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The main result of this 1)aper will he a formula to compute the Milnor number 
of an isolated complete intersection singulaFity using the Newton polygon. We 
were inspired by the articles of KOUCHNIRENKO [4], who gave such a formula 
for hyl)ersurfaces, anti GREUEL and HAMM [2], who proved a similar result for 
cl";~Yihornogetieous complete intersections with slightly different methods. N'e use 
the filtrations of KOUCHNIRENKO to generalize the methods of GREUEL and HAMM. 
Let K he an alge1)raicelly closed field of characteristic 0, fi, . . . , f,.CA: = K ( X i ,  
. . . , X,) (the ring of algebraic power series over K in r ) ~  variables Xi, . . . , X m ) ,  
r < m ,  such that DAY: = A / ( f , ,  . . . , f,) is a n :  =m -r-dimensional I<-algebra with 
isolated singularity. We associate the Newton polygon r, to Dx resp. f :  = (Ii, 
. . . , f , )  : Let %lf= U supp ( f i ) ,  supp (,P adi,..imL , . . . , x;) = { j :  = (it, . . . , i,) E 

EN", a i i O } ,  rf is the union of the compact faces of the boundary of the convex 
envelop r(f) of mf+N' in RY (R, the positive real numbers, N the positive inte- 
gers). 

We can show that similar to  [2] and [4] for almost all complete intersections f 
the MILNOR number ,u(Day) cf. [ 11 is equal to the NEWTON number v(Ff)  of the poly- 
gori l', cf. [4], i.e. to it suitably counted volume of the polyhedron F - ( f ) : =  
= (Rf\r(f)) - UT,U - (0) given by Ff. - 

- - r 
yit  

- i = l  

- - 

- 
- 

1. The NEWTON polygon and the main theorem 

We will keep the notations of the introduction. To get a finite volume of the 
polyhedron r-(f) we have to suppose that the NEWTON polygon intersects all 
coordinate axes of RY : 

1 .l. Definition. The complete intersection f is called conveninent if ?JRr, fl { (0, . . . , i, 
0, . . . , O ) ,  i , ~ N } * 0 ,  k = 1 , .  . , , m. 

In.thepaper of K ~ U C H N I R E N R ~  [4] the NEWTON number v ( r f )  is just 

- 

- - 

1n 

d=O 

- c ( - l ) m - d d !  V d ,  
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where Vo= 1, Vm is the ni-dimensional volume of I ' - ( j )  and Vd (d  < m )  is the 
sum of the d-dimensional volumes of the intersections of I ' I ( f )  with all coordinate 
plans of dimension d.  If we have more than one equation, then the coefficients 1, 
of the d-dimensional volumes will change and some more information of the f will 
enter (cf. [2]). To make this precise we must look at the NEWTON polygonmore 
carefully. 

As in the paper of KOUCHNIRENKO [4] we can associate a homogeneoue map 
h : RY +R+ to our NEWTON polygon such that h ( r )  = I : Let ?#d be the set of closed 
(d-1)-dimensional faces o f  r(f) which do not lie on any coordinate plan. Any 
d Ey, is in a unique hyperplane given by 2 PA,{ - Xi= d l .  We will choose PA,i 
such that M is the same for all A and gdc ({PA,JJE ynz,i=j ,,.., m ,  Jl)= 1 .  

- 

- 

Then the and M are unique and 
1 h(?!?)=g min ((2, P A } ,  E v m )  

(here z € R Y ,  PA = ( P A , , ,  . . . , PA,m) and (, ) is the scalar product). 
With h we get a filtration on A given by 

A ( , ) : = { f E A ,  M ' h  (SUPP ( f ) ) G q + N ) .  
It is not difficult to see that 

- n . - 
q r o  

Let 
polynomial ring K I X I ,  . . . , X,] with the multiplication 

be the graded ring given by this filtration. Jl'e can consider A to  be the 

(here K ( d )  is the convex cone defined by A ,  i.e. the union of all lines in RY through 
O a n d d ;  X = ( X 1 , .  . . , X m ) , y = ( v i , .  . . , ~ , ) € P n i i d X ~ = X ~ ' - .  - . :XZ). 

This graded ring A will play an important role in giving the connection be- 
tween the MILNOR number and the NEWTON number. A can be described by the 
rings A, = K [ X f ,  - 

- - 

EK(d)] of the faces d . 
1.2. Proposition. Let A be a face of r, then 

(i) A A - S f l ' d ,  I,=idealgelzerated by ze, p ( K ( A ) ,  
(ii) A, is  a graded Noethcrialz Cohelz-Macauby ring of dimension d ,  =dim A + 1, 

(iii) The sequeme 0 -A- @ A, + @ A, -+. . . -. 0 A, -0 given by the re- 
d €  - AC Ym A € Y ; n - l  

striction maps is an exact sequence of graded A-nzoduls. 

P r o o f ,  (i) is trivial, (i i)  cf. [3], (iii) cf. [4]. 
In  order to  have good conditions to  work a t  the A,, we must add some condi- 

tions on the f: By fr)=(/j'),  . . . , f : r ) )  we will denote the inertial form of f in A 
and call it theprincipal part off ,  i.e. f f = f j r ) + j i ,  f i  (r) A (nzi,\A(mi+i, and /iEA(,,+,,. 

- 
- 
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The sequence M =  , . . . , ".) is called the weight of f. Furthermore we will 111 - - 

denote the restriction off") to the face A by f('"), i.e. if f : f ) =  2 a+ - - &!, then 
- m: - 

For any face d of r the s-minors of Sf , j= 1 ,  . , , , s, generate an ideal ( :;:) 
s(fid') i n  A,  (here f~'")=(f:"), . . . f ! " ) ) .  

1.3. Definition. The equatiosis f a r e  called non-degenerate, if for any s ,  1 S s S r ,  
and any face rl of I', dd z s ,  the ideal (fJA),a(fy))) is  nt,-priwic~ry ( f t t A : =  
= ( X i ,  . . . , X,) fIAA). 

1.4. Remark. Let ( f 8 ,  $(fiA))) be m,-primary, then 
( i )  f f ' )  is a regular sequence in A,, 

(ii) dim (A , / f~d ' ,g ( f i '" ' ) ) )~g- t - l  for t<s.  
We will later show that almost all complete intersections f are non-degenerate, 

i.e. more precisely, that the nondegenerate f r )  contain a ZARISKI open dense sub- 
set of all possible 1''). 

Now we are able to define the Newton-number of the polygon r with respect 
to  the weight M=(M1,  . . . , .If,.) and to state the main theorem. 

1.5. Definition. Let V ,  be the m-dimensional vo&ume of K ( j )  and r d  the szcm of 
the d-dimensional volumes of the intersections of r-(f) with all coordinate planes of 
dimension d (if d < rn). 

?n 

d = r  
v(r,, BI) : = c ( - i )" -d A, v, + ( - qm -r + l  

with 

i s  called the Newton-number of r, with respect to the weight M .  

(i) r = 1 and N, = 1, then A, =d ! (KOUCHNIRENKO'S case), 
1.6. Remark. If we have for the special cases 

(ii) N , =  . . . = X r =  1 ,  then 2, = ( ; : ; ) d !  

1.7. Theorem. Let C, = A/f be an isolated complete intersection singularity with 
the NEWTON polygon r, and the weight M such that f is convenie??t and MEN', then 

I 

/4D2y) zv(rf, M )  . 
If ?noreover f is non-degenerate, then equality holds. 
11 >Idfll Ndchr. Bd. IlfJ 
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The proof of the theorem splits into several steps. The idea is like this: Let 

Q P . -  fi. -Sl"/dflhQp-' +. . , +dfi-sZp-' 

(Qp is the free A-module generated by the differentials d X , ,  . . . , dX,) and 

(d is the differential). Then we know by GREUEL [ I ]  that p(~,~)=dirn,,-V'. 
The idea of GREUEL and HAMM (cf. [2]) in the quasihomogeneous case is t o  

compute dim,gr( V) in terms of the given weight off and the degrees of the Xi by 
the following exact sequences : 

a a 
(B) 

(C) 

0 - K [ f ]  42; + Qf ---f . . .+Q? 

fs+ 1 0 + VS -- V" + p v " "  + 0 . 

We will show that the filtration of A induced by the Newton polygon cuii be exten- 
ded to a "good"fi1tration of Q f ,  such that the corresponding graded sequences are 
also exact. Then the PomcARO-series of grQf can he coinputed in terms of  the 
NEWTON polygon and one gets dimKgr( V') =v(T', $1) under the assumption of the 
theorem, f is non-degenerate. 

2. A geiieralizad D E - R H A M - ~ ~ ~ I I ~ ~ ~  a.nd applications 

T n  this chapter we will always suppose f to be a complete intersection, conven- 
ient and non-degenerate. Now we are interested in defining a filtration at the Q p  

given by the NEWTON polygon such that this filtration is compatible with the differ- 
ential d. It is a little bit complicated since the canonical filtration of Q p  given by 

does not have this property. So we have t o  go this way: Let 

the Newton polygon induces a filtration on @ by 

dXii A.  . . Ad;rr'ip --x; --;- ~ QG) : = . @ 
21 - x, 2, -= .' -= ip 
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iif d X i  
j ax, x; wliich is compatible with the differential d : f -  

define for 0 s s ,  t sr : 
Xi - . Similarly we 

with the induced filtration. The associated graded niodules are denoted by 

Q$:=gr (Q:,). Qp:=f2~,o  is u free A-module of rank 
- - - - (3 . 

Now we consider Q* as a filtred submodule of hp generated over K by the 

",  SUCl1  that p;, 2 1 ,  . * . , 1"' 2 1 . 

- 
1 d X i ,  A .  . .AdX,  

'P 

Let @,:=gr Q I Y i  dfiAfY'-' + fjRp), later we will see that Q$ is a graded 

A-sul,iiiodule of Q$. Some difficulty arises because 9" is lint a free A-module. 
Thufi our wa,y to get exact graded scqiieiices of the SZ:, will be to look first at the 
Gct and thaii to deduce snme results about the Q E t .  

IVc: will ofteii use t1ienot:ttioii : if JI isagraded A-rnodule, then JIJ : = ,II 0 i A d ,  

* Y E . .  .. 

Sil  . . . sip 
t 

{- 
- - - L i =  I j=l  

- 

- 
- 

- 

and A , : = A ' / ( f , ) ,  theti (*) 12$d@-4JAJ,P is it free A,,,,p-modulc of rank 

\'cry useful for US is the following 
- 

3.1 Lcnma.  L e t  V c S = S p c c  A bo u closed subset, J I  n fiiiitely generated A-mo- 
clule, t h e n  the rcstriction ,wap r ( X ,  JI) -+r (X - V ,  -11) is 6ijcctive (rcsp. isljective) if 
cod h J I ~ d i i n  1'+2 ( r c s p  s d i m  V +  1). 

N(tw we cnn  start with 

2.2. J)E Rma-loinnla. 11 s ~ r ,  t h r n  

- Adf, - - 
( i i i )  o - Q f - I  --+S+Q:-~ -Q:+o is  exact for p S s - 1  ~ m . 1 )  

- 
P r o o f .  I f  p = O  or  s=O, ( i )  atid ( i i )  are fulfilled by (1.2.)  and the fact that 0; 

is a free A,-module. Lot ( i )  and ( i i )  he fulfilled for (s- I ,  p )  and (s, p - I ) ,  then we 

1) (? is the differential induced by d in the graded modules. Usidly we will simply wvrited instead 
But we will also not 

_ . -  
of I/, t E ,  d ert. if the ceonnect ion is clear. dfi drpends only on the initial form 
distinguish between f i ,  /!r), fy'. 
I I' 
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show the lemma for (s, p ) .  We regard the commutative diagramme: 
0 0 0 

I I G + V - Adf, - 
0 -  52f-1- 52RBp_I - sz: -0 

I 
G V I Y 

By iiiduction hypothesis the diagramme has exact first and second columns. 
Over Spec A, - V($j(f , ) )  from the second row all is exact because of (*). NOW 
c o d h Q ~ ~ l z d - p + l z t ? z d i m  T'($j(f8))+l, hence by (2.1.) all rows are exact. So 
we get (i), (iii) and also (ii)  by looking at the diagramme carefully. 

2.3. Corollary. For 1 5 s  s r  and p +s s m .  The sequewce is exact: 

- - 

- Adf, Adfa - - 
042- * *Q, - , - - .  . ---+q?;+q+*-+o. 

2.4. Proposition. - 
(i) f, is a regular sequence of f2: for p + s 5 m ; 

(ii)-o+6ct- 0 S.'est,,+. .+ 0 G:,, is exac t forp+s+2smm,  t ~ s ;  
A ( Y 9 n  I A f Y p + s  

(iii) ~ 5 y ~ * - ~  --t 0 Q;''-* is injective, t 5s. 
4f  Y?n 

P r o o f .  For t = 0 (ii) and (iii) follows by (2.2.). Now we consider again some 
diagramme : 

0 0 0 

V 4 .1 
,fr 

0 -  - &,-, - fit, -0  
I + I 

Because f is non-degenerate from (x), (2.1) and the induction hypothesis for 
t - 1 we get ;hat d l  sequences are exact besides the last map of the third column. 
Brit if p + s +  2 S W L  and to€ Q:!,, is ma1)ped to 0, then w has n preimnge 

over all points of Spec A, outside V(ft - l ,a( f , ) )  - which are induced by some V E  

- 
@ 

4 ~ ~ ' ~ + ~ + 1  
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E 3 @', There exist such a y because of cod hi$+,  &d -p  - t  =s -t + 2 2 
''1) f 8 f '3 

I 

s d i m  V ( f t - , ,  ,7(ta))+2and(2.l.).  Theimageof(Fcoincideswit1io)in @ L?$] 
by the same reason. 

I n  order to proof exactness of the relative DE-RHAM-complex for Qi,t we first 
look at the restrictions to some A .  

9.5. Proposition. $'or t s s  and any face A ,  o - ~ @ , , ~ , ~ + Q : , ~ , ~  -+ . . . - Q ~ , ~ , ~  is 
exact. &: = K[/jF\, . . . , f)] &A, rrlith induced grading. 

P r o o f .  sfep 1 :  s = t  and localized at  some #@V( f s ,3 ( f , ) ) .  For s = t = O  the 
complex (6, rl) is exact and strict, therefor the graded complex js also exact and 
the kernel of the first map is just K .  

We use illduction on s. For 1 z p s d A  -s let WEQ$-- be homogeneous of 
degreeq, such that d W = O .  Let UJ~Q~I,~~-~,~ be a homogeneous representative of 6, 
then there are p,€@I,t8-l,J and y 1 ~ t 6 f - ~ , ~ - ~ , ~  both of degree q-m18, such that  

11 once 

Now &2,t8-l, I is free of rank ("1:; I )  at  # and d f ,  belongs to cz free basis. So 
we get that 

- ' E ' p 8 + p + l  
- 

- d  - d A -  8 

- -  

I 

- 

du) = d f s  A (1'1 + f 8 1 i 1 i  = WJ/ I )  + f a  ( Y I  - ~ ( F I ) ,  

0 = d f  g A ( 1p I - d(p I )  + f*dy, 1 * 

I 

q l - d q , = O  in  Q $ l .  
So t q p j t i  there are r,rl and yil of degree q-2?n8,  such that 

y'l  -dry, = 2df,AYl+f,Y11 
and we get 

(0, -jsp,) = 2f,df8 A p L +  f & J ?  = d(f:,) + t: ( v.! + dp) 
hence 0 = f, (2df8A (y2 -dy!) +f8dy . )  and again 

- 
-dT1= 0 in J2:8,, . 

If we continue like this, we get for some I with 

1tn8<qS(.!+1) 171, 
- 

- r lTt=O i n  .Q:-,,8-,. and therefor - 
(0)-/.#1-* * . - f tyL)=OEQf-1 ,8-I ,J  . - 

By induction hypothesis thereexist q€Qf::8-l, 
hence 

such that m=f8ql +. . . +f$p/+dq 

- 
(5 = dij E Q&-- 

(respectivcly f o r p = l :  s - f ,y I - .  . . - f ; v , ~ ~ i . e .  W C K . )  
Step 2: s r t ,  localized at some # 6 V(ft ,3(f ,)) .  Suppose the proposition is true 

for (4- 1 ,  t ) .  Choose (3 as i n  the first step. Let U ' E ~ ; : , : ~ , ,  be a homogeneous re- 
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- 
presentative of 6, then there exist some yPIEB~I~,,, ,  of degree q-m,. such that 

hence 

But df, belongs to  a free basis of h:2:,t,A at #, hence 

d (1) = df A 9 1 

0 = dfS AdFi  E &i;,t,A * 

dvL=df8Ap,-degree y1=q-2m,.  

Similarly to the first step we get for some 1 : dq l  = 0.  For p 2 2  this meaiis cpl = 

=dyl Ef2,p-itt,d. Going back we see 
- 

d ~ i - - i = d f ~ A d y ~ i - , =  -d  (df8Avi-i) 

TI-i +dfsAYl-, =dYl- ,  

hence 

and so on . . . hence dw=df,Ady, which implies 

m+dfSAy,=dyo and ~ = ~ Q ~ E L & ,  . 
For p = l  : q ~ ~ € & . - , , ~ , ~ .  Going hack we see 

and so on . . . Finally o)-fscpiES,--l,t,4, i.e. GE~,,,, ,  . 
is exact outside the closed set 

V ( f t , $ ( f s ) )  of dimension max (0, s - t  - I}. But cod h Qe,t,A z d A  - p  - f  and using 
(2.1,) i t  is not difficult to see that the sequence is exact everywhere. 

'91 -1  =91 * df8=d(f8V,), 91-1 -f&lEa8-f,t,d 

- -dA -8  Step 3: The sequence LZ?;,~,~ - . . . -f2s,t,,, - 

2.6. Remark. O-&8,t-, 0 8ts,t,d +. . . + 0 8%8,t,A is exact. 

The proof is the same as in 1.2. (iii) knowing that f:') is a regular sequence in 

2.7. Corollary. For t s s 0 -as,, - Qg,, --f , . . --f Q:c8 is exact. 
P r o o f .  The first row is exact because in the following diagramme all collumns 

A €  ym 3 E  Y* 

A,, dd ZS. 
" d  d -  

are exact (2.4.), (2.6.) and all other rows are exact (2.5.) .  
0 0 0 

c - 
G m - s - I  + J c l y  

0 BYe,t,d - OJ?,,,, - - * * - 0 &,tJ - 0 &%s 

4 c 

-1 4 4 .1 
0 -  a,,t -f ,!2;,t +. . . + 8,t 

m--8-1 0 - 
A € Y ,  
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Now we will try to get similar results about Qi,t. Let 1 & { 1 ,  . . . , m }  be a subset 
and 

J 
i.e. L$ is the subset of  all differential forms which have at most Xi, i.$I in the do- 
minator. ITith this notation we have: 

.&':=grin,. and @=Gp.  
2.8. Proposition. For t s s ,  s f p  s m  

2.9. Corollary. 
Adf, - 

(i)  o 

(ii) G:t is a graded submodule of JZL; 
(iii) The graded sequence ( A )  is exact: 

- Q~T:,, -+i::i -. o 
is exact for all I ;  

- 
(iv) f ,  is a regular sequence of Qf. 

Proof  of 2 . 8 .  We will prove the proposition by using induction on t ,  s, m 
and 111 =card I. 

Xtep 1 : t = 0 and s = 1 m = 1 implies p = 0 and all is trivial. Suppose now the 
proposition is true for (m-1 )  variables and for m and all J Z ( 1 ,  . . . , m} with 
IJI=-III=l. We start with G E i p  such that G A d f , E & ' ~ ' .  We choose J 2 . l  mini- 
mal, such that &€&. Without restriction of generality we can suppose that 

J = ( l ,  . . . , l + l }  and 1 = ( 2 , .  . . ,Z+l>. 

Now we can write 

d X ,  
Q x* does riot depend on Xi. W e  are intrested to  find mi€@', such that W o A -  - -Adf ,=  

= o i A d f , .  Now let f,=Z fl , l ,  X i .  lye get woAdf,,o=O, since 
i=O 
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Now we apply induction hypothesis for (m - 1) variables together with 2.9. (i) to 
wo. This is possible becausefis non-degenerate. So we get 02cQf-2 (not depending 

on XI), such that o)o=wlAdf,,o. If we now put y =  - 21 X:df,,iA-- and uh= 

= o j l A ~ ,  theii woA 

- 

d X 1  
i = i  Xi 

9 

dX1 
Xi 

A d f l = w i A d f l  can easily be computed. 

Step 2 :  t = O ,  suppose the proposition is true for (8-1, u i ,  I), (8, m -  1 ,  I )  and 

(8, n i ,  J )  with lJl=-lIl. We start with @=c GiAdfi€@'+', G,E@. kVe look for 

wEQP aiid GiEQ;, such that 

8 

i = l  

6 - 1  

@= C Q : A d f i + c o A d f s .  
i = l  

With the same notations as in  the first step, we have 

8 - 
wi,oAdfi ,o=OCQ~ uithout X i  

i= i  - 
Again by induction hypothesis aiid 2.9. (i) for (8, ni - 1,  I )  we obtain 5iEf2,)T-2 not 
depending on Xi, such that 

a 

dX1 
j = l  xi 
!I 

Now putting yi= - ~ X { G ? ~ , , ~ A -  and using 

dX1 
X l  

df8,,A --Adf,=y;Adf, arid for i-=s 

we get 
8 

@= z' GiAdf i  
i= l  
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'Using the same notations as before we get 
8 t 

~ i , o A c l f i , ~ + C f ~ , ~ ~ ~ ; . , ~ = O - i i n  @' (without X , )  . 
i =  I j=i 

arcording to 2.8. (iv) it follows that 

ti€@-', qj€&' (not depending on X,) . 
Hence we get 

But by coilstruetion X ,  divicev the expression in the square brackets, hence the 
last summand belorigs to Q,P. The proof is finished. 

2.10. Corollary. For t s s 
-0 d d - O+@8, t - .0 , , t - -+ .  . ,+!2pt-8 is exact. (For t = O  this is the graded sequence (R)).  

P r o o f .  Il'e have to  show that 

This is done by induction in the same way as 2.8. For s=t=O it suffices to show 
for ~5€6$,.,.,~~, such that d6€df2:!,l,, that there is some WE@' with d a = d w .  We 

write 6 = w l + w u A  . Then of course d ( ruoA :::) = r l ~ ~ A ; * ;  EOf'', which 

implies don= 0, hence =drol. For the itiduction step we qalcalate like this :  
Assume 

dX 1 d X ,  
x 1 

d X  1 

, = I  j = l  xi 
1 

@=d6+ @iAdfi+ c fjqj alld @ A  ~ 6 ; ~ '  , 
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s 1 
6, @$, yjcGi not depending 011 Xi. Then d G + C  g i A d f i , o + z  f j , o q j = O c @  

(without Xi), hence we have all without Xi  in 6T-l: 
i= 1 j =I 

d X i  - 
Eut m*A EL?:, so we reduced it to 2.8 .  

Xl  
All we have to do now is to  look for the graded sequence (C). 

2.11. Corollary. f i  is u regular sequence of F: =GT;T/di2y;r-i. 
P r o o f .  For O s t - = r  we have to show that the last row in the diagramme is 

exact. But all the other rows are exact by (2.9. (iv)) and all columns are exact by 
(2.10.), hence the last row is exact too. 

- 

- f t + l  - 
0 +15;,t - Lyt +12:,t+, -0 

0 +Jzyt,-r--+ a:--' -LP-' r , t+ l  -0 

.Id .Id -Id 

j .  i .L 

-1 .1 
fi+i - 

.1 
0-y" - J't -yl+i - 0  

1. 4 v 

- f t+l  - 

- 

0 0 0 

3. POINCARE series 

With the same assumtion of f as in chapter 2 we will compute here the POIN- 
CAR& series of the6: using the exact sequences of (2,9.), (2.10.) and (2.11.). Let us 
start with some general facts about POINCARI~ series. Let G = @ G ,  be a graded 
K-algebra and .M = @ Afp a graded @-module, then 

P ( W = x  (dim&,) T q € Z ( ( T ) )  
QE 1: 

is called the POINGARB serie of M. Now it is not difficult to get the following pro- 
perties of POINCARE series : 
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3.1. Lemma. 
( i )  Let G = K [  Yi, . . . , XT]  be a free K-algebra and deg( Yi) =di, th,en P(G) = 

V1 i = l  
( i i )  Let 0 -iutyr+. . . -+ 2 c i , , - O  be a n  exact sequence of graded G-nzodules a d  dcg 

I =o  
( i i i )  Let hlCGq,,  . . . , hs€Gq8 be a regular G-sequence, then P ( G / ( h i ,  . . . , ha))= 

Now this lemma will be aliplied to our graded algebra A. Let CT be any subdivi- 
sion of simplexes of r, such that the vertices of these simplexes are exactly the 
points of I',fl!Wf. For any face d let (TJ,d be the set of all A 'EO such that d'cd is 
not on the boundary of  A and dim d'=d - 1. If A'Eo is such a simplex, we put  P ,, 
to be the set of the integral points of the half open parallelepiped defined by A' and 

=(l-TQ')  * .  . . * (t-Tf1S) P ( C ) .  

mid defined by d' with vertex 0. Here d,,=dim d'+ 1.  

3.2. Proposition. P(A) = C ( - V A T )  .. . 
/JEo 

oo&cr is the set of all simplexes which are not contained i n  a coordinate hpper- 

Proof .  We apply lemma 3.1. (ii) to the following exact sequences: 

plane. 

- 
O-tA + @ A , -  . . . -  @ A,-O 

A€ ym A €  'f'i 

We have to  show that P(A. , . )= .  V ~ * ( T )  . Let PI, . . . , ,ud be the vertices of 
(1 - pp 

3'€cr0, then h ( p i ) = l  and A,=K[Xc ' ,  . . . , Sd] is a free K-algebra with 

d .  Now we know that deg X E i = M .  By lemma 3.1. ( i )  we get P(AO) = 

Ad,= 0, X!A0 and we get 

1 
( l - T T -  

BE PA 

- Hence the proposition is proved. 
Now we areready to compute t h e P ~ m c ~ ~ k s e r i e s o f  QP. Let y &{l, . . . , W E }  be a 

subset. By A(Y) we will denote the ring K(Xi,, . . . , Xi,), {il, . . . , i,> = (1.  . . . , ni)\y. 

2) This sequence is exact as soqiience of K-vector spaces 
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Furthermore, let A['] = @ A(Y) (Xrrn1 =A) and be the corresponding graded 

algebra. Using proposition 3.2. we obtain 
IYl=m - 2 

and i # ) ~ c r  is the set of all simplexes contained in an 2-dimensional Coordinate 
hyperplane and not in a lower dimensional coordinate hyperplane. 
- Now let u s  have a look at the following exact sequences which one gets ximi- 
larly to  proposition 1.2. 

As a coiisequence we get 

If we sum u p  about all y with lyl=p, we get 

since every yf with Iy'I = 2 occurs exactly (7) (;) ( T)-i = ri 1 ;) t iines in this su rn. 

Now it  is not difficult to prove the following proposition : 

a 
ax, . . , 8Xin 

P r o o f .  We know that QP= @ . A d X , , A . .  . A d X $  and - gives 
i ,< '"<L P 

us ii surjective graded map of A to AdS, ,  A .  . . A d X i p  with cernel ~ u 
me get 

A(i). So 
it: lil ,..., ip} 

- 
This result we can use to  get the POINCARI? series of L?;. Using the esitct sequence 
of 2.5. (iii) we obtain 

if we notice that Adfi is a graded map of the degree deg ( Adf,) =deg fi=,wi). Re- 
peating this process we get 
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(with i=(.i, ,  . . . ,is), l i i= i t+ .  . .+is and (i, i l f -M)=i ,nal+.  . .+i,rn,). Now we 
can npplp 3.3. to obtain: 

Piiiallv we are interested in the POINCARI? series of 

- - 
\C'e know that f l ,  . . . , f, is a regular sequence of f2t-r/dai:-r-1 (Corollary 2.11.) 
and the sequence of Corollary 2.10. is exact. 

Using lemma 3.1. we get 

P ( V ' ) = ~ ( l - T " ' ) ( p ( ~ ~ - r ) + .  . . + ( - l ) r n - ' P ( q )  
i= 1 

+ ( - l)m--P+' P ( K [ f l ) )  . 
Now K [ f ]  is a free K-algebra ( f = ( / , ,  . . . , I,)) so we get 

P ( K [ f ] )  =i/ (1  - Tmi)-l . 
i = l  

By using this we obtain 
- m-r r 

k=U i=l 
P( V') = ( - 1)" - r + '  + c ( - 1 )k P(5E - r  - k )  n (1 - T"i) . 

W,e use 3.4. to obtain 

(using 3.2.). 

4. Proof of the theorein 

Let us first suppose that f is non-degenerate. Then we can apply the results of 
chapter 3. Now we know that  the MILNOR number of f i s  p(Q)=dirngY' (cf. [l] 
resp. chapter 1). On tlie other hand we have dirn,V'=P(V*)l,,,. I t  remains to 
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we get 

i.e. we just  have to sum up about all simplexes of maximal dimension of the corre- 
sponding coordinate hyperplane, respectively. Now 

c ( l - p y . .  . . . ( 1  -Trn')i'. 
jl + - + j r = m - I J - r  

C A T ) =  

( l - T r n ' ) * . . . - ( l - T r n ~ )  
(1 - T " ) d A  

Using m -I, = d, we get 

- C A T )  - .  
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This yields 

y ( -  i q p  P( v’) I T = ,  = ( - l )*a -r+ l  + d  
1 6  “ P - 0  

m -l,=d,, 

i + I  
X &  K-l n23;l+’ . . . . * n7; V,(l) . 

j l +  A&.=dJ-r  

Let us recall the notations of chapter 1 : 

mi r 

x,= a,=&! UJVI~ - . . . - M:. 
*ll ’ a = I  ~ 1 +  +j ,=d--r  

This means 

V, ( l ) .  
- n - r + l  2 (-l)?)Z-dd ’,A P( V’) IT=, = ( - 1) 

(m-ZA) d‘, ! 
J€o  
n1 - ld= d, 

V J 1 ) .  
lZJ ! 

Now we know that -- is just the volume of the (2-dimensional pyramid defined 

by il with vertex 0. All d-dimensional volumes of the d-dimensional simplexes 
together gi\ e tlie d-dimensional volumes of T - ( f )  and we get 

m 

d=r 

m--r+l z’ ( -  l ) ? f i - d l  v -y H h I T 4  = ( - 1) d d -  (rf9 lW) 

and the theorem is Imved i n  case f is non-degenerate. 
Let us now consider the general ease. 
Let V ,  be the K-vector space generated by the 

p = (p,,  . . . , pJ S:”’ * . . - SEy with h( p )  = X t ,  
(it - the function defined by the NEWTON polygon Tf). Furthermore, let V = V1 0 
@ . . . G-, V,, theti the inertial form fcr) of f is an element of V.  

4.1. Proposition. U =  {g E V ,  g noti-degenerate) & V contains a ZARISKI O p Y L  

dense siibset of V .  
Using the propositioii i t  is not difficult to prove the theorem i n  the general 

case. Suppose f is degenerate and consider the family F , = f + A  - g and gE U 
non-degenerate. Then FA is non-degenerate for almost all 2. Now ,u is upper semi- 
continuous, then p(Fo)  = p(DAy) sv (T f ,  &I), because p(P) =y(Tf, M ) .  The theorem 
is proved. 

Proof of proposition 4.1, : Let Us,,8 = (g E V ,  such that g:’) is non-degenerate}, 
d , ~ . s .  It  is enough to show that U,,* contains an open dense set. We can use the 
following lemma of KOUC‘HNIRENKO (cf. [4]) : 

4.2. Leiiima. Let 1 E y be a f m e  of r. The homogenous g,, . . . , g, E AA generate an 
R , -primwy idcnl iff for any face ,l’sA the polynomials g!”’), . . . , g f )  have no 
co))2mon zero in (li\{O})nl. 
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Remark. I f  A is in a coordinate plane defined by Xi, =. . .=Xjk=O then this 
lemma holds *if (K\{O})" is replaced by (K\{O))(y), y = { j , ,  . . . ,jk}. 

Let g E V ,  then g E L;d,o iff for all d' SA the ideal (gf"), 3(giA')))  has no zero i n  
(K\{O})" .  So it  is enough to show that the TY,.,,={gC V ,  s.t. (gf"'), 3(gf"))) has no 
zero in (K\(O})" contains an open dense subset for all faces A' of I' and all s, 
1 5 s  s r .  Now we fix a face A and choose an injective homomorphism v : Z" -Z" 
such that for a positive integer t :  v(d)5{(ni, . . . , nm), !nis0, n,=t) and points 
( 0 ,  . . , 0 ,  t ) ,  ( 0 ,  . . , Pm-1,1 ,  t ) ,  . . . , ( 0 ,  . . . , 0,  l)m-dd+l.dA-l,  . . . , t )  are in ~ ( d ) ,  
p i j  5.0. 

9 give us a finite injective homomorphism pl* : K[X] -K[XJ.  Let us suppose 
that (f:'),3(fy))) has a zero in (K\{O})m, then the ideal generated by f;') and the 

s-minors of (Tz) -~ has also a zero t=(Ei, . . . , Em), & + O .  Then y (4 )  is a zero of 

(?*fa('), s-minors of (!?;$:))) . For this reason we can replace A by ~ ( d ) .  If 

d,ss  because of the special type of A ,  we can construct a family of m,-regular 
sequences using polynomials with general coefficients ff') depending on X, only, 
f y )  on X,, Xm-i, . . . up to f z  depending on X,, . . . , Xm-dA+l .  If d A  =-s, we 
get fi(d)=Xai't  (g,(Xi, . . . , X,-,) -ai), a&K, i = l ,  . . . , s. By the same reason 
the g, form a regular sequence of K [ X ]  for f:').frorn an open set. 

?Ve consider the map o8 : Am-' -A' of the affin K-spaces given by gg(E, ,  . . . , 
tmm--l) = ( g i ( 6 ) ,  . . . , g'(6)).  Since g is a regular sequence, the set of critical values of 

ag, i.e. the set of all (a,, , . . , a,) €A6 such that gi(Q =ai and rank (ag' (6)) <s,  is 

contained in a proper closed subset of A'. So, for an open set Cg of A', we have that 

the ideal generated by g,-a,, . . . , g8-ab, s-minors of (:gj)) has no zero. 

Hence we found an open subset if,'"), g is a regular sequence and a€ Ug> contained 
in ?VA,#. Proposition 4.1. is proved. 

A moreusefull criterion for non-degeneration we find in the following situation : 

4.3. Proposition. Let M =  (1, , . . , 1) be the weight of f and let any face of I' be a 
simplex. If f i=CakX-a ,  fia rum over all vertices of r, the f is  non-degenerate i f f  
for all s s r  and all faces A of T with d, =s, vertices kji, . . . , E ~ ~ :  det(ai,ik) +O. 

4.4. Corollary. If any face of I' i s  a simplex, any equation f with r, n N" = 

.xi 

( 

Ir 

(vertices of the simplexes of r> is non-degenerate. 

P r o o f  of 4.3. Again using 4.2. we have to show that for any A and any s the 
ideal (f,"), %(IF))) has no zero in (K\{O})m. For d, 5 s  it  is trivially seen that 

( f i A ) ,  . . . , fc)) = (X%', , . . , X'jd) because the matrix of coefficients off$? has full 
rank. Hence our ideal contains rnonomials with all possible Xi, hence no zero is 
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from (K\(o})". For d,>s the ideal $ ( f f " )  is generated by rr) equations 

are linear independent, the matrix (det ( p k i f l ) )  has full rank and%@)) is gener- (3 
1'. i. i 8 .  

ated by the det (aij,) X?' 
in  (K\{O})"'. The proposition is proved. 

-'* , 1 s j < . . . <j8 s d. So again our ideal has 110 zero 

References 

[ 11 GREVEL, Q. bl., Der singulare GauR-?rIanin-Zusammenhang isolierter Singuleritaten von voll- 

[2] GREUEL, G. M., HAMM, H. A., Invarinnten quasihomogener vollstiindiger Dnrchschnitte, Inv. 

[J] HOCHSTER, M., Rings of invariants of tori, Cohen-Mncaulay rings generated by monomials, 

[4] KOUCHNIREXKO, A. C . ,  PolyGdres de Newton et nombres de Milnor, Inv. math. 34, 1-31 (1976). 

stLndigen Durchschnitten, Math. Ann. 214, 235-466 (1975). 

math. 29, 67-86 (1978). 

and polytopes, Ann. of Math. 96,318-337 (1972). 

Humboldt- Universitiiit ZZL Berlin 
Sektion JIathernntik 
DDR - 1086 Berlin 
Unter den Linden 6 

12 Math. Naehr. Bd. 110 


