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0. Introduetion

In his paper “On the solution of analytic equations” (cf. [2]) M. ARTIN proved
the following famous approximation theorem: Let k& be a valued field of characte-
ristic 0 and f(X, Y)=(fy(X, Y), ..., fa(X, Y)) convergent power series in X =
=Xy ..., X)), Y=(Yy, ..., Yy) with coefficients in k. If the equation f(X, Y) =
=0 has a formal solution, §=(¥y, . . ., Fy), 7:€k[[X]] formal power series in X,
then there exists for any integer ¢/10 a convergent solution y=(yy, ..., yy),
Y;€k{x} convergent power series in X, of the equation f(X, ¥)=0 such that
¥;=F; mod X°.

With similar methods M. ARTIN proved the analogous theorem for algebraic
power series (the case n =1 was already considered by M. J. GREENBERG, cf. [7])
in [3]. The main idea of ARTIN’s proofs is the application of the WEIERSTRASS
preparation theorem and-the implicit function theorem (resp. NEwWTON’s lemma)
in order to be able to apply induction on n (the number of the indeterminates).
This gave us the idea to generalize ARTIN’s proof to classes of rings with the prepa-
ration theorem and some other ‘‘good’ properties (cf. [12], [13]). The reason for
such a generalization was to get a common proof for ARTIN’s approximation
theorems in the algebraic and analytic case. Furthermore we wanted to prove the
approximation theorem for convergent power series over a valued field of charac-
teristic p=0 (For the case of the field being completely valued such an approxima-
tion theorem was also proved by M. ANpRE [1], U. JArNER [8], M. vaAx pDER PuT
[10] with different methods). In [10] we developed the idea to consider classes of
rings with the preparation theorem to the so-called WEIERSTRASS categories and
proved the approximation theorem for rings of these WEIERSTRASS categories.

1. DENEF and L. Liesurrz pointed out that some details of this proof were in-
complete resp. incorrect and invented W-systems being similar to [13] but more
general (i.e. families of regular local rings with the preparation theorem and some
more good properties) and proved the approximation theorem for rings of a

W-system (cf. [5]).1)

1) The authors would like to thank Mr. DeNEr and Mr. LipsHiTz for their interest in our WEIER-
STRASS categories and for their hints with respect to some problems in our proof of the approxi-
mation theoremn,
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Among other things this paper aims at generalizing slightly the notion of
WEIERSTRASS categories of [10] in order to get also a connection to [5] and to
give a complete proof of the approximation theorem. Furthermore we want to
prove ELKIK’s approximation theorem (cf. [6]) for WEIERSTRASS categories. In the
first three chapters we will give a general definition of a WEIERSTRASS category
and its properties. Especially we will characterize smooth morphisms, prove the
implicit function theorem and NEWTON’s lemma. In chapter 4 we will prove
ELxix’s approximation theorem for WEIERSTRASS categories.

To get an idea of a WEIERSTRASS category we will give the definition for the
local case here. Let R be a field or a henselian discrete valuation ring and by Cp
let us denote the category of all NorrnERian HENSELian local rings over B with
the same residue field. A full subcategory Hy of Cy is a WEIERSTRASS category if
it has the following properties:

1) Each morphism in Hy is & WEIERSTRASS-morphism, i.e. if for a morphism
in A~ B in Hy the morphism 4~ B/m B is finite, then 4 B is A-finite.

2) Hy contains free objects, i.e.if A¢Hy and if (T, ..., T,) is a finite se-
quence of indeterminates, there exists the free A-algebra 4 {{T', ..., T,}} in Hy
(this means that for any A-algebra BeHgand ¢y, . .., t,€my there exists exactly
one A-morphism A{{T, ..., T,}}~B in Hy mapping the 7'; onto the ¢,). More-
over, the kernels of the canonical morphisms A{{T,, ..., T, }}-A[Ty, ..., T,l/
(Ty, ..., T, are the ideals (T'y, ..., T, A{Ty, ..., Tp}}-

3) Any AcHp is a quotient of some R{{T'y, ..., T,}}. In [10] we called a

WEIERSTRASS category Hjy excellent iff for all AcHy the morphism Spec A"~
—~8pec A is formally smooth.2) In this paper we will consider a more general situa-
tion. We call Hy semi-excellent iff for all AcH,and T'=(T", ..., T},) the mor-
phism Spee A’[[T]]-Spec A[T] is formally smooth in all pcSpec A[T] being
kernels of a suitable morphism A[7T']-~B’, BeHy,.

The notation of a semi-excellent WEIERSTRASS category is in principle a gene-
ralization of the excellent WEIERSTRASS categories of [10] and the W-systems of
DeneF and LipsHiTz [5]. We do not know if a semi-excellent WEIERSTRASS cate-
gory is already excellent. But it is useful to have this apparently more general
notion because of the following example:

(1) Let k be a quasicompletely valued field (i.e. the completion k of k with res-
pect to the valuation is a separable extension of k) and H, the category of analytic
k-algebras, then H, is semi-excellent (cf. [17]). But we do not know if an analytic
k-algebra is excellent in case of char (k) =p =0. This only seems to be known up to
now if k is already complete. Further examples of excellent WEIERSTRASS cate-
gories are (cf. [10]):

(2) The category Hp of HENSELian rings of finite type over R, E a field or an
excellent discrete valuation ring.

(3) The category Hy of all NorTHERian HENSELian local R-algebras that are

%) We denote the completion of 4 by 4’=lim 4/I”



Kurke/Pfister, Weierstrass categories 251

complete with respect to the mpg-adic topology such that, for all A¢Hy, A/mp 4
is HENsELian of finite type over E/mjc for all c=1, where R is a complete dis-
crete valuation ring of characteristic 0.

(4) Let {R,},.; be a filtered system of fields or a complete discrete valuation
ring such that the corresponding residue field extensions are separably, and R =
:l_ii)n R, be a field or an excellent discrete valuation ring, Hy the category of all

o€l
R-algebras ]_ILn R, [[X,, ..., X,]] and their quotients.
acl
The main result of this paper will be the following theorem (cf. Theorem 6.):

Semi-excellent WEIERSTRASS categories have the property of approximation,
i.e. ARTIN’s approximation theorem holds: Let (4, ) be a local ring from a semi-
excellent WEIERSTRASS category and f=(f;, ..., [, an arbitrary system of
polynomials in some variables Y =(Y, ..., Y) with coefficients in 4 (or, more
general by f;,€¢ A{{Y}}). Then every solution 7 of f in A’ (the completion of 4) can
be well approximated in the m-adic topology by a solution of f in 4 (i.e. for every
positive integer ¢ there exists a solution y of f in 4 such that y =7 mod m°4). We
would like to express our gratitude to Miss BEERENDT and Miss SUBIRGE for typ-
ing the manuscript of this paper.

1. Basic definitions

We denote by € the category of all HENsELian pairs (4, I,) such that

N Iy=o.

v=0
We call a morphism (4, I)~(B, J) in € a WEIERSTRASS morphism if it has the
following property: (W): For any closed ideal K€ B (with respect to the I-adic
topology) such that the morphisme 4 ~ B/K + I B is finite, the morphisme A — B/K
is A-finite.

Remark. In most cases the property (W) implies the stronger property (W’):

For any separated B-module F (with respect to the I-adic topology) of finite type
such that E/IE is of finite type over 4, the module E is of finite type over 4.

Proposition 1. Property (W) implies (W) in the following cases
(1) A’ and B are NOETHERian rings
(2) A is complete with respect to the I-adic topology
More precisely, assume that A’ is NoeTHERian, let (A, I)~ (B, J) be & WEIERSTRASS
morphism in C and let E be a B-module of finite type with annihilator ideal NS B
such that all ideals

BI'+ N/INSB/NCEndy(B) (v=1,2,...)
are closed in the I-adic topology of End ,(E), the following properties are equivalent
(i) E is of finite type over A
(ii) B/IE is of finite type over A



252 Kurke/Pfister, Weierstrass categories

Proof of (2). If py, ..., py€FE and
E=Ap,+.. .+ Apy+1E,

then B=Ap,+.. .+ Apy since 4 is complete. For the latter assertion we infere
from (ii) the property

E’:A’pl-*‘. . .+Ale )

hence End . (£') is of finite type over 4" and by hypothesis B’/NB'C End (')
S End 4. (£"). Therefore B’/N B’ is finite over A’ and B’/NB’+IB’=B’/N + 1B’ is
finite over 4, hence B/N is finite over 4 by (W) and since E is of finite type over
B/N, it is also of finite type over A.

Statement (1) is a special case of the latter assertion. Now we consider a sub-
category H of C, and we define the notion of a free pair with respect to H in the
obvious way as follows: 1f (4, I), (B, J)are pairsin Hand I'=(T"y, ..., T,)is a
finite sequence of elements of J, we call (B, J) free over (A4, I) with generators
Ty ..., 7T,if for any morphism (4, I)~(C, K) in H and any sequence (¢,,. .., t,),
t;€ K, there exists exactly one 4-morphism

[:(B,J)~(C, K} suchthat fT,)=t,.

Obviously, (B, J) is uniquely determined by this property and we will denote it by
4, I) {Ty ..., T3}=(A4{Ty, ..., T,}}, T{Ty, ..., T,}}) or simply by
A{T,, ..., T} if there is no confusion about the ideal J.

Now the essential notion of our paper is the following notion of &, WEIERSTRASS
category.

Definition. A4 full subcategory H of C is called a WEIERSTRASS category, W-cate-

gory for short, if it satisfies the following axioms

(W 0) For each morphism (A, I)—(B, J) in H the rings B/I’ B are NOETHERan and
A/l B[J is surjective

(W 1) Each morphisme in H is o WEIERSTRASS morphism

(W 2) X is closed with respect to finite morphisms in C, t.e.if (4, I\c¢H and if
(A, I)~ (B, J) is a finite morphism in C and if A/I—~ BlJ is surjective, then
(B, J) belongs to H

(W 3) H contains free objects. If (A, I)eH and if (T4, . .., T,) i a finite sequence of
indeterminates, there exists the free pair (A, I) {{T Brv e s Tn}} in H, which
moreover satisfies the property: The kernels of the canonical morphisms
A{T, ... T ATy, ..., TNy, ..., 1)
(which contain (Ty, ..., T,)) arctheideals (T4, ..., T,VA{Ty, ..., Ty}

Furthermore we define a semi-cxcellent W-category H as a W-category, where all of its
objects are noetherian local rings (A, I) such that for any set of indeterminates T =
=(Ty, ..., T,) the morphism Spec A’[[T]]—~Spec A[T] is formally smooth in all
p € Spec A[T] being kernels of a suitable morphism A{T]—~B’, BeH.



Kurke/Pfister, Weierstrass categories 253

2. Smooth morphisms in Weierstrass categories

In the following H denotes a fixed W-category. We first determine the struc-
ture of formally smooth morphisms in H. Recall that a morphism (4, I})-~(B, J) is
called formally smooth if for any local ArTiNian ring (R, m) and any (small)
extension (R, m)—(R, m) of ARTIN-rings it holds that: If

(4,I) — (R, m)

| 7]

(B,J) = (R, )

is a commutative diagram of morphisms (without the dotted arrow), the mor-
phism p can be lifted to an (4, I)-morphism u: (B, J)-~(R, m).

We want to describe the structure of formally smooth morphisms in H. To do
this we first somewhat generalize the construction of free objects. Let (4, ) be a
pair in H and let £ be a projective 4-module of finite presentation

E=AT +.. . +AT 2 (TYA+.. +2(T) 4

(&, . - ., 4 linear forms in T'). By (4, 1) {{E}} =(4{{E}}, I{{E}}) we denote the
followmg pair:

A{EY = A{TH /AT +. .+ 4A[{TY

I{{E}} =IA{E} + T A{{B}} +. . .+ T, A[{E}}.
We want to show that (4, I) {{£}} ¢H. Clearly I{{T}}=IA{{T}}+ T A{{T}} +
+...+T,A{{T}} by axiom (W 3) (observe ICI{{T}}, T ¢I{{T}} and A{{T}}/
[T{T}}~A/I is surjective by axiom (W 0)). Furthermore (4{{E}}, I{{E}}) is
HensELian and therefore it remains to show that B=A{{E}} is separated in the
J =I{{E}}-adic topology. To prove this we embed (A {E}}, I{£}}) into (4{{T}},
I{{T}})- As E is projective, there exists a projection operator

n: AT ®».. AT, ~AT&.. .0 AT,
with the kernel AA(T)+. ..+ AA{T). The operator = can be lifted to an (4, I)-
morphism

A{TY ~A{(TY), #T)=n(T,) .

If B’—n(A{ 1), J'=#&(I{{T}}), then the pair (B’, J*)S(A{{T}}, then I{T}}) is
in H (by (W 2)) If U=(Uy, ..., U,) are indeterminates, we define a (B, J’)-
morphism by

p: B{UN~A{T}}, p(U,)=T
If {(T)c A{T}} and #(f(T'))=0, the corresponding element f(U)¢e B’{{U}} is con-
tained in the kernel of the morphism B’ {{U}}~B’, U, n(T,), hence we can write
(by (W 3))

H(U)=2](U,~n(T,) g,(U)

p =1
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(9.(U)e B’{{U}}) and we obtain (applying the morphism p)
n
)=,§ (7, —a(T,)) g(T) .

Therefore
n

Ker(#)= Y (T,—n(T.))A{{T}}

p=

-
-

fl

2(T) A{TY}

Q

i

e=1

and

(B, JYy=(B’, J)eH.
Now we can describe the structure of formally smooth morphisms.

Theorem 1. For any pair (A, I)¢H we have

(1) If E is a projective A-module of finite type, the morphism (A, I)~(A4, D{{E}} is
formally smooth.

(2) If (4, I)~(B, J) is a formally smooth morphism in H and if A is HENSELian
with respect to the ideal I,=J N A4, the pair (4, I1,) is contained in H and there
exists a projective E-module of finite type such that (B, J)=(4, I1){{E}}.

To prove the first part of the theorem we can replace everything by the I-adic
and I {£}}-adic completion respectively. But the algebra, respectively

A{EY} = A TAA T +. . .+4 AT

is obviously formally smooth over 4”.

Proof of assertion (2). We replace (4, I) by (4, I,) (contained in H by axiom
(W 2)), hence we can assume: A/I=B/J.

Step 1. The module £ =J/J2+ 1B is projective and of finite type over A =A/I.
Obviously E is an A-module of finite type since B= B/IB is Noetherian. We have
to show that for any epimorphism M —~N of A-modules of finite type any homo-
morphisme 7 : E—~N can be lifted to a homorphism p : £—~M. Let m be any maxi-
mal ideal of A and assume that m’ 4 =m’N =0 for suitable ». Consider the epi-
morphism of local ArTiNian algebras R=A/M'OM +RB=A/mdN (M2=N2=0)
and the homomorphisms of rings s: B—~A, s(b)=b mod JB (observe B/JB=A4)
and : B~ R, 1(b) = (s(b) mod m’, p ((b—s(b)) mod J2B)). As B is formally smooth
over 4, we can lift i to an homomorphism ¢ : B~ R and ¢ induces a lifting p : £~ M
of the homomorphism p. This implies that for any maximal ideal m of 4 the m-adic
completion of E is projective over the m-adic completion of 4, by faithfully flat
descent we infere therefore that E is projective.

Step II. Construction of a surjection (A, I) {{E}}—( Since (4, I) is
Hexsevian, we can lift idempotent elements in any finite A-algebra. & from E/IE
to &. Now E is a direct summand of a free A module A¥ and we can lift the cor-
responding projection operator in End(4”)/I End(4%) to End (4%). Hence £
can be lifted (uniquely up to an isomorphism) to a projective A-module & of finite
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type. Since E=J/J2+IB, we can lift the isomorphism E/IE=FE to an A-linear
homomorphism s : E—~J and s inducesa morphism (4, I) {{#}} (B, J), also denot-
ed by s, which is obviously surjective (by axiom (W 1)).

Step II1. The morphism s is injective. It is sufficient to show: for any ideal @ in
A such that 4/Q is local Arrinian the induced homomorphism

§: A{{E}}/QA{{E}}~ B/QB
is injective (since the intersection of all these ideals @ is 0 by axiom (W 0)). Hence
we can assume that A is local ArTinian. Since B is formally smooth over 4, we
can construct step by step a homomorphism ¢ : B~ A{{E}} such that the diagram

B —» A[[E]]
SN
AYE})
(with the canonical embedding 4{{E}}c A[[E]]) is commutative, therefore s is
injective, and the proof of the theorem is finished.
We want to mention the following consequence.
Corollary 1. If (4, I}~ (B, J) is a formally smooth morphism in Hand A/I= B/J,
the module Hom 4 (E, I) acts transitively and free on the set of sections Hom, 1,((B, J),
(4, 1)), and this set is not empty.
In the next section we derive the characterization of formal smoothness by the
Jacosian criterion. For this reason we have to introduce the following facts:
(1) For any morphism (A, I~ (B, J) in H the pair (B, J) can be written up to is0-
morphy in the form
n
B=A{{T}}/K, J=IB+}]T,B.
v=1
We have to choose representatives f;, ... ,t, of generators of the A-module
T/J2+1IB. Then we put T=(Ty,...,T,) and define A{{T}}~B by T,~t,,
K=ker (A{{T}} - B). By axiom (W 1) we infere B=A{{T}}/K and J is generated
by the image of the ideal I and the elements #,.

(2) If B is any A{{T}}-module separated with respect to the I-adic topology, the
module of derivations is

Der,(A{{T}}, E)=Hom (éiA{{T}} dT,,E) ,

induced by a universal derivation

a: AT~ & AT} at,
o= % ar,.

Proof. The pair B=A{T}} +A{[{T}} e, J=I{{T}} +cA{{T}} defined by £2=0
belongs to H by axiom (W 2). The 4{{T}}-module

O={p | pcHomy 1 ((A{{T}}, I{{T}}, (B, J)) ¢ mod e=id 47y}
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is isomorphic to the module Der,(4{{T}}, A{{T}}) by associating the morphism
@ fr>f+ed(f) to a derivation 9. Especially to any 7', we can associate the mor-
phism T;—>T; (i%v), T,~T,+¢, the corresponding derivation is denoted by

a n
o If D: A{T}} ~E is any derivation, we consider Dy(f)=D(f)— 3] E;Z D(T,).
» v=1 v

From the axiom (W 3) we infer that A{{T'}}/(T") A{{T}} is isomorphic to A[T]/
(T'Y A[T1], hence Dy(f)€ (TYE for any integer », and as ¥ is separated, we get D=0,
1%

T

v

n
D= ;17 n(r,) . q-ed.

3. Quasiprojective schemes over WEIERsTRASS categories

We want to study systems of equations of the type F(7', U)=0, where T =
=(Ty,...,T,); U=(Uy, ..., Uy)and F(T, U)e A{{T}}[UT". In other words, in a
slightly more general formulation we study schemas of the type

X Spec (B)—~Spec(4) ,

where (4, I)~(B,J) is a morphism in H and Spec (B)-Spec (4) is induced by
this morphism, and where X —Spec (B) is a quasiprojective schema of finite pre-
sentation over B, i.e. X is a subschema of some projective scheme P(X), where E is
a B-module of finite presentation and where X is locally closed in P(E) and locally
defined in P(E) over B by a finite number of equations.

If E is generated by say p elements, we can find a closed embedding P(E)c
cP? X Spec(B) of finite presentation, hence we can assume that X c P? X Spec (B).
Moreover, if B=A{{T'}}/K, we can assume X < P? X Spec 4{{T'}} to be locally clos-
ed and locally defined by K and by finite many polynomial equations with coeffi-
cients in 4{{T'}}.

We prove the JAcoBIan criterion for this mixed situation, then we prove the
existence of sections of X over 4 (theorem on implicit functions) and its generali-
zation (the analogue of NEWTONs Lemma). By p we denote the projection

p: X —~Spec (4).

If € X is a point such that p(x)e V(I), we call p formally smooth at x (or X for-
mally smooth over 4 in the point ) if the morphism of pairs (4, I) > (O 4, My,)
(which is not in H) is formally smooth.

Theorem 2. Assume that (A, IeH, T=(T,...,T,), and XS P=A"x
Spec A{{T'}} is a locally closed subschema, p: X —~Spec (4) the corresponding mor-
phism. Let Uy, ..., U, be affine coordinates in A™. If x€ X, p(x)€ V(I), then the
schema X is formally smooth over A in x if and only if the following condition is satis-
fied:
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(J) There exist functions fy, . . ., € A{{T}} (U] which generate the Icemel of the

homomorphism Op ,—~O% , and such that the JAcOBlan matrix ( f‘ (x) U (x))
h

has the rank k. (If f€ Op ,, we denote by f(z) the residual class of f i 1n Opmp ;).

Proof. 1.) Assume the condition (J) to be satisfied and assume that R,
R=R[tR are local ArrTiNian A-algebras such that mgt=0, and p: Ox,—~R is a
morphism of local rings. We can lift the composition Op,—~Of, % R to a mor-
phism »: Op ,~ R (by lifting the images of T';, U;). If the function f on P is in the
kernel of Op,—9x,, the image »(f) has the form »(f)=ta(f), where a(f)ck=R/m
(since ¢ is annihilated by mg). For any choice of elements a,, ..., a,, by, ..., b,
the map
f

vih=rp+t Yo f(w)+t2b,,w-
h

:l=1

i o ()

is a morphism of A-algebras Op, — R. If condition (J) is satisfied, we can choose
Ay, ...,0, by, ..., b, in such a way that

vif=...=v(fi)=

Since ker (»') contains some power of mp, it thus contains also the kernel of
Op Oy, and induces a lifting u: Oy ,~ R of .

2) Assume that X is formally smooth over 4 in . We will show that condition
(J) is satisfied. Define

C=08p,, B=0%, K=Ker(9p,~%,),

then C/KC = B and because of formal smoothness the canonical A-morphism
B-~C/KC +m;,

can be lifted to an 4-morphism
n: B-~C

If 7 : C—~ Bis the canonical morphism, the composition zo# : B— B coincides with
idy mod m%, hence moy is an isomorphism of B and e=#5o (won)~1is a section
of 7.

Any derivation A{{T}}[U]~F over A with values in an I-adic separated
C-module E extends in a unique way to a derivation C—E, thus we have
derivations

7 0
-1 0-0, —:0-C.
oT; oU,
If #: A{{T}} [U)]~KC/K2C=: K is defined by ¢(f) =f—eon(f) mod K20, it is a
derivation and we can extend it to C' and get
5 of o of
Hf)= = (T;—t; — -
(f) j.—_Z; 3T] ( 7 ])+h§ 8U,, (Uh uh)
17 Math, Nachr. Bd. 109
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where ¢;=eon(T)), w;=eon(U,). Then & induces a B-linear map

v:0Q = €B BdT;® @ BdU,~K

i=1 =1
v(dT))=(T;—t;) mod K2C, v(dU,)=(U,—u,) mod K2C .
The derivation 4 {{T}} [U]l-2,

v 37 (ap) o 27 (o) 40

ji=1 h=1

induces a B-linear map
w: K-~Q

0 ¢
because of » ( (K2 )) 0, x ( (K")):O . For f¢ KC if holds that
oT; oU,

20 = INep —oye v (2
vow (f mod K~C)—L§ 7 (aT,-) (T t;’)+h§ 7 (aUh) (Uh_uh)]
:ﬁ(f):f——&on(f) mod .K20
=fmod K2C .

Therefore vow=1idg, K is a direct summand of Q, hence a free B-module. If the
functions fi, . . ., f€ A{{T'}} [U] represent a free base of K, the matrix corres-
o of;
oT;’ oU,
We consider the following question : Given a morphism (4, )~ (B, J) in H and
a quasiprojective B-schema X - Spec (B). Assume that a commutative diagram of
morphisms
(1) X —— Spec(B)

| |

Spec (4/I)c Spec (4)

ponding to w is ( ) (evaluated at ), hence condition (J) is satisfied.

is given.
We want to extend g, to a section of X over Spec (4). To reduce this question to
a slightly simpler situation we first prove the following:

Lemma 1. Assume that it set-theoretical holds in (1) that poey (V(I))S V(). If we
denote the kernel of the homomorphism (poeyy*: B—~A/I by J,, the pair (B, J,) be-
longs to H (and IBSJ,). Moreover there exists in embedding X SP™ X Spec (B) and
a section 1) : Spec (B)—~P™ X Spec (B) which coincides on Spec (B/J,) with the mor-
phism ¢g.

Proof. By the assumption V(J)2V(J)=poe(V(I))=V(I) and by axiom
(W 0) the morphism (4, I)-—(B, J)} induces a closed embedding V{J)S V(I).
Therefore V(J,)=V{(J), hence (B, J,) is HENsELian and the inclusion J1SJ NJ,
holds for some r>0, moreover, since by the axiom (W 0) the ring B/IB is



Kurke/Pfister, Weierstrass categories 259

NoEersERian, the ideals J, J, and J (NJ; are finitely generated modulo I.B. If the
elements ty, . . ., t,€JNJ, represent a base of J NJ /LB, we can define an A-mor-
phism A{T,, ..., T}}~B, T;~>i. By axiom (W 1) this morphism is finite,
hence we infer that (B, J;) belongs to H (by axiom (W 2)). Now we construct the
schema Y as follows: The morphism ¢, also induces a morphism 7 : Spec (B/J)—~X
and we can assume that XS P”X Spec (B). The morphism is given as a point of
P™ x Spec (B) by an epimorphism (B/J)"* ! - L onto an invertible (B/J,)-module
L, and since (B, .J,) is HENSELian, we can lift L to an invertible B-module L and
the epimorphism to an epimorphism of B-modules, B™"* -~ L. Therefore 7, can be
lifted to a B-morphism 7 : Spec (B)-~P™X Spec (B) g.e.d.

Lemma 2. Let S be an affine schema and X SP™X S a projective S-schema defin-
ed by forms F (T, ..., T,)=0 with coefficients from I'(S). If n: 8-~ X is a sec-
tion corresponding fo an invertible sheaf L on S and m+ 1, sections vy, . . . , 7, gen-
erating L, let US 8 X AN (N = (m 4 1)2) be the schema defined by the equations

m n
F, <170+27 Yomp - 9;m+2 ijnj)@)L d“:O (d,=deg F,)
i=0 i=0

and by the inequality det (6;+ Y ;)+0. Then flz)=(x, 0,...,0)eU defines a
section of U over S and
m m
e(a, %’j):(x’ %o +_207 Yol + - - - 3’7m+2 ?/mj"?j)
j= j=

defines an 8-morphism U X such that € o §=1. Moreover ¢is a locally trivial fibra-
tion with the fibre

Glm) X A" X G, .

Proof. Let S, be the open set where L is generated by 7, by a lineare change
of coordinates on P™x S, and A¥xS8, we can assume that (g, ...,7,)=
=(ng, 0,. .., 0) on S,. Then U is defined by

F A1+ Yo o, Yianor -« - s Yougio) =0
and ¢ by
E(x, ?/TJ): (.’L‘, 1+y(,0 Yo e e e 8 ymo) -

Hence ¢ is a locally trivial fibration with the fibre GL(m) X A™ X G,, (stabilizer of a
point of P™ under the action of GL (m+ 1)).
For later use we note the following

Lemma 3. If @ : E—~ A" is a homomorphism of A-modules, where E is projective

of rank k and if x€ A such that
z det (B*)<S image of A*®*

(@*: A" E* the dual map to D), there exists 4 homomorphism y : A"—~E such that
y (o] @ = idE .

Note that the condition about x can also be written as z¢image of (det (B)®
® A’”’A”*—»A) induced by @*. In the case of k=>mn, the element z must be 0, hence
17+
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we can put y =0. Assumed k =n, the condition about z implies
2E*S image of @*,

If p: A"—~E* is an epimorphism, we define a homomorphism g: A™—~(A™)* by
Ble;)=v;€(A™* such that v; are elements with the property @*(v,)=2xp(e;). Since
E* is projective, p has a section r : E* ~ A4, and we define y*=for. Then ®* op* =
=z idzs holds and for the dual map we have

yo@=xidg. q.ed.

Theorem 2’. (theorem on implicit functions). Assume that in the diagram (1)
it holds that
(a) posg VIS V()

(b) X is formally smooth over A in all poinis &y(x) (x€ Spec (A(I)).
Then ey can be extended to a section of X —~Spec (4).

By lemma 1 we can replace (B, J) by (B, J,), hence we can assume pge, : Spec
(A/I) = Spec (B/J). Furthermore there exists an embedding X & P™ X Spec (B), an
invertible B-module L and m + 1 sections %, . . . , 7, of L generating L, such that
the corresponding point #: Spec (B)-~P™X Spec (B) coincides on Spec (B/J)
with the given morphism g, Let the projective closure of X in P™X Spec (B) he
defined by the family of forms

F U, ..., U)eBIU, ..., U,

and consider indeterminates Y, i, j=0, ..., m and in the algebra B{{Y o, Yo,

e v+ Yot = B{{Y}} the I-adic closure K of the ideal generated by the functions
corresponding to

F, ('r;0+.20’ Yoo -s 97,,,+j2(;)’ ij’?j)®L® *dagB{{Y}}, (d,=deg F,).
j= =

From lemma 2 we infere that the algebra C= B{{Y}}/K is formally smooth over
(4, I), hence by Corollary 1 the homomorphism C -+ A4/I given by (pogy)*: B~ A/[I,
and Y,;—0 extends to a homomorphism C—+4, say by Yy, ¢: B~4.
Then, by

we get a section of X over Spec (4).
Our next aim is to formulate and to prove the so-called NEwToN lemma.
o=(pq - ...9), ¢ €A{{T}} [U] and an A-morphisme A{{T'}} (U]~ A4, T;—
=, i=1, ..., 0, Uj>u, j=1, ..., mis given in the case of £ =n 4 m, we define
the following ideal in 4:
C(gp, t, u)=the ideal generated by the (kX k)-minors of (8¢,/0T(t, u),
Op;/0U (¢, u)) and by @q(t, u), . . ., glb, u) .

If Z< Spec (A{{T'}} [U]) is the set of zeros of @, the locus V(C(g, £, u)) consist of all
points of Spec (A4), over which Z is not a smooth complete intersection of codimen-
sion & in Spec (4{{T'}} [U]).



Kurke/Pfister, Weierstrass categories 261

Theorem 3. (NEwTON’s lemma, preliminary version). Assume that @=
=(@p ... 00), AT U], T=(Ty, ..., T,), U=(Uy,..., Uy), and let Hand I
be ideals in A such that I, I and A/, is I-adic separated. 1f the system of equations

T, U)=
has a solution (10, u%), t7€ 1, uj € A modulo H2I, such that the ideal in A, generated by
the (kX k)-minors of (2@ /0T;(t°, u®), o@,/oU,(t0, uv)) contains the ideal H, then it has
a solution (¢, u) in A such that t=t° mod I\H, u=u% mod I,H.

We can again consider a slightly more general situation: Given a morphism
(4, )~(B, J) in H, assume p: X—~Spec (B) to be a quasiprojective morphism
and X - Spec (4) to be formally smooth. Consider a locally free Og-module & of
finite rank and a homomorphism ¢ : -0y, then ¢ defines a closed subschema Z
of X by 9,=-coker (p). By 2%, we denote the universal I-adic separated differ-
ential module and by d: Ox—~0QY%,, the universal derivation (for derivations over
A with values in [-adic separated quasicoherent Oy-modules).

The universal I-adic separated derivation d: Oy 0%, , exists and can be de-
scribed as follows: If X =Spec (A{{T}} [U)/(Fy, ..., Fy,)), then Q% corre-
sponds to the module

® OydT;d & OxdU,/@AF,, ..., dF,),
i=1 k=1

where
tOF, m OF,
IF,= )] aT;+ Vo dU,
( Zl ) Izhll aU/L g
and

n
of
df= )] ar; E,’ — dU,.
If i=1 aT + ’\Uh( h

The derivation & induces an Oz-lmear map

800,054 ®9;
(by e® 1> dgp(e)® 1), and therefore an O,-linear map

det (8® O, QHB(8)® O,
(where Q},, is defined as A'QY,,). If s,: Spec (4)—~X is a section and if N is the
ideal in 4 such that Spec (4/N)=s, !(Z), we restrict this map to Spec (4/N). It’s
dual defines a homomorphism

Hom (s{(Q259)20,), st(det(8)®9;))~A/IN .
Then we define the ideal C(g, s0)& 4 by C(¢. 8;)/N =image of this homomorphism.
In the special case X = Spec (4{{T'}} [U]), 8=A{{T}} [UT and p=(gy, . .., @) it
coineides with the ideal defined above. We can define C(gp, sy) in an alternative way
as follows: Consider the sheaf 4 as an Oy-module via the section sy and the map
induced by ¢

Dery(Oy, A)—~Hom, (8, AINA)

D+>Dogpmod NA .
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If rk(8)=r, AC(p, s,) is generated by N and the elements det(D(g(e;)), where
(Dy, ..., D,)runs through the set Der,(Oy, A)" and (ey, . . ., ¢,) trough the (local)
sections of &,
i.e. Clp, sy}/N =image of

A Der 4(Oy, A)Q(A Hom, (&, A/NA))~1-A/N .

Theorem 3’ (NEwtox’s Lemma). Let (A, I)~(B, J) be a morphism in H,
X % Spec (B) a quasiprojective schema over B and sy: Spec (4)—~X a section.
Assume X tobe formally smooth over A in the points of sy (Spec(A))and posy( V())&

CV(J). Let 8 L Oy be a morphism of a vector bundle of finite rank over X, Z< X the
schema of zeros of ¢, and H and I, I ideals of A such that (A/I;, 1/1;)cH.

If
(a) so(Spec (A/H2,))SZ
(b) Clp, 80)2H ,

there exists a section s : Spec (A)—~Z, such that
s=s8, on Spec(A/HI,).

Prooi. Step I. Reduction to the affine case. By lemma 1 we can assume that
A/l=B/J. If K denotes the kernel of (posy)*: B— A, the pair (B, K) is HENSEL-
ian (since KSJ). Hence we can assume that X CP% and there exists a section
1 : Spec (B)—-Pggiven by (L, 4y, - . . , ,) (I an invertible module over B gener-
ated by #q. . . . , #,,) which coincides on (pos,) (Spec (4)) with the given section sq.
We consider again the equations F (U, ..., [ ,)=0 defining the projective
closure of X in P™X Spec (B), the algebra B{{Y}}. ¥ =(1), ij=0,..., m, the
I-adic closure K of the ideal generated by the functions corresponding to

m m
. -d,
F, (770+.2 Yoo oo 77m+_2 ij7/j)®L [ € B{{Y}}

i=0 F=0

(d,=deg F,) and the algebra C'=B{{Y}}/K. By

a B-morphisme &: Spec (C)~X is defined, and by Y;—0 and pos, we get a
section £y of Spec (C) - Spec (A). By lemma 2 we see that (C, J{{Y}}/K) is for-
mally smooth over A.

We consider the homomorphism of sheaves e*& &9, O¢ ., and we shall

proof that C(e*(g), £y)=C(g, s). Since ¢! Z is the schema of zeros of e¥(¢), the
assumptions (a), (b) arve satisfied for Spec (C), ¢*(¢) and ¢, then. If we prove the
existence of a section £ : Spec (A)—¢&~1(Z) satisfying t=¢, on Spec (4/HI,), the
section s=¢cot: Spec (4)—~Z has the required property. Hence we have to prove
Cle*(p), to) = C(g, 89) and then the theorem in the special case where X = Spec (C).

Proof of C(e*(g), to)=Cl(p, s,): Since &;'e~1Z=s;'Z, these subschemas of
Spec (A4) are defined by the same ideal N. Furthermore we have a canonical
restriction map Der,(C, 4)~Der (Oy. A). By lemma 2 this map is surjective,
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therefore

C(e*(p), 1) =Clg. s0) -
Hence we have reduced the proof to the case X =Spec (A{{F}}), F a projective
A-module of finite type and such that s, corresponds to A{{F}}~4, F—~0 (by
Theorem 1 and Corollary 1).

Step I1. Reduction of the case X =Spec (4{{F}}), HY,;+FA {{F}} 2Image
of (B % A{{F})) (where E *~ A{{F}} is the homomorphism of 4{{F}}-modules cor-
responding to 8~0y) to A{{F}}=A{T,. ..., T,}}. We can reduce the proof to
the case where F is free, i.e. X = Spec A{{Ti, ., Tn}}, as follows: The module ¥
can be written as B =E,® 4A{{F}}, where E, is the projective 4-module obtained
from E by reduction mod FA{{F}}. An isomorphism By® 4A{{F}}—~E is obtained
by lifting the. idendity of £, toan A-linear map j: E,—~X (observe that K, is pro-
jective) and by x®f—fj(x) (x€ By, f¢ A{{F}}). This map is reduced to the identity
mod FA{{F}} and since FA{{F}} is contained in the JacoBsoN radical of A{{F}}
and F is of finite type, it is surjective (by Naxavama’s lemma) and therefore bi-
jective (since E is projective). Therefore ¢ : E—~A{{F}} is determined by an
A-linear map vy : Bo—~H?I, + FA{{F}}. There exists a projective A-module ¥’ such
that F@QF' =AT®...® AT, is free. We can lift y to an 4-linear map ' : B~

~HY, + Y] T, A{T}} and extend it by the embedding i : F'—~A4{{T"}} to an A-li-
p=1
near map

r ’ O ’ ¢ "
'(/) 2(1(;' ?:) M E()@F ’*H'Zli‘i’"z T,A{{T}} .
=1
Any A-derivation D : A{{F}} + A4 can be extended to an A-derivation D : A{{T}} ~

—~A4, hence C(p, 0)=C(yp", 0).
Step 111. Proof in the case of

X =Spec A{Ty. ..., T}
¢ By—H, -+ 21 T,4({T}}

(o a projective A-module). We have to determine elements £,¢ HI,; S I such that
under the map A{{7"}} -4, T, t, the homomorphism ¢ is mapped to 0. For any
map ¢ : By~ A{{T}} and t,€I let us denote by ¢(t, . .. ,t,): E;—~A the composi-
tion of ¢ with the 4-homomorphism A{{T'}}~A, T,~t,. We can write

r n (2
(1) Q= 2 XL.XJQ/IL:,‘FV;Y Tv(pv"*” 27 T‘,T”(p,,‘u

=1 =1

pi Bo—1y ¢t By~ A
@yt By~ A{{T}}, where z, . . ., x, are suitable elements of H. (This is possible

n ”n n
since Im(g)S H2, + )] T, A{{T} =H2I+ )] T,A+ T,T“A{{T}}). Then we
r=1 v=1 i

vyp =
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try to find elements £, in the form

(2) tr = t}'(u) =j2 xg’u’vq
=1
with elements u,, € I; S I. The ideal C(gp, 0) is the ideal generated by the image N of

2 XX
3j =
and the elements

Bry 1) « - . 9y, (003) |
i=(¢p,1/\.../\¢p,k, wiA. . Awy)

Pu (1) « . @y (W) |

if k=1k(E,), where (wy, ..., w;) runs through the set E¥. Let 4 denote the ideal
generated by the elements (p, A...Ag,, wiA.. . Awy), we want to show A=
=C(g, 0). By assumption (a) we have that NS H2I[; and by (b) that N+ A2H,
hence NS(N+A) HI,.

Therefore the idendity N+ A=NHI,+ A4 holds. Since N is of finite type, we
infere from this idendity (by Naravama’s lemma) that C(p, 0)=4+ N =A. Since
the elements x;¢ HS C(p, 0)=4 are in 4, we can find for each index j an 4-linear
map

y;: AT®.. . ®AT,~E,
such that

(3) Y50 ( g Tv‘pv)‘_“xj idg,

(by lemma 3). Substituting (2) into (1) we get

p(t(w)) = Zx ww+2 Ewuww 2 Emunum% tu)) .

%=1 vu=1 ij=

Using (3) we can write this as

(p(t(u))zz xi Zz [2 Wzyyj(Tn)'*'um"*'E 2 uviuu:i(pup(t(u)) y](Tx)] P
i=1 x=i}3 v g

Hence it is sufficient to determine the elements %,; such that the terms in the
square brackets vanish, i.e. we have to consider equations of the type

(4) ani+ Um}+2 Uw;U 'hnjvy(U)=0
v, 18,7
®x=1,...,n, it=1,...,7r

am‘elb n}vu(U EA{{U}}

The JAcoBIan matrix of this system in U =0 is the unit matrix, and for U=0the

equations vanish modulo I, hence by theorem 2 they can be solved by elements

u,;€1. Since a,;¢1,, we infere from (4) that w61+ (3] Au,;)? and since 1, is
)

I-adic closed, hence also closed with respect to the ( 3 Au,;)-adic topology, this
%]
implies u,,€1; g.e.d.
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4. Generalization of Eikix’s theorem

In this section we consider a W-category where all pairs (4, I) are NOETHERian.
We consider A{{T}} T=(T}. ..., T,)and an algebraic schema P - Spec 4 {{7T}}
which is smooth over A{T'}}.
For any closed subschema X — P defined by a sheaf of ideals K O, we define
the following sheaf of ideals (X, P)=8: For Uc P open and affine, 8(U)= )]
7

[I(f): K(U)] A(f)+ K(U), where f runs through the set of all tuples (fy, ..., f,)€

€KUY, p=1, 2, ..., I(f)denotes the ideal 2 O,( u)f, and A(f) the ideal in ©,(U),
image of the map A% DerA(Op(U U))—~ @ = A 9,(U)? which is induced by
the map

DerA(ep(U)! ap( U)) - ®p( Uy
= (ﬁ(fi)v v ’ﬂ(fp)) .

Note the following properties of &:

(A) If € X, then §,=0,, if and only if K, = I(f) for a suitable p-tuple f¢ K
satisfying A(f) =0, ,.

(B) If K, is generated by a regular sequence f=(fy, ..., f,) in O,,, the ideals
&, and A(f)+ K,C &, have the same set of zeros in O, ,.

Now the formulation of ELKIN’s theorem is

Theorem 5. If (A, I)e H, there exists a function d : N3N, d(a, r, ¢)>max(r, ¢},
with the following property. Assume P=P"XS8pec A{{T}} and X< P to be a
(quasi)projective subschema and ®c O, a quasicoherent sheaf of ideals, such that for a
suitable integer o X°O,< 8(X, P) holds. Then, for any A-morphism
o Spec (4/1%-X, d=d(a,r, c)

such that (if V(%) denotes the closed subschema defined by the ideal %)
8 (Spec (A/I")2V(X)NX ,

there exists a section s : Spec (A)— X such that s=s, on Spec (4/;c).

By lemma 1 and lemma 2 the proof is easily reduced to the case X — Spec
(A{{T}})= P (the ideal % has to be replaced by its inverse image in lemma 2). In
this case, if T=(Ty, ..., T,), to give an A-morphism s,: Spec (4/I%)—~X is the
same as to give an n-tuple (0= (¢, . . ., £3)€ I®" such that F(£9)=0 mod I%, where
F=F(T) denotes a tuple of functions from A{{7"}} which generates the ideal of
X. If Hc A{{T}} denotes the given ideal, the condition s, (Spec (4/I"))S X N V(%)
means in this case that I"C H(%) (since d>r).

In the following we consider the pair (4, I), a g-tuple Fc A{{T}}¢, T =(T,

., T,) and the ideal E corresponding to the embedding X = V(F)c P=Spec
A{{T}} as defined above.

Lemma 4. Assumed there are given tcI®" xecI, and an ideal, N S A, and the
following conditions are satisfied
(iy F(t)=0 mod z°N for an integer $=0
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(i) 2"€ E(t) for an integer r=0
(iiiy s=rand 0: 2" "=0:a°""",

In this case there exists an y€ (x*"N)®" satisfying F (t+y)=0 mod 2**~"N.

Remarks. 1) The assertion is of course trivial if 2 (s—7) =s, i.e. if s =27, since
we can take y=0 in this case. However, if s =2r+1, the vector {4y provides a
better approximation of a solution of the equations =0 then the vector ¢.

2) If z¢ I is not nilpotent, we can always find an integer k& such that 0 : 2* =
=0:2*'=.., Hence if in the lemma s=max (2r+1, r+%), we can find a se-
quence t=¢0, D ¢, . of vectors satisfying "TV=¢® mod &’ TN

F(®) =0 mod **'N
(observe that the condition 2 ¢ E(t®) and f** V=t mod 2" "+ !N, F(t(®** ) =0 mod,
2’ **TIN implies 2" € E(#@TY)).

oF
Proofofthelemma: If 3(F, ) denotes the matrix with the rows - (¢), we can

write F (t+y)=F()+y3(F,t) mod )_7 vy A for any y=(y,, . . ., yn)e}e”. Hence
we have to determine y¢ (2*~"N)®* :‘11 such a way that

(1) y3(F, ty= — F(t) mod 2*¢ 7N .

Tt is sufficient to solve the congruence

(2) 2F, )= —2'F(t) mod 2N, zc(2*N)®*,

If 2 is a solution of the congruence (2), we can write
2=y, ye (@ TN)®", and o[y (F, )+ F(t)]=2"(a* ")
for a suitable vector v N®", i.e.
yI(F, )+ F(t)—2* "v=0 mod *~"AN(0: ") .
But from condition (iii) we infer
LTTAN0: ST TTAN(0: 2 7T)=0
hence y3(F, t)= — F(t) mod 2™ 'N. _
We consider now the congruence (2). If 2" =z, + 4, and if the vectors z,€ (2°N)
are solutions of the congruences z,3(F, t)= —x;F(t) mod N, i=1, 2, the vector

z=2,+2, is a solution from (2). Now, since z"¢ E(¢), it is a finite sum of an element

2, €I(F) $)S2'N and of elements () h(t), where 6 is determined by a p-tuple

feI(F)®" ag 6 =det ( f e ——f—) , and where b is an element of I{f): I{F).

ey, 3Tip

For z; we can take z; =0 to golve the congruence z (¥, t)= —z,F(t) mod 2”°N.
On the other hand consider elements &(t) h(¢), assume for example that

¢ 0
d=det ( a4 e ! ) There exists a (pX g)-matrix v over A{{T'}} such that
o, or,

(3) hE =y

&n
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and a (pXn)-matrix I over A such that
(4) Ia(f, ty=6(t) I, (I,(pXp)-unite matrix)
(since d(t) is a (pX p)-minor of §(f, ¢)). From (3) we infer (since F(s)=0 mod 2’N)
Ry 3F, y=3(f. t) p(t) mod 2°N ,
hence by (4)
h(t) I'S(F, t)=4(t) p(t) mod °N
and by (3)
(&) f(t) I7) 3(F, t)y=0(¢) h(t) F(t) mod 2N .
Therefore the vector z=~h(t) f(t) I'¢ (2°N)®" solves the congruence
2(F, ) =6(t) h(t) F(t) mod 2*N , q.e.d.

Proof of theorem 5. We proceed by induction on dim {4). If all elements of I
are nilpotent, we can take the function d(a, r, c)=max(r, ¢, v)+ 1 if I°=0. Assume
that 2¢ I is not nilpotent, determine & such that 0: 2*=0:2*"'=. . . and for each
integer s an integer ¢(s) such that I°**®Nx°4 S I%* (lemma of ARTIN-REES).

Define s(a.r)=max (2ar+1,ar+1) and c¢(a, r)=max {c(s(a,r)), r+1}. Be-
cause of dim A/2x’A<dim A we can assume that for each s there exists a funec-
tion N3N for (4/x° A, I/x° A), which we will denote by d{(s, a, 7, ¢).

Then we define

d(a.r, c)=d(s(a, ). a.r, c+cla, 7))

and we show that it satisfies the assertion of the theorem. To do this assume F ¢ 4
{T}}7 and $°€I®" to be given and satisfving F(t)=0 mod I¢ and I"C H(tY),
where d =d(a, r, ¢). By induction there exists a vector f such that

(1) F{ty=0 mod 2°A4, s=s(a, r)

(2) t=t mod I°t“@) 1 4%4 |

Changing ¢ we can assume that

(29 t=# mod I°@"

From (1) and (2') we infer (since F(t*)=0 mod I% and c(a, ry=c(s(a. r))
(3) F{t)=0mod «°I", s=s(a, r)

and

(4) 'S H(), hence I"ZE().

We can therefore apply lemma 4 (with N =/°and r replaced by a - r) to determine
a sequence
(5) [ 1 ..., F(t')EO mod 2* T I*

as in remark 2 (observe sz=max (2ar+ 1, ar+1k)). We can write 2" =h(t), ke H,
since &' ¢ I'C H(t).

Case 1. Assume that the schema X of zeros of F on the open set X,={z¢ X,
I+ 0inzj is a complete intersection, i.e. defined by a regular sequence (f, . . ., f,).
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By the property (B) of the ideal E we infer
(5) h*=0 mod A(f)+I(F) and (b*+g) I(F)SI(f)
for p<0 and for a suitable g€ I(F). Choose v such that s(@, )+ v=max (2ar+1,
ar+k)+v=2ur+1 and t° in (5), then
(6) F(t")=0 mod 2+ 1°
*=¢ mod 2" *1I°,

These congruences imply

k() =h(t) mod 2"+ 11I°
hence Ah(t’)=2"A and Ah"({')=a"#A. Therefore the congruences (5), (6) yields

2 c A(f) (), f(t,) =0 mod x*#F1I°,
and we can apply Theorem 3. By this theorem there exists a solution ¢ of the
equations f(£)=0 such that
(1) t=t"mod 2™ +'1°,
We claim that ¢ is also a solution of F(t)=0. By (6) and (7) we get A(h*(t)+g(l))=
=a""4, and F(t)=0 mod z"**'I°. By (5) it consequently follows that

2 F(t)=0,

hence F(t)=0 mod (0 : 2*)Na"**'I°. Since we can choose y arbitrarily great, we
can assume that ru+ 1=%, in this case (0: z*)Na™1I°C(0: 2*)Nat4 =0 holds,
hence F(t)=0.

Case 2. The general case will be reduced to case 1. Let @ (T, Z)EA{{T}} Z,®
®...0A{{T}} Z, generate the module of relations of F mod I(F)2. Replace
ATy by A {17, Z} T'=(T,, ..., Ty), Foy F'=(F, Ty, ..., Th,Gy,. .. .Gy)
and H by H' =HA{T, T', Z}}+ 3] T, A{T, T', Z}}+ 3] Z A{T, T, Z}}.

v I3

If F(:°=)0 mod I% replace t0 by t'0= (2, 0, F'(£°)), then F'({’)=0 mod I°. If fur-
thermore H(10) 21", H'(10) 2 I" follows (for r =d), and if ' +t'0 mod I° and F'(¥') =0,
the first » components of ¢’ satisfy t=1° mod I° and F(t)=0. If E’ is the ideal
corresponding to the embedding X'=V(F')c P'=S8pec A{{T, T", Z}}, then
EA{T, 1", Z}} S E'. Therefore we can replace F by F'.
We consider the schemas S=Spec (4) and
X =Spec (A{{T}}/I(F))c Y =Spec (A{{T}})cZ=Spec (A{{T, T'})}
~t
X'=Spec(A{T,Z}}/I(F,G))c Y'=Spec (A{{T, Z}})cZ’
=8pec (A{T, T", Z}})

(where z denotes the projection).
We shall show that any affine open set U’'C X' — V(H’) is a complete intersection
of n+ ¢q hypersurfaces in some open subschema of Z'.

The open set X’ — V(H') is mapped into X — V(H) under the map n. Therefore,
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by property (A) and the ideals £ and E ; respectively, if we consider the universal
separated differential modules (denoted by £21) and the conormal sheaves (denoted
by N) restricted to X'— V(H’), we have the following exact sequences of locally
free sheaves

(1) 0N yiz @Oz ~Ngiz—~N gy —0
(2) 0—+7*N gy > a* Qs> a* Q>0
3) 0—-7* Qs Q15—+ P13~ 0

(4) 0N gy~ 0% s® Oy ~ Qg0
and

~ 1
NY'IZ'® GX'=7Z*'QY{S
~ Ol
a*Nyip=Q%xs-

5. The I-adic completion of W-categories

Let us start with a W-category H and a pair (4, I)¢H. We will construct a
W-category H,. over the I-adic completion A’ of 4 which is in a certain sense
minimal.

We will need this construction for the proof of the approximation theorem for
W-categories. It is exactly at this stage where the theory of W-categories is still a
little bit complicate because we where not able to prove that this construction
preserves the property of being NorTHERian. That is why we has to develop the
whole theory of W-categories in the non-NOETHERian case too.

For example, if we consider the construction in the category of HENSELian
algebras of finite type, the property of being NorTHERian will be presevered.
However, if we consider the category of analytic C-algebras, andif 4->Bisa
morphism of C-algebras, we have to consider algebras of the type

By=UBuy, ..., u, B,
where (u,, ..., u,) runs through the set of all finite sequences in my and where
Bfuy, ..., wu,} is the image of the free algebra B{U,, ..., U,} in B’ under the
B-morphism defined by U;— u,. We do not know if B,. is NOETHERian.

The general construction runs as follows: Let (B, §) be an (4, I)-algebra of H
and § be the set of finite subsets of the image of 14’ in B’ (B’ the I-adic com-
pletion of B). For a3=(sy, . . ., sy)€ 8 we define B; to be the image of B{{T}, . . .,
Ty}} in B’ via the B-homomorphism 7T';+> ;.

Definition. B, =) B,.

3¢S
It is clear that (B,., §B,.) is a HENsELian (4, I4')-algebra and the functor of

(4, I)-algebras (B, &) — (By., 3B,.) is a functor of the subcategory H of all pairs
(B, 8) over (4, I) of H into the category of HENSELian pairs over (4, 14).

Lemma 5. The canonical morphism B/I'B—+B,./[I'B,,q=1, 2, ..., is an iso-
morphism and B is the 3B 4.-adic completion of B,..
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Proof. We know that IBy.=|J (IBs+ }) s.B;), so the canonical morphism
€S 8,68

BI1B~By/IBy=lim BJIB,+ 5 5.B)
2,68
is surjective, i.e. B, =B+1B,.. But this also means that B, =B+ 1'B,.,q=1.
Since I’B'NB=1'B, the morphism B/I'B-B/I*B,. is also injective. This
also gives us the isomorphism B/~ B /B . and the lemma is proved.

Definition/Proposition 2. Let H, be the category of all Henselian pairs (B, 5)
being finite over a pair (B, , 3B ) for an (4, I'-algebra (B, 8)cH suchthat [} I'B=

»=1)

=0 and A'—~B/9is surjective. Then H 4. is a W-category and (B, 8)—>(B,., 3B,.) is
a functor Hy—~H,. .

Proof. (W 0)and (W 2) are fulfilled by definition. To prove (W 3) we choose a
finite sequence T'=(T\, ..., Ty) of indeterminates and (B, §)cH,. . We may
suppose that (B, §) is the quotient of a (B,., §B,.) of H . with kernel N (if (B, J)
is finite over (B, 9B.), then there is a surjective map B{{X}}A — B for some
(X4, ..., X))=X. We will show that B{{T}},/N with N= n (NB{T}} 4+

+I'B{{T}} ) is the free pair BY{T}}. Let (C, K) be a (B, 3)- &lgebra of M, and

f,...,ly€K. We have to show that there exists exactly one (B, SJ) -morphism
f: B{{T}} /N -~C with f(T,)=1,. We choose an (4, I)-algebra (C', K)c H such that
(C, K) is the quotient of (C4., KC ) with kernel N’. Now C=|J C;/N’'NC; and
€8

sothe iy, ..., Ly are already in some Cy/N’'NC,.

By construction Cy/N'NC ;¢ H holds and this is & (B, 3)-algebra. We obtain a
unique (B, §)-morphism f,: B{{T}}~C,;/N'NC; with T,+~>t, and the following
commutative diagram.

B{{T}}
¢ '
B[TN-C".
For this reason we can lift f, to a (5, 9)-morphism B{{T}}4~C annulling N, i.e.
B{T'}} 4/N=B{{T}} is free in H ..
Now we have to prove that the canonical morphisms

B{{T}}/(Ti, .« e ey TN)U"PE[T]/(TI, “ .0y TN)U
are injective, or the canonical morphisms
&,: B[T-B{TH /Ty, ..., Ty

are surjective.
However, the canonical morphism lim Bg{{T}}~ B{{T'}} being surjective we
9
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obtain a commutative diagram

BIT -2 BUTWAT, ... Ty
lim BT)—>lim B{(TH/(Ty. . .., Ty)’

Then @, is also surjective.

To prove (I¥ 1) let (B, §)- (B, §”) be a morphism in H, and K< B a closed
ideal (with respect to the §-adic topology) such that B"”/K + 3B’ is B-finite. We
will prove that B''/K is B-finite. Now (B, §) is finite over some (B,., 3B, for a
(B, 9)¢H and (B, 3) is the quotient of some A{{T'}} in H. So we may suppose that
(B, 9) is the free object A’{{T} in H .. On the other hand (B”, §) is the quotient
of some pair (B, 3,;) for a suitable pair (B", I"’)¢ H. Since B is free, we may as-
sume that (B”, 8")=(B)., 8"BY). Let K+IB, =B, +...+{B,+I1B),
fir .., €K (B /IB.=B"/IB" is noetherian). We consider the free algebra
A'{T, 173, T =(T;,...,T.), and choose an A’{{T}}-morphism A'{{T, T}~
LB}, T;r>f. Now the algebra BJ/(IA) {{T, T'}} BY,=BJ/R +(IA") {{T}} is
A'{{T, T'}}-finite and it is sufficient to show that the algebra B is A"{{T, T"}}-
finite.

Thus we are in the following situation : Let (B, §B}.) be an A’{{T}} algebra
such that B}./(1A") {{T}} Bj. is A’{{T}}-finite. We have to show that B is
A'{{T}}-finite. Since BJ/IB},=B"/IB"cH, we infer that B, /IB, is A'{{T}}-
finite, too. We choose a set of generators modulo IB:,', Wy ..., W,e BZ, and
consider for suitable 8=(s;, ..., s,) (such that W, ..., W, and the images of
Ty, ..., Ty in B are in B;) the algehra-morphism. A{{T'}};—~ By . It is clear

.
that By /IB, + 3 s,B; is A{{T}},finite generated by W,, ..., W,. But the alge-
v=1 q
bras By, A{{T'}}, are contained in H and consequently B; = 3 A{{T}},W;. This
g i=1
implies Bz = 3] A’'{{T}} W, Proposition 2. is proved.
i1

6. Generalization of Arrin’s theorem

In this chapter we will prove the famous approximation theorem of M. ArTIN
(ef. [2], [3]) for semi-excellent WEIERSTRASS categories over a field or an excellent
discrete valuation ring. In this way we give a common proof for the analytic and
the algebraic case (cf. examples of excellent WEIERSTRASS categories in chapter 0).

One of the hasic tools to prove the approximation theorem is the following
lemma:

Approximation prineiple. Let H be a W-category, (4, I)— (B, J)—(C, K) mor-
phisins in H and let A be a NogrHERIan and I-adic complete ring. Let X - Spec C be
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a quasiprojective B-scheme and sy: Spec B'~X a formal section of the I-adic com-
pletion B’ of B such that X is formally smooth in s, (Spec B’) and psy( V(3)). Let
8% O, be a morphism of a vector bundle of finite rank over X, ZS X the scheme of
zeros of ¢ and C(p, s,) be defined as in theorem 8. If
(8) s (Spec B)CZ
(b) B'/C(p, s8y) is finite over 4
then there exist a (B, 3)-algebra (D, LYeH, a quasiprojective D-scheme Y being
smooth over B o B- morphisms: Y —~Z, and a formal section 1: Spec B'~Y such
that st=s,.

As in the proof of Theorem 3 resp. ELKIK’s theorem we can reduce the proof to
the following.

Lemma 6. With the same H, (4, I), (B, J) as in. 6.1. Let F=(F,, ..., F,)=0

be a system of equations, F,¢ B{T}} [T'], T=(Ty, ..., Ty), T'=(Ty, ..., Ty,
N+N’'zmand (, V) a formal solution of F=0,1¢SB"™, I'c B™, such that for the
ideal A,,(F, 1, ') generated by the (mXm)-minors of the matriz o(Fy, ..., F,)/

oT, T (i, ) in B the A-algebra B'/A,, (F, 1, 1) is finite.

Then there exists a free B-algebra B{Z}| in M, Z=(Zy, . .., Z,), t{Z)c 8{{Z}} B
@)Y, v Z)eBUZ)Y and 2=(%, ...,%,)C9B" such that F(t(2),t'(2))=0 and
1z)=t, t'(z)=1".

Moreover, if K& 8 is a finitely generated ideal in B such that B/K is NOETHERian
and (¢, ' mod KB')€ B/K, then one can choose % to be from KB,

Proof. Let KS d be an ideal such that B/K is noetherian and (, i mod KB')¢

h
€ B/K. We choose hy, ..., h,6 K such that ({, I')=(, t'0)+ Mh, h:( :1), (to,
a
£'0) BY*¥ and M a N4 N'Xa-matrix over B'. Now B'= B+ 4:B’, Ay=4,,(F,
i, VYNB: B'/4,(F,1, 1) is a finite 4-modul and a finite B-modul too. B/§—~
+B/dQ yB'[A,(F, 1, V') is surjective and by the lemma of NAkAYaMaA B B'/4,,
(F,t, 1) is also surjective, i.e. B/dy~ B'/4,(F,1,1'). Especially B/A, is NOETHER-
ian and complete with respect to the I-adic topology, i.e. B/4y= B’/A,B’. This
means A,B' =A4,(F, 1, ') and B’=B+ A,B’. Especially we get B'=B+ 4B,
Using this fact we can write M =M+ X d.M, d;c A%, M a (N +N')Xa-matrix
over B, M, (N +N')Xa-matrices over B’'. So we get (f, i')== (19, t'0)+ Mh+ 2 d;
(M p). Now let B{{Z}\ eM, Z=(Z,);, Z;=(Z;, ..., Z; x,n), be the free B-algebra.
We will consider the system of equations G(T', T")=F((T, T")+ 2d;Z;)=0. The
idea is to apply NEwTON’s lemma to this system and to (, ') = (#0,¢'0) + Mh. First
we will show that 4,(F, §, I')=4y and 4,(@Q, i, ¥')= 4,B{{Z}}.
Obviously (¢, #) =(, t') mod 42 KB implies

AF VB S AR L V)=4,B'SA,F, t ¥) B+ LKB,

i, A (F, 1, 1) S A, S A,(F, §, ¥')+ 42K (because B/A) K is A finite we have HB'N
NB=H for all ideals H242K), but this means 4,,(F, {, ¥)= 4, Now we know
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E )= V) + ) dZ; mod 4 ZB {Z}} Z;, and similarly obtain 4,@G. )=

— 4,B|{Z}} (ote that EG/a(T, T") (. ¥)=eFJa(T. T') (. 1)+ 5 diZy). Now
GE UV)=F(E 1)+ ) dZ;)=F(.¥) mod 4; Y] Z; B{{Z}} and 0=F({ V')=F({.¥)
mod A;K B, i.e. e

G(f, ¥')=0 mod Ay KB{{Z}} + )] Z, Bi{Z}}) .

We can apply NEwroxs lemma and get a solution (f, #')€ B{{Z}}¥ +*" of the system
of equations G(T, T)=0. Then (H2Z). t'(Z))=(t, )+ 3] d;Z; is a solution for
F(T, 7)=

Arriv’s theorem. Let H be a semiexcellent WEIERSTRASS category over an ex-
cellent discrete valuation ring R, (A, Iy~ (B, 8) a morphism in H and let X % Spec B
be a quasiprojective B-scheme. If 5: Spec A’ X is a formal section of the I-adic
completion A’ of A, then there exists a free (A, I)-algebra (C, K)¢ H, an A-algebra-
morphism s: Spec C—~X and a formal section §,: Spec A'—~Spec C such that
s808,=3. The proof of this theorem divides into several steps:

Step 1. Reduction to the case that A is regular.

Theorem 6. Let H be a semiexcellent WEIERSTRASS category over an excellent
qory

discrete valuation ring B with prime element x. Let F =(Fy, . .., F,)=0 be a system
of equations,

FeR{X, Y} [T, X=(Xy,....X,), Y=Y, ...,Yy,
T=(T,, ..., Ty)and (§, 1) a formal solution of F =0,

ge(n X) RX]Y, teR[IXT]V .

Then there exist y(Z)€(m, X, Z) R{{X, Z}}¥, 4 Z)e R{{X, Z}}* for a suitable
Z=Zy, ..., Z) and € (m, X) R'[[X]] such that F(y(Z), t(Z))=0 and y(z)=47,
t(z)=t. In this step we will show that Theorem 6 implies ARTIN’s theorem. We may
start with a system (FY, . .., F})=F0=0 of equations, F{c A{{Y}} [T], AcH and
a formal solution (", )€ A¥*¥ of Fo=o.

Let A:R{{X}}/K and let K be generated by by, ...,b,. We choose F,cR
{X, Y} [T (7, 1)eR’ [[X]]‘V‘”" such that F; mod KR{{X, Y}} [T]=F? and
(7, 1) mod KR’ [[X]]*‘“ (@, ).

Then F{j. 1) Eb ,; for suitable @,;€ R’[[X]]. We apply now Theorem 6 to

the system Fi—E bW e R{X. Y} [T, W] and get W, (Z), y(Z), t{Z) from
R{{X, Z}} for a t;;itable Z={Z, ... Z:) and a z¢ R'[[X]]’ such that y(z)=7,
Hz)=1 and W, (3)=®, and Fy(Z), HZ))= 2 b,W,(Z). Now (y*Z), tZ))=
=(y(Z). t(Z)) mod KR{{X. 7}}€A{{Z}} is the requned solution of F0=0
Step 1. Reduction to the case that the Fy, . .., F, of 6. generate the kernel I of
R{(X, Y}} [T]~R[[X]] and INR|X, Y}}=(0).

18 Math. Nachr, Bd. 109
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To prove Theorem 6. it is clear that we may suppose that Fy, ..., F, gene-
rate the kernel I of the morphism 6 : R{{X, Y}} [T]~R'[[X]] defined by Y > 7,
T — 1 (otherwise we may add some equations). If IN R{{X, Y}} =(0), we finished.
In the other case we choose an automorphism ¢ : R{{X, Y}} [T]-R{{X, Y}} [T]
with the following properties:

(i) o/ R{X, Y}} =idg s,y mod (X, Y)2 R{{X, ¥}
(i) ¢(RI{X, Y}|S R{{X, 7))
(iii) (I) is generated by Gy, ..., G, ¢ R{X, Yy, ..., Y} [Y,\,,..., Yy, T
and
Gro oo Gy) B{X, Yy Y Yy, Yy, TINRYX, XYy, ..., Y} =0.
(We may choose ¢ tobe the composition of automorphisms of the type X, — X, +
4+ Y, Y~ Y+ Y ¥ and apply the Preparation Theorem to get the Gy, . . . , G-

Now dog~t: R{{X, Y}} [T]- R'[[X]]is & morphism mapping ¢() to zero, but
in general § o p~1is not an R{{X}}-morphism. Because of (i) and (ii) 6 o g~/ R{{X}}
induces an R-automorphism of R'[[X]]. Let y be the inverse of this automorphism,
then podogpt: R{{X, Y}} [T]-R'[[X]]is an R{{X}}-morphism mapping ¢(I)to
zero, i.e.if we denote g=yodop YY), I=podop~I(T), then G(7, [)=0, i=
=1,...,m.

Now let us suppose that Theorem 6 holds for the &,. Then, for a suitable
Z=(%,...,Z,), there exist §(Z), {Z)c R{{X, Z}}¥**', and z¢ R'[[X]] such that
G(7(Z), {Z))=0 and §(z)=7, {(#)=F. Let A denote the R{{X, Z}}-morphism
R{{X,Z, Y}} [T]1~R{{X, Z}} defined by §(Z), {Z) and u: R{{X, Z}}~R'[[X]]
the R{{X}}-morphism defined by Z, then poA/R{{X, Y}} [T]=yodog~1 Let us
denote the canonical prolongation of ¢ to R{{X, Z, Y}} [T'] by ¢ too, then og
(especially polog) maps I to zero, but in general Ao g/R{{X, Z}} is not the iden-
tity (note Aop(Z)=Z), especially polop/R{{X}} may not be the canonical in-
jection. Because of (i) and (ii) 2o ¢/R{{X, Z}} is an R-automorphism (and golog/
R{{X}} induces an R-automorphism of R'[[X]]). Let o be the inverse of Aog/
R{{X,Z}}, then golog is an R{{X, Z}}-morphism of R{{X, Z, Y}}[T] into
R{{X, Z}} mapping I to zero, i.e. if y(Z)=ocolog(Y) and t(Z)=coAop(T), then
Fly(Z), t(8))=0, i=1, ..., m. If we put Z=p~1(%), it is not difficult to see that
y(2)=% and t(z)=1.

Step I1I. Reduction fo the finiteness condition of the approximation principle
(NERON’s blowing up).

We may start with the following situation (with the notations of theorem 6):

I=(F,, ..., F)isthekernel of the R{{X}}-morphism R{{X, Y}} [T]-~ R’[[X]]
defined by 7 and { and INR{{X, Y}} =0.

Lemma 7. Let Fy, ..., F,,cIbeaminimal set of generators of IR{{X, Y}} [T,
and Ay (Fy, . .., Fp, 7, ) the ideal generated by the m-minors of the Jacobian matriz
oFy, ..., F )oY, T)(y, 1), then A (Fy ..., F, 7 1)*0.
Remark. Lemma 7 also holds if we replace the valuation ring R by a field in the
assumptions of Lemma 7.
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Proof. Let B=: R{{X}} and without restriction of generality we may sup-
pose that the #; are no units, then we can lift the morphism B{{Y}} [T]~ B’ to a
morphism B'[[Y, T}~ B’ with the kernel H generated by the Y, —7;, T;,—1i,. Let
us denote @=B[[Y, Ty, my the maximal ideal of @ and K the residue field,
then we have myN P=mp the maximal ideal of P:=R{{X, Y}} [T];. Now H is
semi-excellent and consequentely @ is a formally smooth local P-algebra. Now let
us consider the canonical morphism. ¢ : Homgy (my, K)-~Homp (mp, K) induced

by the inclusion mp—mg,. With respect to the base Uy, ..., Uy, y of
a:nd Ui (IYJ - g,) = 0, U‘i (Tj‘— i}) = 61." lf 'l:>N, aund the base V95 ¢ o oy ’Um Of

Homp(mp, K), v,(F;)=6,; the matrix associated to ¢ is just the Jacobian matrix
oF,...,F,)oY,T)(y,t).To prove the lemma we have to show that ¢ is surjec-
tive. Let us consider the following commutative diagram:

Dery (@, K) — Homg (m,, K)

el lw
Derg (P, K)— Hom, (mp, K)

given by the restriction maps (K =@(B) the fraction field of B).

We will prove that ¢ and ¢ are surjective. Let v€ Homp (mp, K)=
=Homp (mp/mp, K) and P/mp:=L> P/mp=: P be an embedding of the coeffi-
cient field of Pwhich extends the canonical embedding K — P.

Such an embedding L'— Pexists because L/K is a separable extension (LS Q(B’)
and Q(B’)/Q(B) is separable) and P is a complete local ring (Theorem of Cohen,
cf. EQA). Now P =L®mp/mj} and clearly the morphism v is the restriction of the
derivation &, 9, (x+¥): =v(y) (@€ L, ye mp/m}), i.e. o is surjective.

The morphism g is surjective because of the formal smoothness of the P-alge-
bra @ (cf. EGA):

Let ¢ : P—~K be a K-derivation. In order to get a lifting ¢ : @~ K we consider
the ring F=Q[Y}/(Y? Ym,y)=Q@dyK together with the P-algebra structure
P @+oy)=pq+(Pa+9(p) §)y, pe P, qcQ, ac K, P, § the residue classes of p
resp. ¢ in K. Since the canonical morphism K~ E/yE =@ is a P-algebra morphism
and because of the formal smoothness of @, we can lift the identity in Homp (@, @)
to a morphism

X
E""E,/y.E,=Q’ ,
Now it is clear that (@) S E and y'(g) = ¢+ y¥(q). It is not difficult to verify that
#:Q—~K is a derivation and §/P=9. The lemma is proved.
18+
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To apply the approximation principle we are intrested in having R'[[X]]/1,,
(Fy, ..., Fy,. 7, 1)to be afinite R'[[X,, ..., X,_,]]-module. The next lemma will
arrange this situation.

Lemma 8. We use the same notutions and assumptions as in lemma 7. The B-
morphism B{{Y}} [T]— B’ given by given by Y~ 7, T>1; extends to « B-mor-
phism B{Y}} [T, Z]-B', Z=(Z,. .. ., Z,), Z;—~%;, with kernel K and a minimal
set of generators G, ..., G, of BY{Y}} [T, Z] such that the ideal

MGy, ..., G, 5.1, 2)EnB.

Proof. We know that A,(F, ..., F, 7 )+0 (lemma 7). If A, (F,, ...,
F,, §, 1)S/nB’ we have finished. Otherwise let A4,(F, ..., F,, 7, )S/~*B k>1
and we willdrop this kstep bystep. Let (F,,.. ., F,,, 7, {)y=ord 4,(F,,...,F,. 4.1
and (I, g, h=min {{(Fy, ..., F,, 7, 1), Fy, ..., F,cl generating IB{{Y}} [T];}.

To prove the lemma it is sufficient to prove the following lemma:

NERON’s n-desingularization: With the notations and assumptions of lemma 7 the
B-morphism B{{Y}| [T]~B’ extends to « B-morphism B{{Y}} [T.Z]~B.
Z=(Z, ...,2,), Z;— %, with kernel K such that (K, ¥, 1, ) <l(I, 7, 1).

To prove this lemma we may suppose that [([, 7, Y)=k=0.Let ¥, ..., F,¢I
such that ord. 4,,(F, .... F,., g )=k, i.e. there exists an m-minor of the Ja-
copian matrix &(Fy, ..., F,)/o(Y, T) (7, ) which is exactly divisible by 7*. Let

C={fe B{Y}} [T, n/f(7. 1)} and Gy, . . ., G, B{{Y}} [T]such that n, Gy, . .., G,
is a minimal set of generators of B{{Y}} [T]. The residue classes of the G; mod =
generate K(B{{Y}} [Tl/= B{{Y}} [T]g=":m, K is the kernel of the B/x B-mor-
phism B/aB {{Y}} [T]-B'/xB’ induced by the residue classes of the 7 and i
mod 7. Using Lemma 7 (Remark) we obtain that the ideal generated hy the
e-minors of the Jacobian matrix of the G; mod =z is not in m, i.e.

(i) 4,Gy. ... 4,5 HE/nB'.

Furthermore the residue classes of F, ..., F,, mod x are linearly dependent in
m/m?2, i.e. especially

(Y INKZ/K-T.

If the Fy, ..., F,, were linearly independent, we could find F,, ., ..., F,c K
such that ¥, ..., F, mod z be a base of m/m2 By the above Lemma the ideal
generated by the e-minors of the Jacobian of F, ..., F, mod = is not in m. But
this is not possible hecause the ideal generated by the m-minors of the JAcoBran
of the F'y, ..., F,, mod x is already in m.

Now let us consider the B-morphism B{{1'}} [T. Z1-B’. Z=(Z,, ..., Z,) and

Q. (7, .
Y5, Ti>1, Z,—~ ——(—y—)» . Let J be the kernel of this morphism, then #Z;—G,

7
and [ are in § and because of the assumptions at the beginning of (I1I) we have
INB{{Y}}=0and ktd=m+e.

We will show that {(J, 7, I, 2)<k. We have to choose a “‘good’” minimal set of
generators Hy, ... Hy,, of B{Y}} [T, Z], such that ord ,4,,., (H, ..., H,,,,
7, 1, 3)<k. By definition of the @; we can ohoose a HeB{{Y}} [T1 He/K and D,
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K ;e B{{Y}} [T] such that
HF;=aD+ ) K;0;,
=

i.e.
(1) HF==all,+ Y K, (G—a%), e B{Y}} [T, Z]
i=
Using (ii) we can find L, . ... L, BUYY) [T, Lye /K for some ke{l, ... . m}

such that )] L,F € K2 i.e.
feeyt

= i=1

m -]
=1
for suitable H, M,c BYY} [T, Z].
Now H;:=1,....,H,_,:=0,_, . Hy:=H,H, :=H,,,.... , H,:=H,,
Hypr:=nZ,—Gy, ..., H, ,=nZ,~@G, generate IB{{Y}} [T. Z],.
Using (1) and (2) we will show that:
(3) ord, Ay J(Hy oo Hyooo 3,1 2)<k .

Differentiating (1) and (2) we obtain

(4) HeF oY, T)=neHJo(Y, T)+ 2’ (K;) 8G;8(Y, T) mod 3

i=1
ot
¢z,

t=1,...,k—1,k+1,....m

‘=K, mod §

(5) ) LaF e(Y, T)=)) M;eG,e(Y, T)+n26H,/6(Y, T) mod 3
i=1

=1
7 ;gsz, mod 3

(6) e, oY, T)=-aeGje(Y, T)
¢HyyleZy=m - 0y
t=1,...,¢.

Using (4), (3) and (6) we can see that the JacoBian matrix.

(7) o=l ... .aH,_ ,x*H, 7nH \,...,7nH, H, . ..., H,.)/

oY, T, Z) (4,1 %) is equivalent to the matrix

(8) ey, T)(g. 1) o
—o@ /Y, T)(5.1) =l,],

I, the e X e unite matrix. By the definition of I(I, 7, 1) =% the matrix &(¥)/e(Y, T)

(7. 1) has a m-minor which is not divisible by z**'. Then it is clear that the matrix
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(8) has an m + e-minor not divisible by a**1+4=@=m — ghtmt1 hecanse A,(G, §,1)S
C/aB’ (cf. (i)). Finally we have an m + e-minor of (7) not divisible by z**™*1 i e.
there is an m+e-minor of o(H,, ..., H,, /oY, T, Z) (7, i, 2) not divisible by
7%, i.e. (3) holds and consequently (K, 7, I, Z) <k. NERON’s desingularization step
is finished.

Step IV. Induction on n using the approximation principle. We may start with
the following situation (with the notations of Theorem 6):

I=(Fy, ..., F,) is the kernel of the R{{X}}-morphism R{{X, Y}} [T]~
—R'[[X]] defined by 7 and i, and

AF, ..., o § DS /aR(X]] .

Clearly it is enough to look for a solution of Fy=...=F, =0 (F,, ..., F, gener-
ate IR{{X, Y}} [T];): Let us suppose for a moment that for suitable Z=
=(Zy,..., Z), yZ), 4Z)e R{{X, Z}} and z¢ R'[[X]]

FyZ), ¢(Z))=0 i=1,...,m and yGE)=y, t=(3)=i.

If r>m, then @ F,= 3} H,;F; for a suitable G¢/I, i.e.

j=1

Hy(Z), Z)) - F(y(Z), H{Z))=0 .
Now 1t is clear that G¢/I 1mphes G(z.? ) +0 and especially G(y(Z), {(Z))=*0, i.e.
F(y2), 4Z))=o.
1. Case n=0.
In this case A, (I, ..., F,, §,1) is a unit (for simplicity we may suppose the
i; not to be units). Let
det o(Fy, ..., F)o(Y,, ... Y., Ty .....T;)({#1)

be a unit. Then we consider the system
Fi=0,...,F,=0, F,,,=:Y,  ~Z;=0 ... Fy y=:
TjS—ZZ\'JrN’—m:O

defined over R{{Z,,..., Zy .y _m Y}} [T]. We have F(0,0)=0mod (=, Z,,...,
Ty ye_m)anddet (3(Fy,..., Fy, w )Y, T) (0,0))=unit in BY{Zy, ..., Zys y—m}-

Using the implicit function theorem we get y(Z), HZ)e R{Z,, . . ., Zy n_m}}
such that
Fy(2), 42))=0 i=1,...,m
y,sH.(Z) =Z; j=1,...,N'—s
ti(Z) =Zy_yop k=1,... Nts—m.

Using the implicit function theorem for the system
defined over R’[[Z]] again we get therequired 2€ R"¥*¥ =™ such that y(2)=7 and
t(é) =1 puttlng Eizgrg+1’ ceey EN+N’—m: st-
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2. Case: n=0.

We suppose that the theorem 6 is true for R{{X,, ..., X,,_,}}. We may further
suppose (after having applied a suitable R’-automorphism of R’[[X]] and having
used the preparation theorem) that R'[[X]]/4,(F1, ..., F,, g, 1) is a finite
R[[X, ..., X,_,]]-module. Now we may apply the approximation principle
lemma 6 to the pairs (R'[[X, ..., X,]], (= Xy, ..., X,)) and B{X}} pyx,,... 2,00
There exists a free algebra R{X} pirx,,...x,_ {2}

Z=(Z.....Z) and §(Z), HZ)e R{X}pyx,..x,_ @Y
and ¢ R'[[X]]* such that

F{§(Z), {Z))=0 i=1,...,m and giE)=y HZ)=1i.
Now BUX} nx,....x,_ 2} = BRUX, Z}} pya,,...x,_,1 @nd looking carefully at
the construction of R{{X, Z}|ryyx,...x,_,n We can choose a

A=y, ..., ), GE(m Xy, ..., X)) R[[ Xy, ..., X, 1],
such that (7(%), #(Z)) € R{{X,Z}}¥*~ . Let K bethekernel of the R{{X}, ..., X,,_,}}-

morphism R{X,, ..., X, ,, U}}~R{{X,, ..., X,_,}}; defined by U4,
wZ)VeR{{X,, ..., X,_,Z"}} beazeroof K,Z'=(Z;, ..., Z,)andZ € R[[X;, . . .,
X, _,]]° such that u(z')= .
We consider the R{{X,, ..., X,_,}}-morphism
RUX,, ..., Xo_i}}a X, 23}~ RY{X, 2, 2})

defined by 4 — u(Z'), X+>X,Z+—Z and denote the image of 7resp. f via this mor-
phism by y(Z, Z') resp. t{(Z, Z'). Then F{y(Z, Z'), t{Z, Z'))=0 and y(%, ) =7,
t(z, Z')=1. The theorem is proved.
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