v'(f t )=.  . . = v ' ( f k ) = o .  

Since ker (4) contains some power of mp,z it thus contains also the kernel of 
OP,r-tOx,x and induces a lifting p : Ox,z+R of p. 

2) Assume that X is formally smooth over A in x. We will show that condition 
(J) is satisfied. Define 

c=o;,, B=O,,x, K=Ker PP,z- t&,x)  , 
then C/KC 2 B and because of formal smoothness the canonical A-morphism 

B -+ C/KC + t& 
can be lifted to an A-morphism 

: B - C .  

If 7c : C -  B is the canonical morphism, the composition no7 : B+B coincides with 
idB mod mi,  hence z o 7 is an isomorphism of B and E = 9 o (no q)- i  is a section 
of 7c. 

Any derivation A { ( T ) }  [ U ] - E  over A with values in an I-adic separated 
C-module E extends in a unique way to a derivation C-E,  thus we have 
derivations 

a a 
- -:c*c, : c-c. 
aT, a uh 

I f  6: A{(T) ]  [ U ] + K C / K % = :  Kis defined by s ( f ) = f - & o n ( f )  mod KW, it  is a 
derivation and we can extend it to C and get 

, af 

17 Ycth. Nachr. Bd. 109 
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where ti=Eon(Tj), zci=&07t(Ui). Then 6 induces a B-linear map 
7% tn 

j= l  h = i  
w : L ?  = :  @ Bd!Pj@ @ BrEUji-R 

v ( d T j ) = ( T j - t j )  mod K C ,  v ( ~ U , J = ( U , ' - U / ~ )  mod K T .  
The derivation A{(T'))  [UJ-L?, 

induces a B-linear map 

w:K-SZ 

= 6( f )  = f - E o n(f)  mod K2C 
= f mod K2C . 

Therefore w o w  = idR, I7 is a direct summand of SZ, hence a free B-module. I f  the 
functions f i ,  . . . , fkCA{(T)} [U]  represent a free base of R, the matrix cones- 

ponding to w is ( afi 

We consider the following question : Given a morphism ( A ,  I ) -  (B ,  J )  in H and 
a quaaiprojective B-schema X 5 Spec (B) .  Assume that a commutative diagram of 
morphisms 
( 1 )  S - Spec ( B )  

) (evaluated at z), hence condition ( J )  is satisfied. aTj ' aUh 

8 a T  1 
Spec ( A / l ) c  Spec ( A )  

is given. 
We want to  extend E ~ ,  to a section of X over Spec ( A ) .  To reduce thifi question to 

n, slightly simpler situation we first prove the following : 

Lemma 1. Assume that it set-theoretical holds in (1) that p O E ~  ( Y ( l ) ) s  V ( J ) .  If we 
denote the LerneZ of the homomorphism ( p o ~ o ) "  : B-A/I  by Ji, the pair (B,  Jl) be- 
longs to H (and 1.23s Jl). Moreover there exists in  esnbedding XsY"x Spec ( R )  and 
a section 91 : Spec (B)-P"'x Spec (B)  which coincides on Spec (BIJ,) with the mor- 
phism E ~ .  

Proof .  By the assumption v(J) 2 v(J1) = p o  q,( v(1)) % v( l )  and 1)y axiom 
(W 0) the morphism ( A ,  I)-+(B,  J )  induces a closed embedding V ( J ) S  V ( 1 ) .  
Therefore V ( J i ) =  J'(J), hence (B,  Ji) is HENsELian and the inclusion J:G J J ,  
holds for some r>>O, moreover, since by the axiom (W 0) the ring B/IB ix 
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NoETHmian, the ideaIs J, Jl and J flJ, are finitely generated modulo IB.  If the 
elements t l ,  . . . , t , ~  J fl J 1  represent a base of J f l  Ji/IB, we can define an A-mor- 
phism A { { T , ,  . . . , T,) } -B,  T i H t i .  By axiom (W 1)  this morphism is finite, 
hence we infer t.hat ( B ,  Ji) belongs to H (by axiom (IV 2)). Now we construct the 
schema Y as follows : The morphism E~ also induces a morphism q : Spec (B/J,) - X  
and we can a~sume that X&P"x Spec ( B ) .  The morphism is given as a point of 
P"X Spec (B) by an epimorphism (B/Jl)"'l-L onto an invertible (B/Ji)-module 
E ,  and since (B ,  J1) is H E N S E L ~ ~ ~ ,  we can lift L to an invertihle B-module L and 
the epimorphism to an epimorphism of B-modules, B"+'-L. Therefore qo can be 
lifted to a B-morphism $1 : Spec (B)-Pmx Spec ( B )  q.e.d. 

Lemiiia 2. Let S be an  affine schema and X & Pm x S a projective S-schernu defin- 
ed by f o r m  F,(T,,, . . . , T,)=O with coefficients from F(S) .  If : S - X  is a sec- 
tion corresponding to un  invertible sheaf L on  S and rn +- 1 ,  sections yo, . . . , qm gen- 
erating L,  let U g S x A N ( N =  (m+ l)?) be the scherncc defined by the equations 

and by the inequality det (hi,+ Yij) =i= 0. Then f(x) = (x, 0 ,  . . . , 0 ) ~  U defines a 
section of U over S and 

defines un S-morphism U -S such that E o 8 = 11. Noreover E is a locally trivial fibra- 
tion with the fibre 

Gl(m) x A" x G, . 
Proof .  Let S,) be the open set where I; is generated by qo, by a lineare change 

of coordinates on P"xS, and A"xS, we can assume that (qO, . . . , qm)= 
=(yo, 0,. . . , 0) on BI,. Then U is defined by 

and E hy 

Hence E is a locally trivial fibration with the fibre GL(m)  X A" XG, (staldizer of a 
point of P" under the action oE G L  (m+ 1)). 

F, ( ( 1  + J'd qo, J Y l 0 V O 7  . . . 9 J'moqO)=o 

42,  !I@)= (z, 1 +yllo : y1I) : * . . : y,,,) . 

For Inter use we note the following 

Lcrniria 3. If CD : E--A'L is a hornornorphism of A-moddes, where E is projective 

of rank E and if xE A such that 

x det (E:K)S image of A'@* 
(@* : An+E* the clual niup to dr), there exists a homomorphism y : A"-E such that 
y o @ = x  idE. 

Note that the eonhtion about x can also be written as xeimage of (det (E)@ 
8 AkL4%" - A )  induced hy @*. In the ease of k>n, the element x must be 0 ,  hence 
17' 
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we can put y=  0. Assumed k s n ,  the condition about x implies 

If p : Am-+#* is an epimorphism, we define a homomorphism B : Am+(A")* lqr 
B(ei) =viE (A")* such t,hat vi are elements with the property @*(vi)=zp(ei). Since 
E*isprojective, phas asectionr: E*-+A,andwedefine y * = / l o r .  Then @*oy*= 
= x  id,, holds and for the dual map we have 

q.e.d. 

Theorem 2'. (theorem on implicit functions). Assume that in the diagram ( 1 )  

xE*S image of 65". 

y o 65 =x id,. 

it holds thut 

(b) X is formally smooth over A in all points E ~ ( X )  (xE Spec (A(1)). 
Then E~ can be extended to a section of X -  Spec (A). 

By lemma 1 we can replace (B ,  J )  by (B,  Ji), hence we can assume p o ~ O  : Spec 
( A / I )  2 Spec (B /J ) .  Furthermore there exists an embedding X s  P m x  Spec (B), an 
invertible B-module L and m + 1 sections qo, . . . , q,,, of L generating L, such that 
the corresponding point 7 : Spec (B)-Pmx Spec ( B )  coincides on Spec ( B I J )  
with the given morphism e0. Let the projective closure of X in PmX Spec ( B )  be 
defined by the family of forms 

(a) a O E o ( W ) S  V(J) 

FJUO, . . * 1 Um)EB[U0, . . . t Om] 
and consider indeterminates Y,, i ,  j=O, . . . , m and in the algebra B{{Yoo, Yo,, 
. , . , Ymm}\ = B({ Y ) }  the I-adic closure K of the ideal generated by the functiotis 
corresponding to 

From lemma 2 we infere that the algebra C = B { ( Y ) ] / K  is formally smooth over 
( A ,  I ) ,  hence 1) y Corollary 1 the homomorphism C + A/I  given by ( p  o EO) * : B -. A/I, 
and Y,t-+O extends to a homomorphism C - A ,  say by Yij*yij, y : B + A .  
Then, by 

we get a section of X over Spec ( A ) .  
Our next aim is to formulate and to prove the so-called NEWTON lemma. 
If y = ( q i ,  . , . ,yk), Q] EA({T}} [U] and an A-morphisme A({T} }  [U]-A, !Pi- 

-ti, i = 1,  . . . , n,  Uj c+uj, j = 1, . . . , m is given in the case of k s~ + m, we define 
the following ideal in A : 

C(y, t ,  u)=the ideal generated by the (kxk)-minors of (ayJaTj( t ,  u ) ,  

If Z s  Spec ( A { ( T } }  [U]) is the set of zeros of Q], the locus V(C(y ,  t ,  u ) )  consist of all 
points of Spec ( A ) ,  over which 2 is not a smooth complete intersection of codimen- 
sion k in  Spec (A{(!P}} [U]). 

aqi/aUh(t, a)) and by yi(t,  u), . . - , y d t ,  u) . 
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Theorem 3. (NEWTON’S lemma, preliminary version). Assume that cp = 

=(cpi,. . . , c p a ) , y i ~ A ( { T ) }  [ U ] ,  T = ( T i , .  . . , Tn), U = ( U i , .  . . , U,),undZetHa&I, 
be ideals in A such that I ,  I and A / I i  is  I-adic separated. If the system of equations 

p(T, U ) = O  
has a soktion (to, uo), t8 E I, uj” c A modulo H21i such that the ideal in  A ,  generated by  
the (kXk)-minors of (ayi/aTj(tO, uo), 2yt/2U,$(to, uo)) contains the ideuZ H ,  then it has 
a solution ( t ,  u)  in A such that t = to  mod I,H, u 3uO mod I,H. 

slightly more general situation: Given a morphism 
( A ,  I ) -+(B,  J )  in H, assume p : X-Bpec ( B )  to be a quasiprojective morphism 
and X -  Spec ( A )  to be formally smooth. Consider a locally free Ox-module 8 of 
finite rank and a homomorphism y : &+Ox, then y defines a closed subschema 2 
of X by Oz = coker (y). By Qi.,, we denote the universal I-adic separated differ- 
ential module and by d : OX+Q&,, the universal derivation (for derivations over 
,4 with values in I-adic separated quasicoherent a,-modules). 

The universal I-adic separated derivation c l :  O,-QglA exists and can be de- 
scribed as follows: If X =  Spec ( A { ( T ) }  [ U ] / ( F , ,  . . . , FJ), then Q&,A corre- 
sponds to the module 

We can again consider 

where 

and 

The derivation d induces an O,-linear map 

88 0, + Q!Y,A 8 

det ( 8 ~  O,+~;)j)(8)8 Oz 

(hy e 8  1 e d y ( e ) @  1 ) .  and t,herefore an OZ-linear map 

(where Qi,A is defined as Ar,nk.,A). If so : Spec ( A ) - + X  is a section and if N is the 
ideal in A such that Spec ( A / N ) = s , ; ’ ( Z ) ,  we restrict this map to Spec ( A / N ) .  It’s 
dual defines a homomorphism 

.r- Qrk(8) 
s;) ( x / A  ) 8 OZ), sg(det( &) 8 az)) -t A / N  * 

Then we define the ideal C ( y ,  so)& A by C ( y ,  so) /N= image of this homomorphism. 
In the special case X =  Spec ( A ( { T } }  [ U ] ) ,  &= A { ( T } }  [UIk and y =  (yi, . . , , vk) i t  
coincides wi0h the ideal defined above. We can define C ( y ,  so) in an alternative way 
as follows: Consider the sheaf A as an Ox-module via the section so and the map 
induced hy y 

DerA(Ox, L4)-Hom,,(b, A / N A )  
D-DoymodNA.  
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If r k ( g ) = r ,  AC(cp, s,,) is generated by N and the elements det(D,(cp(ej)), where 
(Ill, . . . ,Or)  runs through the set DerA(Os, A)‘ and (ei, . . . , e,) trough the (local) 
sections of 8, 

i.e. C ( q ,  so) /N = image of 
dr DerA(OAr, A ) @ ( A r  Homex(8, A / N A ) ) - I - A / N .  

Theoreni 3’ (NEWTON’S Lemma). Let ( A ,  Z)-(B, J )  be a t,?orphisni i r z  H ,  
X !. Spec ( B )  a quasiprojective schema over B and so : Spec ( A ) - X  a section. 
Assume X to be formally smooth over A in the points of so (Spec(A)) and p 080(  V(l))s 

V ( J ) .  Let 8 5 0, be a morphism of a vector bundle of finite rank over S, Z S S  the 
scheuza of zeros of c p ,  and H and I f  &I ideals of A such that ( A / I l ,  I / I i ) ~ H .  

I f  
(a) so( Spec (A/H2Z,))cZ 
( 1 ) )  C(v, s n ) 3 H  
thwe ezists a section s : Spec ( A )  -2, swh that 

s=so on Spec (AIHI, )  . 
Proof .  Step I. Reduction t o  the affirie case. U y  leinma 1 we can assuine that 

A / I s  B/J .  If K denotes the kernel of (pose)* : B - A ,  the pair (B ,  K )  is Hmsm-  
iaii (since K S J ) .  Herice we can assume that YSP! and there existH a section 
9 : Spec ( B )  +Pg given by (L ,  q0, . . . , qm) ( L  ari invertible module over B geiier- 
ated by vo. . . . , qa) which coincides on (pos,)  (Spec ( A ) )  with the given section so. 
We consider again the equations Fa( . . . , [r2n) = 0 defining the projective 
closure of x’ in P r n ~ S p e c  (B) ,  the algebra B { { Y } } ,  Y = ( l v , j ) ,  i j=o .  . . . . m ,  the 
I-adic closure K of the ideal generated by the functions corresponding to  

(da = deg Fa) and the algebra C = B( { Y ] } / K .  Ry 

L B-morphisme F :  Spec ( C ) + X  is defined, and l y  Yll++O and pos , ,  we get a 
Hection t o  of Spec (C)-+Spec ( A ) .  I3y lemma 2 n e  see that (C, J{{J?}} /K)  is for- 
mally smooth over A .  

Os,,et(C) and we shall 
proof that C ( t * ( y ) ,  t ( , )==C(y? su). Since & - I  2 is the schema of zeros of &*(q), the 
assumiitions (a ) ,  (lo) &re satisfied for Spec (C), c * ( v )  and t,, then. Tf we prove the 
existence of a section t : Spec (A) -&-1(2 )  satisfying t = t 0  on Spec ( N H I , ) ,  the 
section s = P o t : Spec ( A )  -2 has the required property. Hence we have to  prove 
C ( E * ( ~ ) ,  t i )  = C(y, so) and then the theorem in the special case where X= Spec (C). 

Proof of C(e*(y), t , , ) = C ( y ,  8”): Since t;ie--’Z=s,;’Z, these subschemas of 
Spec. ( A )  arc defined by the same ideal N .  Furthermore we have a canonical 
restriction map Der,(C, A)-l)er,(O,, A) .  RF lemma 2 this map is surjective, 

We consider the homomorphism of sheaves &*8 
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therefore 

C(E*(Y), to)=C(y, S , J .  

Hence we have reduced the proof to tlie ease X =  Spec ( A { ( F } } ) ,  F a projective 
A-module of finite type and such that so corresponds to A ( ( F } } - A ,  P+O (hy 
Theorem 1 arid Corollary 1). 

Step 11. Reduction of the case X =  Spec ( A { { P } ) ) ,  HIIf+PA {{I”)} ?Image 
of ( E  5 A ( { F } } )  (whereE 5 A ( ( P ) }  is the homomorphism of A{(P}}-modules cor- 
responding to  84  0,) to  A { {F)] = A {{ T i ,  . . . T J } .  We can reduce the proof t,o 
the case where P i s  free, i.e. X =  Spec A{(T,,  . . . , Tn)), as follows: The moduleE 
can be written a8 E = E o @ A A { ( P } } ,  where Eo is the projective A-module obtained 
from E by reduction mod I”A{{F}] .  An isomorphism E o @ A A { { F } )  - E  is obtained 
hy lifting the idendity of E,,  toan A-linear m a p j  : Eo-E (observe that Eo is pro- 
jective) and by 2 @ 9 f ~ f j ( z )  (xEEo, f E A { ( F } } ) .  This map is reduced to t,heidentity 
mod F A { { P ) }  and since P A ( { P ) ]  is contained in the JACOBSON radical of A{{$’)} 
and E is of finite type, it is surjeetive (by NAKAYAMA’S lemma) and therefore bi- 
jectsive (since E is projective). Therefore y : E-A{($’}} is determined by an 
A-linear map y : Eo-H211 + P A { { P ) } .  There exists a projective A-module P’ such 
that F$P’=ATi@. . .$AT, is free. J37e can lift y to an A-linear map y ‘ :  Eo+ 

-+HzI,+x TvA{{T)}  and extend it by the emhedding i : F’-A({T}} to an A-li- 

near map 

12 

* 1 = 1  

Any A-derivation D :  A { { F ) ] - A  canbeextendedtoan A-derivation D : A { { T ) } -  
- A ,  hence C(p, O)=C(y”, 0). 

Step 111. Proof in tlie ease of 

X=Spec A { { T , ,  . . . , Tn)] 
n 

97 : Eo-Hzl ,  + 2 T,.A ( {T)}  
1,-1 

(E,  a projective A-mqdule). We have to  determine elements t v E H l i ~  I such that 
under the map A {{TI} -+A, Tv ++ t, the homomorphism y is mapped to 0. For any 
map p : E , - A { ( T } }  and tvEI let us denote l)y y ( t l ,  . . . , t,) : E o - A  the composi- 
tion of y with the A-homomorphism A { { T } )  -t A,  Tz, +-+ t,. We can write 

n 7l 

y i j : E , ) + I i ,  q v : E , - + A  

y,@ : E’,,-A{(T)},  where xl, . . . , x,, are suitable elements of H .  (This is possible 
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try to find elements tv in the form 
r 

f=1 
t v =  tv(u) = C xeuve (2) 

with elements u u e ~ I i ~  I .  The ideal C(q, 0) is the ideal generated by the image N of 

and the elements 

P ) U ~ ( ~ I )  * * % l ( w k )  ~ 

. .. i = ( a t , A . .  ,AT,,, W i A . .  . / \ w k )  

qVk(wl )  * * qVk(wk)  1 
if k=rk(Eo), where (wl, . . . , wk) runs through the set Ei.  Let d denote tho ideal 
generated by the elements ( y v l A . .  .Ay,, wlA.. .Awk), we want to  show A =  
= C ( y ,  0). By assumption (a) we have that N&H21i and by (b) that N + d g H ,  
hence Ns (N + A )  H I i .  

Therefore the idendity N + d = N H I 1  + d holds. Since N is of finite type, we 
infere from this idendity (by NAKAYAMA’S lemma) that C(v, 0) = d + N = d. Since 
the elements xjcI$& C ( y ,  0 )  = d are in d, we can find for each index j an A-linear 
map 

such that 
yj  : AT,@.  . .@AT,-Eo 

Y j O  c Tvvv =q M E o  
(3) (”== 1 
(by lemma 3). Substituting (2) into (1) we get 

r n r  n r  

Using (3) we can write this as 

I v ( t ( u ) ) = i  xi 5 [z yijYj(Tx)+uxi+c uviupjvvp(f(u)) y j ( ~ x )  9%. 
i= l  x=1  i V , P  j 

Hence it is sufficient to  determine the elements uvi such that the terms in the 
square brackets vanish, i.e. we have to  consider equations of the type 

axi+ u x i +  2 U v i U p j h x j v J W  = O  

a x i E I 1 ,  4 j V P ( ~ ) ~ 4 W }  * 

v , j  
x = 1 , .  . . , n ,  

(4) 

i = l , .  . . , r  

The JACOBIan matrix of this system in U = 0 is the unit matrix, and for U = 0 the 
equations vanish modulo Ii ,  hence by theorem 2 they can be solved by elements 
PC,~EI. Since uxi€I l ,  we infere from (4) that uxicI l+  (c Au# and since I ,  is 

I-adic closed, hence also closed with respect to  the ( 2 AuVj)-adic topology, this 

implies uxi€ 1; c4.e.d. 

V , i  

V , i  
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4. aeneralization of ELKIK'S theorem 

In this section we consider a W-category where all pairs ( A ,  I )  are NOETHERian. 
We consider A { { T} 1 T = (TI, . . . , T,) and an algebraic schema P- Spec A {{5!'>} 

which is smooth over A((T)} .  
For any closed subschema Xc P defined by a sheaf of ideals Kc Op we define 

the following sheaf of ideals b ( X ,  P) = 8 :  For Uc P open and affine, b( U )  =c 
[ I ( f )  : K (  U ) ]  A ( / )  +K( U ) ,  where f runs through the set of all tuples ( f , .  . . . , f p ) E  

E K (  Op(u)  f i  and d( f )  the ideal in Op( a), 
image of the map Ap DerA( Op( U ) ,  Op( U ) ) +  Op( U )  = ApOp( U ) p  which is induced hy 
the map 

f 

P 

j=i 
p =  1 ,  2, . . . , I ( f )  denotes the ideal 

D e r , ( q m ,  (3,( U ) )  OpC 

6 ++ ( S ( f i h  * * > W,)) * 

Note the following properties of 8: 
(A) If sex, then 8,= Op,x if and only if K,=I(f) for a suitable p-tuple f CK: 

satisfying A ( f )  = Op,x. 
(R)  If K, is generated by a regular sequence f = ( f l ,  . . . , f,) in OP,,, the ideals 

8, and  d(f)+Kx&b, have the same set of zeros in 
Now the formulation of ELKIN'S theorem is 

Theorem 6. I f  ( A ,  I)EH, there exists a function d :  N3-N, d(a ,  r ,  c)=-max(r, c) ,  
with the following property. Assume P=P"xSpec A { { T } ]  and X c  P to be a 
(quasi)projertive subschema and Zc Op a quasicoherent sheaf of ideals, such that for a 
suitable integer a 8(X, P )  holds. Then, for any  A-morphism 

s o :  Spec ( A / P ) - + X ,  d=d(a, r ,  c )  

so(Spec ( A / I r ) ) Z  V(Z)17X, 
such that (if V(%) denotes the closed subschema defined by the ideal %) 

there exists a section s : Spec ( A ) - X  such that s=so on Spec (A/ ,c) .  
By lemma 1 and lemma 2 the proof is easily reduced to the case X c Spec 

( A { ( T } } )  = P (the ideal % has to be replaced by its inverse image in lemma 2).  In 
this case, if T = (!Pi, . . . , TJ, to give an A-morphism s g  : Spec (A / ld ) .+X is the 
same as to give an n-tuple to= (t!, . . . , t : )€len such that P(t0) G O  mod Id ,  where 
P = F ( T )  denotes a tuple of functions from A{{T})  which generates the ideal of 
X. If H c A { { T ) ]  denotes the given ideal, the condition so (Spec (A/lr))5X n V ( C )  
means in this case that I'&€l(tO) (since d s r ) .  

In the following we consider the pair ( A ,  I ) ,  a p-tuple FEA{(T)}*,  T =  (Ti ,  
. . . , T,) and the ideal E corresponding to the embedding X = V ( P ) c  P = Spec 
A{{T}} a8 defined above. 

Lemma 4. Assumed there are given t E I@" X E  I ,  and a n  ideal, iVs A ,  and the 
following conditions are satisfied 
(i) F ( t )  = 0 mod x8N for an  integer s>O 



266 Kurkc/Pfister, iyeierstrass categories 

( i i )  z'EE(t) for un integer ~ z O  
(iii) s>r and o : x"'=o: xS-'+'. 
I n  this case there esists an yE ( z ' - ~ N ) @ ~  satisfying F (t + y) = 0 mod x'('-~)N. 

Remarks. 1)  The assertion is of course trivial if 2 ( s - r )  s s ,  i.e. if s 52r ,  since 
we can take y= 0 i n  this case. However, if s ~ 2 r +  1, the vector t + y  provides n 
better approximatioil of a solution of the equations F = 0 then the vector t .  

2) If xEI is not nilpotent, we can always find an integer k such that 0 : x k =  

quence t =t('), t( ' ) ,  t'", , . . , t"), . . . of vectors satisfying t (7 ' i - i )= t (L' )  mod x'+'+'N 
- - 0 : Xk+ 1 - -. . . Hence if in the lemma s z m a x  ( 2 r f 1 ,  r + k ) ,  we can find a, se- 

F(t(")) = 0 mod df"N 
(observe that the condition xr€ E(t'")) and t ( ' + ' ) ~ t ( ~ )  modz'+"+'N, F(tCuf ' ) )  = 0 mod, 
x r f t + l  N implies z r ~ E ( t ( " +  I ) ) ) .  

aF 
Proof  of the lemma: If 8(F, t )  denotes the matrix with the rows ( t ) ,  we can 

yiyjA for any y = (yi, . . . , yn) C Pa. Hence 
i3Tj 

write F (t  + y) =F(t)  + @(F, t )  mod 

we have to  determine yE ( Z * - ~ N ) @ *  in such a way that 

(1) 

It is sufficient t o  solve the conbpence 

(2) za(P, t ) =  -x%(t) mod d B N ,  ZE ( z ' N ) @ ~ .  
If z is n solution of the congruence (2), we can write 

n33 

y3(F, t )  = - F( t )  mod X ~ ( ' - ~ ) N  . 

z=$y, y~ (x8-'N)@%, and x'[y ( F ,  t ) + F ( t ) ] = ~ ~ ( ~ * ~ - ~ v )  
for a suitahle vector v~fl@', i .e. 

y3(P, t )  + P(t) - ~ ~ ~ - ~ v  = 0 mod xs-'A f l ( 0  : 2') . 
Rut from condition (ii i)  we infer 

2s--'~no: z1Sx-An(o: X ~ - - ' ) = O  

hence y3(F, t )  = - F ( f )  mod X"--'N. 
We consider now the congruence (2). If xr= x1 + y2 and if the vectors x i €  (x'N)'~ 

are solutions of the congruences z,3(P, t ) ~  - z,F(t) mod xZsN, i = 1, 2, the vector 
z = z l + z 2  is a solution from (2).  Now, since x ' ~ E ( t ) ,  i t  is a finite hum of an  element 
s , C I ( F )  ( t )&xx" and of elements 6(t) h(t) ,  where 6 is determined by a p-tuple 

. . . . ,  ") , and where h is a11 element of I ( f )  : I ( F ) .  
aTis 

JCI(F)@nas  6=d& 

For zI we can take x i  = 0 to solve the congruence x,3(P, t )  = - x,F(t) mod X2'N. 
On the other hand consider elements 6(t) h(t) ,  assume for example that 

6 = det , . . a ,  . There exists a (pxq)-matrix y~ over A ( { T } }  such that 
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and a (pX.n)-mat)rix r over A such that  

(4) I't?l(f, t )  = 6 ( t )  Ip  ( I , (p~p) -un i t e  matrix) 

(since d(f) is a (pxp)-miiior of 3( f ,  t ) ) .  From (3) we infer (since P(s)=O mods8hT) 

h ( t )  8 (P ,  t ) r  3( f .  t )  y( t )  mod x8N , 

hence 1)y (4) 
h(t)  1'3(F, t )  -b ( t )  y ( t )  mod x8AT 

and by (3) 
( h ( t )  f ( t )  1') a($', t )  -d(t) h(t)  F ( t )  mod zZ8X . 

Therefore the rector z=h( t )  f ( t )  I'C (xSN)@" solves the congruence 

z3(F,  t )  = b ( t )  h(t)  F ( t )  mod xZ8N , q.e .d . 
Proof of theorem 5 .  We proceed hy induction 011 dim ( A ) .  If all element,s of I 

arc nilpotent, we can t.ake the function d(a, r ,  c )  =max(r, c ,  v) + 1 if Ic=O.  Assuine 
that  x C I  is not. nilpotent, det.ermine k such that 0 : xk=O : x'.'+'= . . . and for each 
integer s an integer c(.s) such that I c + e ( 8 ) f l ~ S A  5 Icx8 (lemma of ARTIN-REES). 

Define s(a, r)=max ( 2 m +  1,  ar+ 1 )  and c(a,  r)=max (c(s(a, r ) ) ,  r +  l}. Be- 
cause of dim A/bA<dim A. we can assume tha t  for each s there exists a func- 
tion N2-N for (A/xc A ,  I/x" A ) ,  which we will denote by d(s, a ,  r ,  c ) .  

Then we define 
d(u.  r ,  +d(?S(G, r ) ,  a. r ,  c+c(a,  r ) )  

and we show that it satisfies the assertion of the theorem. To do this assume F E A  
{ (T}]q  and t ( 'cI@" t o  be given and satisfying F(P)=O mod Id  and I 'SH(f") ,  
where r Z = d ( c r . ,  I ,  c ) .  Hy induction there exists a vector t such tlint 

( 1 )  

(2)  t fO mod I C + c ( a J )  +x"A . 
Changing t Jve call assuincl that 

l i ' ( t ) z O  mod x'A, s=s(n, I )  

t r t "  mod I C + " J )  (2') 

From (1) and (2') we infer (since F ( P )  r0 mod I d  and c(o, r )  ~ c ( s ( a ,  r ) )  

(3)  F ( f )  3 0 mod x S I r ,  Y = s(u,  T )  

and 
(4) I r & H ( t ) ,  hence I " ' S E ( f )  . 
We can t,herefore apply lemma 4 (with N = I' and r replaced 1)y a. - r )  t o  determine 
a sequence 
( 5 )  

as in  remark 2 (ol)scrve s s m a s  (%IT+ 1 ,  w+k)). We ran write r r = h ( t ) ,  h c H ,  
since x ' ~  1's H ( t ) .  

Case 1. Assume that tlie scheina .X of zeros of P on the open set X , = ( X E S ,  
h + 0 in x) is a complete intersection, i.e. defined hy a regular sequence ( f i ,  . . . , f p ) .  

t . ,  t l ,  t y ,  . . . , t". . . . , E"(t") = O  mod x ~ + ~ I ~  
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By the property (B)  of the ideal E we infer 

(5 ) h p s O  mod A ( f ) + I ( F )  and (hp+g)  I ( F ) & I ( f )  
for p<<O and for a suitable g c I ( F ) .  Choose v such that 8(a, r)+v=max (2ar+ 1,  
a r + k ) + v 2 2 p ~ +  1 and t” in ( 5 ) ,  then 

(6) F(t”) =- 0 mod zzprfiJc 
t ” r t  mod zr+*Ic. 

These congruences imply 

h(P) =h(t)  mod xr+ ‘ I c  

hence Ah(t’) = 2 A  and Ahp(tu)=zrpA. Therefore the congruences ( 5 ) ,  (6) yields 
zrpcA(f) (t,), f(t,) EEO mod z 2rp+ I I C  9 

and we can apply Theorem 3. By this theorem there exists a solution t of the 
equations f ( t )  = 0 such that 

(7) t r t u  mod d p C i I e .  

We claim that t is also a solution of F( t )  = 0. By (6) and (7) we get A(hp(t)  + g ( t ) )  = 
=zrpA, and P( t )  E O  mod X‘”+~I~ .  By ( 5 )  it consequently follows that 

z’%(t)=O , 

hence F(t)  E 0 mod (0 : 2”) flzrC(+’Ic. Since we can choose p arbitrarily great ~ we 
can assume that rp+ 1 2 k, in this case (0 : z”‘) flxrp+ ’Ie& (0 : 2) fl zkA = 0 holdx, 
hence F(t)  = 0. 

Case 2. The general case will be reduced to case 1.  Let G J T ,  Z ) c A { { T } ]  Z,@ 
@ .  , . @ A { { T } }  2, generate the module of relations of F mod I (F)z .  Replace 
A { { T } }  b y A  ( ( T , T ’ , Z } } T ’ = ( T ;  ,..., Ti), P b y F ’ = ( F , T ;  ,..., T i , G f , .  . . ,Gm) 
and H by H ’ = H A { { T ,  T’, Z}}+C TL A { { T ,  T ‘ ,  Z } } + C Z , A { ( T ,  T’, Z } } .  

If F(to=)O mod I d ,  replace t o  by t ’ O =  (to, 0, k ’ ( t o ) ) ,  then F’(t’O)=O mod Id .  If fur- 
thermore H(t0)  zIr, H’(t0) 21‘ follows (for r ~ d ) ,  and if t’ +t‘o mod I’ and F’(t’) = 0, 
the first n components of t‘ satisfy t r i o  mod I c  and F(t)=O. If E‘ is the ideal 
corresponding to the embedding X‘= V(B’)cP’= Spec A{{!!”, T’, Z)), then 
E A { ( T ,  T’, Z } } g E ’ .  Therefore we can replace F by F’. 

2) ” 

We consider the schemas S=Spec ( A )  and 
X =Spec(A{{T)}/I(P))c Y = S p e c ( A ( ( T ) } ) c Z = S p e c ( A { { T , T ’ ) ) }  

X‘=Spec ( A ( { T , Z ) } / I ( F , Q ) ) c  Y’=Spec ( A ( ( T , Z ) } ) c Z ’  
.t 

=Spec (A{(?’, T‘, 2))) 

(where n denotes the projection). 
We shall show that any affine open set U ’ 5 X ’ -  V(H’ )  is a completeintersectiori 
of n + q hypersurfaces in some open subschema of 2‘. 

The open set X‘ - V(H‘) is mapped into X - V ( H )  under the map n. Therefore, 
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by property (A) and the ideals E and E ; respectively, if we consider the universal 
separated differential modules (denoted by 8 1 )  and the conormal sheaves (denoted 
hy N )  restricted to XI- V(H’) ,  we have the following exact sequences of locally 
free sheaves 
( 1 )  O - N , - ~ I ~ ~ ~ O , ~ - N , ~ I Z ~ - N , ~ , , - O  
(2) 
(3) 
(4) 
and 

0 -n*Ns, I’ -n*8b1s ‘n*Q;,s- 0 
0 ‘n*!2;1s -S)xqs- Q;,lx --c 0 
0 +Nx~ly~ + Q;<[s@ ax, --c Qxqs + 0 

n * N , ~ p ~ Q ~ , , g .  i 

1 

NytlZt@ Ox, 2 ~ * 8 & ~  

5. The Z-adic completion of W-categories 

Let us start with a W-category H and a pair ( A ,  I)EH. We will construct a 
W-category HA, over the I-adic completion A‘ of A which is in a certain sense 
minimal. 

We will need this construction for the proof of the approximation theorem for 
W-categories. It is exactly at this stage where the theory of W-categories is still a 
little bit complicate because we where not able t o  prove that this construction 
preserves the property of being NoETHERian. That is why we has to  develop the 
whole theory of W-categories in the nOn-NOETHERian case too. 

For example, if we consider the construction in the category of HENsELian 
algebras of finite type, the property of being NoETHERian will be presevered. 
However, if we consider the category of analytic C-algebras, and if A + B  is a 
morphism of C-algebras, we have to  consider algebras of the type 

B A t =  I J B { ~ ~ ,  . . . , um)cB‘ , 
where (al, . . . urn) runs through the set of all finite sequences in ntB, and where 
B{al, . . . , urn) is the image of the free algebra B{ Ui, . . . , Urn} in B’ under the 
B-morphism defined by Ui H ui. We do not know if BAt is NOETHEaian. 

The general construction runs as follows: Let (B,  3) be an (A,  I)-algebra of H 
and 8 be the set of finite subsets of the image of IA’ in 3B’ (B’ the I-adic com- 
pletion of B). For a 3 = (sl, . . . , sN)  c S we define B, to be the image of B{{Ti, . . . , 
TN}} in B’ via the B-homomorphism Ti I-+ si. 

Definition. BAS = u B, . 
It is clear that (BA., 3BA.) is a HENsELian (A’ ,  IA’)-algebra and the functor of 

( A ,  I)-algebras (B,  3) H (BA,, 3BAt) is a functor of the subcategory HA of all pairs 
(B, 8) over ( A ,  I) of H into the category of HENsELian pairs over (A, IA). 

Lemma 6. The mnonid morphism B/IqB+BA*IIqBAt, q= I, 2, . . . , is an iso- 
mrphism and B is the 3BAa-udic completion of Bk. 

BE 8 
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Proof .  We know that ]BAS= (IB,+ 
a€ s SUE3 

scB,), so the canonical morphism 

is surjective, i.e. BAT= B+IB,. . But this also means that B,.= B +  PB,. , qz 1. 
Since I q B  n B=PB, the morphism B/IPB-. BA*/IqBA, is also injective. This 
also gives us the isomorphism BJaq- B,./3*Bk and the lemma is proved. 

DefinitionJPropositiori 2. LPt HA, be the category of all Henselian pairs ( B ,  $) 
being finite over a pair (Bad.,  3BA,) for an ( A ,  7)-algebra (B ,  3) E H  such that n I u B =  

= 0 und A' + 813 is surjective. Then HA, i s  a W-category and (B,  3) -(B,, , 3BA,) is 
n functor HA -+HA,. 

- 
1 3  =I) 

Proof. (W 0) and (W 2) are fulfilled by definition. To prove ( I Y  3) we choose a 
finite sequence T =  ( T ~ ,  . . . , T#) of incieterminates and ( B ,  3 ) ~  H ~ ,  . w e  may 
suppose that (B, 3) is the quotient of a (B,.,  3BA,) of HA, with kernel N (if (B ,  3) 
is finite over (BA,, 3BA,), then there is a surjective map B { { X } ) , ~ - + B  for some 

( x ~ ,  . . , , x,)=x. w e  will show that B{{T}},,IR with W =  ( N B { ( T } J A , +  

+IqB{{T)},,) is the free pair B{(T}} .  Let (c, if) be a (B, i)-algelna of HA, and 
i,, . . . , t,cif. We have to show that there exists exactly one ( B ,  5)-rnorphism 
f : R{{T}} , , /2Gc with f (Ti)=fi .  We choose an ( A ,  I)-algebra (C, K ) € H  such that 
(C, R )  is the quotient of (CA.,  KC,,) with kernel N'. Now c= u C,/N'cIC, and 

so the 2,, . . . , i, are already in some CJN' n C,. 
By construction C3/N'nC,EH holds and this is a (B,  $)-algebra. We obtain a 

unique (B,  3)-morphism f o  : B{(T'>} -C , /N' f l  C, with TU++ to  and the following 
commutative diagram. 

- 
(1=1 

BE 8 

B{{T}J  -0 
+ 4 

B'[[TJ]  -C' . 
- 

For this reason we can l i f t  f o  to  a ( B ,  \3)-morphism B{{T}},,+C' annulling N, i.e. 
B { { 5 ! ' ) } A ~ J ~ = B { { T } }  is free in HA,. 

Now we have to  prove that the canonical morphisms 

B{(T)}/(T, ,  - .  . , T , ) 2 1 - 4 q / ( T I ,  * - * 3 T,lV 

a,: B[T]-B{{T}}l(T,,  . . . , TJ 
are injective, or the canonical morphisms 

are surjective. 
However, the canonical morphism lim B,{(T)} + B{{T}} being surjective we 

-c 
a 
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obtain a commutative diagram 

B[T] 2.+ B{{T}}/(Tl ,  . . . 3 

1 d 
4 

lim ~ , [ ~ ] - - - + l i m  B5{{T}}i(Tt, . . . , T_v)o 
4 

3 d 

Then Go is also surjective. 
To prove ( 1V 1) let (B, 3) -+ (B”, 5”) be a morphism in HA4, and if 5 B” a closed 

ideal (with respect t o  the d-adic topology) such that B”/R+ 38” is 8-finite. We 
will prove that B”/R is B-finite. Now ( B ,  5) is finite over some (BAt,  3BA.) for a 
(B ,  3)cH and (R, 3) is the quotient of some A{{T}}  in H. So we may su1)pose that 
(B, $) is the free object A’({T)}  in HA,, On the other hand (B”, 3”) is the quotient 
of some pair (BIi,, &’,) for a suitable pair (B”,  I”)EH. Since B is free, we may aR- 

sume that (B”, 8’’) = (B:, , 3”By,). Let if + IB;, =f,By, + . . . +f,By, +]By, , 
fi, . . . , ,cff (By,/IByf=B”/IB” is noetherian). We consider the free algebra 
,4‘({T, T’}}, T‘= (T;, . . . , Ti), and choose an A’{{T}}-morphism A‘({T,  T’)] - 
+By, , Ti++ fi. Now the algebra Bi , / ( IA)  { {T ,  T’}} Byp= Bi , /K+  (1.4‘) {{T}} is 
,4’{{T, !,!”}}-finite and it is sufficient t o  show that the algebra By, is A‘({T, T’}}- 
finite. 

Thus we are in the following situation: Let (BY,, 3”B;)) be an A ’ { { T } }  algehra 
such that &’,/(IA’) {(T}} By, is A’{(T}]-finite. We have t o  show that B;. is 
,4’{{T}]-finite. Since By,/IB:, = B”/IB”€H, we infer that  By,/IByt is A’{{!P)]- 
finite, too. We choose a set of generators modulo IB;, W 1 ,  . . . , W,c By, and 
consider for suitable $=(sl, . . . , 8,) (such that WI, . . . , U’, and the images of 
Ti, . . . , T,lr in B;, are in BY) the algehra-morphism. A { { T ) ] a - B y .  It is clear 

that Br/IBr+ s,By is A{(T}},-finite generated by W , ,  . . . , W,. Rut the alge- 
r 

0=l a 

lira8 BL, A({!!‘}}, are contained in H and consequently Bi‘= 2 A{{T}),T.V,. This 

implies .Bz,=x A’{(!!’}} TV,. Proposition 2. is proved. 
rl i =I 

i = l  

6. Generalization of ARTIN‘S thoorelti 

In this chapter we u ill prove the famous approximation theorem of 31, ARTIN 
(of. [Z], [3]) for semi-excellent WEIERSTRASS categories over a field or an excellent 
discrete valuation ring. In this way we give a common proof for the analytic and 
t,he algebraic case (cf. examples of excellent WEIEBSTRASS categories in chapter 0) .  

One of the hasic tools to  prove the approximation theorem ib: the following 
lemma : 

Approximation principlc. Let It€ be a TV-category, ( A ,  I ) -  (B, 3)-(C, K )  ?nor- 
phisins it& IT and let A be a NoETHERian uiadI-adic complete ring. Let X ?. Spec C be 
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a quasiprojective B-scheme and sg: Spec B’+X a formal section of the I-adic com- 
pletion B’ of B such that X i s  formally smooth in so (Spec B’) and pso( V (3 ) ) .  Let 
8 !. Oz be a morphism of a vector bundle of finite rank over X ,  Z S X  the scheme of 
zeros of q~ and C ( y ,  so) be defined as in theorem 3. If 
(a) so (Spec B’)C,Z 
(b) B’/C(y, so) is  finite over A 
then there exist a (B, 3)-algebra (L), L)€H, a quasiprojective L)-scheme Y being 
smooth over B a B- morphisms : Y + Z ,  and a formal section t : Spec B’+ Y such 

As in the proof of Theorem 3 resp ELKIK’S theorem we can reduce the proof to  
the following. 

Lemma 6. With the same H, ( A ,  I ) ,  (B ,  3) as in 6.1. Let F=(F1, . . . , F,)=o 
be a system of equations, F i € B { { T } }  [T’], T= (Ti, . . . , T N ) ,  T‘= (Ti, . . . , Ti), 
N + N ’ z m  and ( t ,  t ‘ )  a formal solution of F=O, tE3B”, ~ ’ E B ’ ~ ,  such that for the 
ideal d,(P, i, t ’ )  generated by the (mXm)-minors  of the matrix a(F,, . . . , F,)/ 
a(T, F’)  (i, i’) in B’ the A-aZgebra B‘/Am (P, 8 ,  t ’ )  i s  finite. 

Then  there exists a free B-algebra B{{Z}} in H, Z=(Z,, . . . ,Z,), t ( Z ) ~ 3 ( { 2 } }  B 
{ (Z}}” ,  t ‘ (Z)EB{{Z}}” and % = ( Z 1 ,  . . . , 2,)€8B’ such that F( t ( z ) ,  t’(x))=o and 

Moreover, if KC, 3 is a finitely generated ideal in B such that BIK i s  NoETIIERian 

that si = so. 

t(2)=i,  t’(z)=l’. 

and (i, E‘ mod KB’)€ BIK, then one can choose 2 to be from KBIq. 

Proof .  Let K s  3 be an ideal such that B/K is noetherian and ( t ,  t’ mod KB’) E 

EBIK. We choose hi, . . . , haEK such that ( t ,  t’)=(to, t’o)+Mh, h=(h’) ,  ( to ,  

t’o) BN+w and .Zi? a N+N’Xa-matrix over B‘. Now B’= B+diB’, do=d,(F, 
t ,  t ’ )  n B : B’/A,(F, i, t ’ )  is a finite A-modul and a finite B-modul too. B/3+ 
-c B/3aBB’/dm(F, t ,  i’) is surjective and by the lemma of NAKAYAMA B- B’/4, 
(F, t ,  t’) is also surjective, i.e. B/do= B’/d,(F, t ,  i‘). Especially B/do is NOETHER- 
ian and complete with respect to the I-adic topology, i.e. B/Aos B‘/doB’. This 
means doB’ = d,(F, i, i’) and B’ = B + doB’. Especially we get B’ = B + B‘. 
Using this fact we can write .Zi?=M+ 2 d iM,  died:,  M a ( N + N ’ )  Xa-matrix 
over B, Mi ( N  + N ’ )  X a-matrices over B .  So we get (i, i‘) = (to, t’o) + M h  + 2 di 
(&l,h). Now let B((Z)}  EH, Z= Z j =  &, . . . , Zj N + N 8 ) ,  be the free B-algebra. 

We will consider the system of equations G( T, 2’‘) = F( (T, T’) + zdiZi) = 0. The 
idea is to apply NEWTON’S lemma to this system and to (f, €‘) = ( to ,  t’o) +Mh.  First 
we will show tha t  d,(P, f, €‘)=do and d,(G, t ,  t’)=doB{{Z}}. 

ha  

Obviously (f, t’) ~ ( i ,  t ’ )  mod A: K B  implies 

d,(F, €, t’)B’Gdm(P, t ,  t’)=d,,B’sdm(F, €, r l )  B’+diKB’, 

i.e. &(P, f, rl) E Aos d,(P, f, V )  + d;SK (hccause B/d: K is A finite we have HB‘ fl 
n B=H for all ideals H z d i K ) ,  but thin means A,(F, f, €‘)=do. Now we know 
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(t,  t‘) s (f, f’) + B ( { Z } }  Z, ,  a i d  similarly o1)tain d,(G, t ,  t ’ )  = 

= doB{ {Z}] (iiote that ;cia( T, T’) ( t ,  f’) = ?F/2( T, T’) ((f, t‘) + 2 dJJ). Now 

dlZ2 mod 11; 

G(t ,  t ’ )=F(( t ,  t’)+C d t Z i ) ~ P ( f , t ‘ )  nlod A: 2 ZItR{(2)}  afld O=F(i .  ?‘)=F(Z,f’)  
mod diKB’ ,  i.e. 2.1‘ 

We call a l )p~y ~E\vr rou’s  lemma and get a Bolution (C i;) E B { { Z ) } A + + ~ ,  of tlie system 
of equations Q(T,  T ’ ) = o .  ~ i c w  (t(2). t‘(Z))=(l, 7 ) + ~  dzzi is a solution for 
F ( T ,  T’)=O. 

ARTIN’S theorem. Let H be a sprniexcellent WEIERSI~RASS category over an ex- 
cellent discrete valuation ring R ,  ( A ,  I )  -. (B ,  3)  a rnorphisrn in H and let X !. Spec B 
be a quasiprojective B-scheme. 11 S : Spec A’-X is a formal section of the I-adic 
completion A‘ of A ,  then there exists a free ( A ,  I)-algebro (C, K)CH. an  A-algebra- 
morphism s :  Spec C - X  and a formal section S;,: Spec A‘-Spec C such that 
5 o So = S .  The proof of this theorem divides into several steps : 

G(t ,  t’) = 0 mod A:( K B (  [Z}) + Z,,B ( {Z } } )  . 
I , L  

Step I. Reduction to the ca5e that A is regular. 

Theorem 6. Let H be a seiniexcellent WEIERSTRASS cntegory over an  excellent 
discrete valuation ring R with prime element n. Let P= ( F i ,  . . . , F,) = 0 be n system 
of equations, 

T= (TI, . . . , Ti\+,) a d  (jj, t )  a forirzal solution of P=O, 
F , € R ( { X ,  Y}} [TI, X = ( X i ,  . . . , X n ) ,  I ’ = ( Z 7 1 , .  . . , I ’ N ) ,  

(n, X )  R’[[X]]”,  l C  R’[[X]]”’ . 
Then there exist y ( Z ) E ( n ,  X, 2) R { ( X ,  Z}}”, t ( Z ) €  R ( { X ,  Z}Jn-’ for o suitable 

Z =  (Zi, . . . , 2,) and ? €  (n,  X )  R’[[X]]’  such that F ( y ( Z ) ,  t(2)) = 0 and y(2) =ij, 
t(2) = i. In this step we will #how that Theorem 6 implies ARTIN’S theorem. We may 
start with a system (Fy, . . . , F,O)=PO=O of equations, $’:CA{{P}} [TI, A c H  and 
a formal solution ( j j ~ .  to) E AAr+-y’ of P 0-  - 0. 

Let A =  R { { X } } / K  mid let K be generated by b l ,  . . I , b,L. We choose F , E R  
{ { X ,  Y } }  [TI, (jj, t )ER’[[X]]xV+S’  such that F t  mod K R { { X ,  1’)) [T]=PP and 
(8, i) mod KIZ’[[X]]”*V’= (go, ill). 

b,fiUi for suitaldc GUi€ R’[ [X] ] .  We apply now Theorein 6 to 

the system F , - X  b L V , , ~ R ( { X .  Y)} [T, ttr] and get W,,(Z), y(Z), t ( 2 )  from 

R { ( X ,  Z}) for a suitahle Z=(Z,, . . . ,Z,) and a EER’[[X]]’ such that y(?)=ij, 

t(E)=t and W,,J5)=Ec? and P , ( y ( Z ) ,  t ( Z ) ) = z  b,W,,(Z).  Now (yo(Z), tO(2))= 

=(y(Z). t ( Z ) )  mod K R ( { X ,  Z } } E A ( { Z } }  is the required solution of Po=o. 

R ( ( X ,  Y } }  [TI-R’[[X]]  and I n R ( { X ,  Y } } = ( o ) .  

h 

Thea P,(ij, i) = 
& = I  
P 

u = l  

i: 

2 =I  

Step 11. Redurtion to the case that the Fi, . . . , F,  of 6. generate the kernel I of 

1s Illkth Sachr. R d  109 
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To prove Theorem 6. i t  is clear that  we may suppose that F l ,  . . . , F, gene- 
rate the kernel I of the morphism S : R{{X, Y}} [TI-R’[[X]] defined by Y H jj, 
T r--f t (otherwise we may add some equations). If I f l  R({X, Y}} = (O), we finished. 
In the other case we choose an automorphism y : R{{X, Y}} [T]+R{{X, Y}} [TI 
with the following properties : 

(i) y/R{{X, Y}}  id^{{^^,^^^ mod (X, YI2 R { { X ,  Y}} 
(ii) y@{{X, Y)JSR({X, Y}} 

(iii) q ( I )  is generated by GI, . . . , G,ER{{X, Y1, . . . , Y,}} [Y,,, , . . . , Y,, T] 
and 
(Gi,...,G,)R{{X, Yl, . . . ,  Y,})[Y,+i , - . . ,YN, 5?]nR({X, Yi  ,..., Y,}}=o. 

(We may choose y to be the composition of automorphisms of the type Xi ++ Xi + 
+ YFi,  Yip Yi + Yrki and apply the Preparation Theorem to get the GI, . . . , (7,). 

Now Soy-1: R({X, Y } }  [TI-R’[[X]] is a morphism mapping y ( I )  tozero, but 
in general 6 oy-1 is not an R({X}}-morphism. Because of (i) and (ii) 6 oy-~/R{{X}) 
induces an R-automorphism of R’[[X]]. Let y be the inverse of this automorphism, 
then y o S o y - 1 :  R({X, Y}) [TI-R’[[X]] is an R({X)}-morphism mappingy(1) t o  
zero, i.e. if we denote g = y o S o y - I ( Y ) ,  f = y o S o y - 1 ( T ) ,  then G,(g, t )=o,  i= 
= I , .  . . ,m .  

Now let us suppose that Theorem 6 holds for the Gi. Then, for a suitable 
Z = ( Z , ,  . . . , Z 8 ) ,  there exist i j ( Z ) ,  f(Z)ER{{X, Z}}N+-v‘, and 5CR’[[X]]8 such that 
G,( i j (Z) ,  f ( Z ) ) = O  and g(Z)=ij, f ( Z ) = f .  Let A denote the R{{X, Z}}-morphism 
R{{X, 2, Y}} [TI-R({X, Z } }  defined by g(Z), f(2) and p : R({X, Z}}-R’[[X]] 
the R{{X}}-morphism defined by 2 ,  then poA/R({X, Y}} [T]=yoSoy-I. Let us 
denote the canonical prolongation of q to  R{{X, 2, Y}} [TI by q too, then Aoy  
(especially p o A o v) maps I to zero, but in general A o q/R(  {X, Z } )  is not the iden- 
tity (note Aov(Z)=Z),  especially poAoq/R{{X}} may not be the canonical in- 
jection. Because of (i) and (ii) A o q/R{{X, Z } }  is an 22-automorphism (and p o A o q/ 
R({X}] induces an R-automorphism of R’[[X]]). Let u be the inverse of Aoy/  
R{{X, Z } } ,  then o o A o q  is an R ( { X ,  2))-morphism of R({X, 2, Y}} [TI into 
R{{X, Z } }  mapping I t o  zero, i.e. if y(Z)=uoAoq(Y) and t ( Z ) = u o A o q ( T ) ,  then 
F,(y(Z), t ( S ) ) = o ,  i = l ,  . . . , m. If we put i?=y-i(S), it is not difficult to  see that 
y(%)=Y and t(i?)=i. 

Step 111. Reduction to the finiteness condition of the approxirnation principle 
(NERON’S blowing up ) .  

We may start with the following situation (with the notations of theorem 6) : 
I=(Fi, . . . , Ft)isthekernelofthe R({X}}-morphismR{{X, Y}} [TI-R’[[X]] 

defined by Y and i and I n  R { { X ,  Y } )  = 0. 

Lemma 7. Let Pi, . . . , F,c I be a minimal  set of generators of IR{{X, Y ) }  [Tj, 
and A,  (Fl, . . . , F,, jj, i) the ideal generated b y  the m-minors of the Jacobian matrix  

a(P1, . . . , Fm)/a(Y,  T) (j, i), then A,(Fi, . . . , F m ,  Y, i ) * O  . 
Remark. Lemma 7 also holds if we replace the valuation ring R by a field in the 

assumptions of Lemma 7. 
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P r o o f .  Let B= : R { { X ) ]  and without restriction of generality we may sup- 
pose that the ii are no units, then we can lift the morphism B{{ Y } )  [TI- B' t o  a 
morphism B'[[ Y ,  2'11 -. B' with the kernel H generated by the Y ,  - J t ,  Tj- 4. Let 
us denote Q = B ' [ [ Y ,  mQ the maximal ideal of Q and R the residue field, 
then we have mQ n P = mp the maximal ideal of P : = R{ { X ,  Y } }  [TII. Now H is 
semi-excellent and consequentely Q is a formally smooth local P-algebra. Now let 
us consider the canonical morphism. y : Homq (mq, IQ-Hom, (mp, R )  induced 
by the inclusion mp+mQ. With respect to the base Ul,  . . . , U,,lv, of 

HOmQ(mQ, R ) ,  Ui ( Y j - y j ) = b * ? ,  u, (Tj-$)=o if i s N  
and V,(rJi-fjJ=O, Uj(Tj-i,)=6, if i > N ,  and the base wl,. . . , w, of 
Horn,,(m,, K ) ,  wt(Fj) = ~ 3 , ~  the matrix associated to q is just the Jacobian matrix 
a(P, . . . , Fm)/a( Y ,  2') (fj, t ) .  To prove the lemma we have t o  show that ~1 is surjec- 
tive. Let us consider the following commutative diagram : 

Dor, (Q,  xi) + HOmQ (mQ, K )  

4 1. 
Der, ( P ,  R )  b. Horn,, (m,,, R) 

given by the restriction maps (K=Q(B)  the fraction field of B ) .  

=Hornp (mp/mi ,  K )  and Plm,: = L 4 Plm; = : P be an ernbedding of the coeffi- 
cient field of Pwhich extends the canonical embedding K 4 P .  

Pexists because LIK is a separable extension (LsQ(B')  
and Q(B')/Q(B) is separable) and P is a complete local ring (Theorem of Cohen, 
cf. EGA). Now Pr L$mp/ml and clearly the morphism w is the restriction of the 
derivation @(., 6,  (z+y):=w(y) ( x E L ,  y/Em,/m2,), i.e. cr is surjective. 

The morphism Q is surjective because of the formal smoothness of the P-alge- 
bra Q (cf. EGA): 

Let 6 : P - R  be a K-derivation. In  order to  get a lifting 6 : &-a we consider 
the ring E=Q[  Y ] / (  Y2, YmQ)=Q@yR together with the P-algebra structure 
p -  (q+ay)=pq+(Pa+@(p)  q )  y, p e p ,  qEQ, a e R ,  ji, q the residue classes of p 
resp. q in K. Sirice the canonical morphism E-EIyE =Q is a P-algebra morphism 
and because of the formal smoothness of Q ,  we can lift the identity in Hom, (&, Q) 
to  a morphism 

We will prove that e and cr are surjective. Let wEHomp (mp, R)  = 

Such an embedding L 

y': Q-tE'=Q@yK: 
P---+ Q' 

E' + E'/yE' = Q' . 
Now i t  is clear that  y'(Q) 
8 : Q-K is a derivation and 8/P=6. The lemma is proved. 

E and y'(q) = q+ y&(q). It is not difficult t o  verify that  

18" 
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To apply the approximation princ~iple we are intrested i t i  Iiaving a’[ [ X ’ ] ] / L ~ , ~  
(Fz ,  . . . , F,, i j ,  Z) t o  he a finite R’[[X1,  . . . , X,-,]]-module. The next lemma will 
arrange this situation. 

Lemma 8. We use the some notutions and assutnptions as in leinincc 7. Thr B- 
morphism B{{ Y}} [TI- B’ given by given by YLctiji,  Ti- ti  extends to u B-mor- 
phism B{{ Y]} [T ,  21-B’, Z =  (Zl, . . . , Z 8 ) ,  Zi-Ez, with kernd K nnd a miniivial 
set of generotors GI, . . . , G, of B{{Y}} [T ,  21, such that the idrid 

/$(GI. . . . ,G,, g ,  t ,  E)g/nB. 
Proof .  We know that d,(F,, . . . , F,, 9, t ) * o  (lemma 7) .  If Am@’,, . . . , 

E”,, ij, t)g/nB’ we have finished. Otherwise let d,(Fl, . . . , Pm, ij, t)!Z/dB k=- 1 
and we will drop this kstep hy step. Let Z(F1, . . . , F,, jj, t )  = ord,d,(FI, . . . , F,, ij, t )  
and Z(I, ij, i) = min {Z(F,, . . . , F,, ij, t ) ,  Pi, . . . , F,E I generating IB{{ Y } }  [TI,}. 

To prove the lemma it is sufficient t o  prove the following lemma: 
NERON’S n-desingularization: With the notations and assumptions of lemmu 7 the 

B-tnorphism B{{Z’}} [TI-R’ extends to a B-morphisin B{(J’ } }  [T, 21 +B‘, 
2 = (Zl, . . . , Z e ) ,  2, ++ E,, with kernel K such that Z(K, 21, i, f )  <,?(I, g ,  t ) .  

To prove this lemma we may suppme that Z(I, jj, i )  = k i 0 .  Let Pi, . . , , F,C I 
such that ord,B,(F,, . . . , F,, ij, i ) = k ,  i.e. there exists an /It-minor of the JA- 
CoBIan matrix a(Fl ,  . . . , Fm)/a(Y,  T) (ij, i) which is exactly divisible by d. Let 
K = { f E B ( { Y } }  [T] ,n / f (%,  t )}andGi, .  . . ,G,cB{{Z’}} [T] such tha tn ,G1 , .  . . , G ,  
is a minimal set of generators of B{{ Y } }  [TIK. The residue classes of the Gi mod z 
generate K(B{{Y}}  [T]/n B{{Y}} [FIR= : m, R is the kernel of the B/x B-mor- 
phism BInB {{I’)} [TI-B’/nB’ induced by the residue classes of the i j j  and ij 
niod n. IJsing Lemma 7 (Remark) we ohtain that the ideal generated 11y the 
e-minors of the Jacobian matrix of the Gi mod x is not in m, i.e. 
( i )  Ae(G1, . . . , Ge, 9, t)&/xB’. 
Furthermore the residue classes of F,, . . . , F ,  mod n are linearly dependent in 
m/tn2, i.e. especially 
( i i )  I n K ? z / K  - I .  

If the F, ,  , , . , F ,  were linearly independent, we could find F,,,+i , . . . , F e € K  
such that F, ,  . . . , F, rnodn be a base of m/m2. By the above Lemma the ideal 
generated hy the e-minors of the Jacobian of F,,  . . . , F, mod n is not in tit. Rut 
t1ii.s is not possible hecause the ideal generated by the m-minors of the JACOBI~LI~ 
of the Pi, . . . , F,  mod x is already in rtt. 

Now lct u s  consider the B-morphism B{{ I-)} [T, Z ]  +B’, 2 = (Zl, . . . , 2,) and 

Y, H ij&, T, H t i ,  2, H . Let 3 be the kernel of  this niorptiiam, then n%, -Qi 

: ~ i i d  I are in 3 and I)eciause of the ahsumptions at the beginning of (111) we Iiave 
~ I ? R { { Y J } = o  arid h t g = r n + c .  

\Z‘e will show that Z(3, ij, t ,  g)-=k. We have to choose a ‘‘good” minimal set of 
generittors HI, . . . , Hm+e of B { { Y ) }  [T, Zl l  such that ord n 4 m + e  ( H I ,  . . . , H m + e ,  
3, i ,  ?)-=I;. Itp definition of the G, wr: can rhooso a HCR{{Z‘)} [TI H E / K  and Di, 

Gi(i j ,  i) 
n 
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such that I;$',EK?, i.e. 

(2) 

for suitable B, iUjc B{{ Y ) )  [T, 21. 

Wm+,:=nZL--GI, . . . , Hm+c:=n2c-G,  generate 3B{{Y) /  [T. Z],. 

i = l  

m 6 

L,F,= 2' Mj (G, - xZj) + nzI1 
a = I  j = l  

NOW H1:=13k3 . . . , H k - l : = 1 3 k - 1 ,  H k : = I ? ,  H k + l : = I I k + l .  . . . , H , , : = t I , n ,  

Using ( 1 )  and (2) we will show that:  

(3)  

Differentiating (1) arid (2) we ohtain 

old, / Im+E(HI ,  . . . , H,+,,  jj, i, :)-=k. 

mi 
=Ki t  mod 3 

i =  1 ,  . . . , k -  1 ,  k+ 1, . . . . M 

Ill e 

L,aFi/a( Y, T )  _= Mi2Gj/2( Y, T )  + nGHk/8(  Y, T) mod 3 
i = l  j=l  

(5) 

i = l ,  . . . , f ? .  

usiiig (4), ( 5 )  and (6) we can see that the JAcoBIan matrix. 

( 7 )  L'(zH1, . . . , n H k - , ,  j z X H k ,  ~ H k + 1 ,  . . . , nH,, H m + l , .  . , H,+,)/ 
a(Y,  T ,  2) (g, i, 5) is equivalent, to  Dhe matrix 

i WVqr, T) (G, i )  0 
-a(G)/a(J', T )  ( g ,  i) nI, , ( 8 )  ( 

1, tho exe unite matrix. By the definition of l(1, J ,  i ) = k  the matrix ?@')/a( Y ,  T) 
(ij? f) Jim it m-minor which is not divisihle 1)y nkt'. Then it is clear that  t he  matrix 
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(8) has an m +e-minor not divisibleby nkfl+d-(d-m)=nk+m+' , b ecause Ae(G, 8, t)g 
S / n E  (cf. (i)). Finally we have an m+e-minor of (7) not divisibleby n"m+i, i.e. 
there is an m+e-minor of a(H1, . . . , H,+, ) /a(Y,  T, 2) (jj, 2 ,  X )  not divisible by 
xk, i.e. (3)  holds and consequently l (K ,  ij, 2, 2) c= k. NERON'S desingularization step 
is finished. 

Step IV. Induction on  n using the approximation principle. W'e map start with 
the following situation (with the notations of Theorem 6) : 

I=(F, ,  . . . , Fe) is the kernel of the R({X)}-morphism R { ( X ,  Y ) }  [TI- 
-R' [ [X]]  defined by and i, and 

n m ( F t ,  . . . Fm? g, t)G/n.R'[[x]] * 

Clearly it is enough to  look for a solution of F ,  = . . . = F ,  = 0 ( F i ,  . . . , F,  gener- 
ate I R ( { X ,  Y } }  [TI,): Let us suppose for a moment that for suitable Z =  
= ( Z , ,  . . . , ZJ, y(Z), t ( z ) c R { { X ,  Z}} and .?ER'[[X]It 

P,(y(Z), t (Z ) )=O i = l ,  . . . , m and y(z)=ij ,  t = ( z ) = i .  
m 

If r > m ,  then G -  Fr= HriFi for a suitable GC J I ,  i.e. 
j=I 

Q(y(Z), * Fr(y(Z), t(z)) = 0 . 
Now it  is clear that G E  / I  implies G(Y, i )  =I= 0 and especially G(y(2).  t ( 2 ) )  + 0, i.e. 
F,(Y(Z), W) = 0.  

I. Case n=O. 
In this case tl,(FL, . . . , F,, 5, i )  is a unit (for simplicity we may suppose the 

ti not t o  be units). Let 

det a ( F , ,  . - . , Fm)/a(Y7i, - . . , yrS1 Tj8+i, . . . , Ti,) (g, t )  

be a unit. Then we consider the system 

F,=O,. . . , F,=O, Tmfl= YrSfl-Zi=O,. . . , F,y+_y= t 

Tjs - ZLj-+y -,= 0 

defined over R({Z,, . . . ,Z,V+Nt-m, Y ) }  [TI. We have F,(o, O ) = O  mod (n, Z i ,  . . . , 
ZI$7+N,-m)anddet (a(F, ,  . . . ,Fx+21't)/a(Y, T) (O,O))=unit in R({Z,, . . . ,Z,,.+,.-,>}. 

Using the implicit function theorem we get y(Z), t (Z)CR({Z, ,  . . . , ZK+w-m>} 
such that 

P",(Y(Z)3 W ) = O  i = l ,  . . . ,  m 
~ r ,  + (2) =zj j = 1 , .  . . , N ' - s  

tik (2 ) k = l , .  . . , N + s - r n .  

Using the implicit function theorem for the system 

F,(Y(Z), W)) 
defined over R ' [ [ Z ] ]  again we get the required Xc R''*+'V'-m suchthat y(Z)=gand 
t ( 2 ) = i  putting ~ ~ = i j , ~ + ~ ,  . . . , ~ N + & ~ - , = f j ~ .  
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2. Case: n>O. 
\Ve suppose that the theorem 6 is true for R ( { X , ,  . . . , Xn-!>}. We may further 

suppose (after having applied a suitable 22'-automorphism of R ' [ [ X ] ]  and having 
used the preparation theorem) that R'[[X]]/A,(P,, . . . , F,, g, t )  is a finite 
R'[[X,, . , . , X,-,]]-module. Now we may apply the approximation principle 
lemma 6 to  the pairs ( R ' [ [ X , ,  . . . , X J ] ,  (n, X , ,  . . . , X,))  and R { { X } } K r [ X ,  ,.._, x,ll. 

There exists a free algebra R({X}}n,r,xl ,,,., xn-,,l{{Z}}, 

z= (4, . * . 7 2 8 )  and !w)* f(Z)ER{{X}}.,,,,, *..., X ~ - , , ]  { { Z }  1 x+N' 
and ^:E R'[[X]]'such that 

Now 22 {{X}}a"x,,...,x,-,l7 { 'ZH t = RHX, ~}1 .~"xi , . . . ,Xn4u and looking carefully at 
the construction of R { { X ,  2}]R,r[XI,...,Xn--111 we ran choose a 

F,(B(Z), f ( Z ) ) = O  i = l ,  . . . , rn and $(r)=ij, f ( a ) = f .  

Q=(?q, . . . , Qk), QiE(n, X I , .  . . , X % - i )  R'"XI, . f - , X, - , ] ] ,  
suchthat ( $ ( Z ) ,  t(Z))~A({X,2}}~+n7'.LetKloethekerneloftheR{{X1,. . . , X,-,}}- 
morphism K{ {Xt , . . . , X,- U } }  + R{ { X , ,  . . . , X,- ,}] li defined by U H a, 
U ( Z ' ) E I Z ( ( X ~ ,  . . . , X,-,, Z'}] beazeroof K , Z ' = ( Z ; ,  . . . , 2i)and2ER[[Xi,  . . . , 
X,- , ] I b  surh that a(??) = Z. 

IVe consider the R { ( X , ,  . . . , X,-,}I-morphism 

R { ( X , ,  . * - ~ ~ n - ~ ) } ~  {{Xz z } }+R{{X ,  Z,z'>) 
defined hy Q ++ a(Z'), X H X ,  2 H Z  and denote the image of ?j resp. t via this mor- 
phism by y(2, 2') resp. t(2, 2'). Then FJy (2 ,  Z' ) ,  t(2, 2 ' ) )=0  and y(2, 2') =ij, 
t(E, E ' )  = i. The theorem i K  proved. 
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