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MiLNOR Number of Complete Intersections and NEwroN Polygons
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The main result of this paper will be a formula to compute the Milnor number
of an isolated complete intersection singularity using the Newton polygon. We
were inspired by the articles of KoucHNIRENKO [4], who gave such a formula
for hypersurfaces, and GREUEL and Hamum [2], who proved a similar result for
quasihomogeneous complete intersections with slightly different methods. We use
the filtrations of KOUCHNIRENKO to generalize the methods of GREUVEL and Hamm.

Let K bhe an algebraically closed field of characteristic 0, fy, ..., f.c4:=K{(X,,
., X, (the ring of algebraic power series over K in m variables X,, ..., X,),
r<m, such that Dy:=4/{f,, ....[,) is a n:=m —r-dimensional K-algebra with
isolated singularity. We ass'oc:la,te the Newton polygon Ff to Dy resp. f (f1,
., f): Let 9)?_,—U supp (f,), supp (3, a;,. i_th, c X;"n J={t:=(ig, ..., i) €

eN", a; = 0}, F, i the union of the compact faces of the boundary of the convex

envelop F(f of ,)J},+ N"in R% (R, the positive real numbers, N the positive inte-
ers

§ \)Ve can show that similar to [2] and [4] for almost all complete intersections f

the MiLNoR number u(®y) cf. [1]is equal to the NEwToN number »(I'}) of the po]yt

gon I ef.[4], i.e. to a suitably counted volume of the polyhed;on I (f)y:=
=(R% \T’ f)) UI,U{0} given by I}. -

1. The Newrox polygon and the main theorem

We will keep the notations of the introduction. To get a finite volume of the
polyhedron I'_(f) we have to suppose that the NewToN polygon intersects all
coordinate axes of R”, : ‘

1.1. I)eflmtlon The com plcte intersection fis called conveninent if M, N {(0, co
0,...,0),6,eNY£0, k=1,..., m.
In the paper of KOUCHNIRENKO[4] the NEWTON number v(F,) is just

m

S (—nymldry,,

d=0
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where Vy=1 V, is the m-dimensional volume of I'_(f) and V,(d<m) is the
sum of the d-dimensional volumes of the intersections of I'_( f) with all coordinate

plans of dimension d. If we have more than one equation, then the coefficients g
of the d-dimensional volumes will change and some more information of the f will

enter (cf. [2]). To make this precise we must look at the NEwToN polygon more
carefully.

As in the paper of KOUCHNIRENKO [4] we can associate a homogeneous map
h:R% ~R, to our NEWTON polygon such that A(I') =1: Let y,; be the set of closed
(d—1)-dimensional faces of I'(f) which do not lie on any coordinate plan. Any
A€y, is in a unique hyperplane given by & P, ;- X;=M. We will choose P,
such that M is the same for all 4 and gdc ({PM}M'.,,m’i:,,'_”m. My=1.

Then the P, ; and M are unique and

ha) =% min (@, P A€ pm}

(here eRL, P =(P,y, ..., P,,,) and (, ) is the scalar product).
With h we get a filtration on 4 given by
Ag:={f€cA. M-k (supp (/)) Sqg+N}.
It is not difficult to see that
A ApEAqsns qGOA(q)=O .

Let A be the graded ring given by this filtration. We can consider A to be the

polynomial ring K[ X, ..., X, ] with the multiplication

Xz Xe={§2+ﬁ if v ucK() fora dey,

= =0
(here K(A) is the convex cone defined by 4, i.e. the union of all lines in R”} through
0Oand 4; X=(Xy, ..., X)), v=(vs, ... ,9,)EN"and X2=X,"-...- X;™).

This graded ring A will play an important role in giving the connection be-
tween the MILNOR number and the NEWTON number. A can be described by the
rings A,=K[ X%, u€ K(A4)] of the faces 4.

1.2, Proposition. Let 4 be a face of I', then

(i) A,— A/l ,, I,=1deal generated by X, u¢ K(4),
(ii) A, is a graded Noctherian Cohen- Macaulay ring of dimension d,=dim A4+1,
(iii) The sequence O»A»AeEl—q)lmAd—» .,@ A,~...— @® A -0 given by the re-

A€ ¥ gy 4CWy

striction maps is an exact sequence of graded A-moduls.

Proof. (i) is trivial, (ii) cf. [8], (iii) of. [4].

In order to have good conditions to work at the 4,, we must add some condi-
tions on the f: By f@=(f{", ..., f") we will denote the inertial form of f in A
and call it the principal part of f, i.e. f;=f\" +F;, (P€Apmy A, 5 and f;ezi(mﬁ,).

mi g
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m m .
The sequence M =(-HI s u’) is called the weight of f. Furthermore we will
— \J . =
denote the restriction of f to the face A by f, ie.if f{"= 3 a;,- X¥, then
h(m =;er,
= 3 a, X
ek T T
m;
h@=,4,
of
For anv face A of I' the s-minors of (Xi J}-{) ,j=1,...,s, generate an ideal
A
3() in A, (here fO= (0, ..., ).

1.3. Definition. The equations f are called non-degenerate, if for any s, 1 ss=r,
and any face A of I', d,=s, the ideal (fO,J(f")) is w-primary (W,:=
=(X1, e oy Xm)mAA)'

1.4. Remark. Let (f,,J(f)) be wm,-primary, then
(i) f is a regular sequence in A,
(if) dim (A,/f°, $F)) =s —t—1 for t<s.

We will later show that almost all complete intersections f are non-degenerate,
i.e. more precisely, that the nondegenerate f contain a ZARISKI open dense sub-
set of all possible f.

Now we are able to define the Newton-number of the polygon I" with respect
to the weight M= (M,, ..., M,) and to state the main theorem.

1.5. Definition. Let V,, be the m-dimensional volume of I'_(f) and V4 the sum of
the d-dimensional volumes of the intersections of I'_(f) with all coordinate planes of
dimension d (if d <m).

m

’V(I‘,, M):= 2 (— 1)m“d/‘]'d'[/d+(_1)m—r+1

d=r

with
IRESIED YD KA hak

2l =d-r
1§ called the Newton-number of I'; with respect to the weight M.
1.6. Remark. If we have for the special cases
(i) r=1 and M =1, then };=d! (KOUCHNIRENKO'S case),

(i) My=...=M,=1, then ld=((:—:)d!

1.7. Theorem. Let Ty =A/f be an isolated complete intersection singularity with
the NEWTOI\;’ polygon I'y and the weight M such that f is convenient and MeN', then

p(®y) =v(ly, M) .

If moreover f is non-degenerate, then equality holds.
11 Math. Nachr, Bd. 110
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The proof of the theorem splits into several steps. The idea is like this: Let
Q}’i:z.Q”/dfjl\Qp""+. ot df Q7!
(27 is the free A-module generated by the differentials dX, ..., dX,) and
=0 /d; +k2? f4

(d is the differential). Then we know by GREUEL [1] that u(®y)=dim V".

The idea of GREUEL and Hamm (cf. [2]) in the quasihomogeneous case is to
compute dim ,gr(V’) in terms of the given weight of f and the degrees of the X; by
the following exact sequences:

0 /\dfs+1 Adfg 11

(A) 0+ 0 - — QP 0 0
(B) 0-K[fl-2 5 & 5 . .0
(C) 0Vl gyt g

We will show that the filtration of 4 induced by the Newton polygon can be exten-
ded to a “‘good” filtration of 27, such that the corresponding graded sequences are
also exact. Then the PoINcaRE-series of grQf can be computed in terms of the
NewToN polygon and one gets dimggr(V") =v(I;, M) under the assumption of the
theorem, f is non-degenerate.

2. A generalized pe-Ruam-lemma and applications

In this chapter we will always suppose f to be a comp]efe intersection, conven-
ient and non-degenerate. Now we are interested in defining a filtration at the Q7
given by the NEwTON polygon such that this filtration is compatible with the differ-
ential d. Tt is a little bit complicated since the canonical filtration of Q” given by

Qﬁ

w*

= ® AudX A . NX,

iy <<

does not have this property. So we have to go this way: Let
. P . dXx
Gri=Ady-@=@ A=

i=1 [ O]

the Newton polygon induces a filtration on Qr by

. A P
@ z‘,<»@<ip @ x,...X
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&f dx,

which is compatible with the differential d: > Z’ X;- X, X,

define for 0=s,t=r:

. . & . . t .
7=/ 21’ df[/\m-‘le’ f;27
i= i=

. Similarly we

with the induced filtration. The associated graded modules are denoted by

.Q”t =gr (Q",) or: —Q” is a free A-module of rank (p)

Now we consider Q7 as a filtred submodule of Q7 generated over K by the

o WXi N NAX
=,

‘l

P sueh the = =
,such that g, =1, ..., ,u,-p:] .

g

_ s t \ _
Let 20,:=gr (Q”/Z AN ij”), later we will see that 22, is a graded
= =

A-submodule of éj‘, Some difficulty arises because 27 is not a free A-module.
Thus our way to get exact graded sequences of the Q” will be to look first at the
.Q 7, and than to deduce some results about the Q 2

We willoften use the notation : if M isagraded fi-module, then M ;.= ® ;4,,

dXyN. . NIX;
for instance .Q’; is a free A4 ,-module generated over K by {X“ i f~)w‘(-—-- 2.
- 1'1 .. -

/_léK(A)} Now let p he a prime ideal of A4, not contained in Vf“),‘" (‘1)))

and A,::A_'/(]‘t), then (=) .(.}f,,,ﬁ,,@.‘,JAJ,” is a free A, ; ,-module of rank (mp—s).
Very useful for us is the following

2.1 Lemma. Let VX =_8pec A be a closed subset, M a finitely generated A-mo-
dule, then the restriction map I'(X, M) —~1" (X -V, M) is bijective (resp. injective) if
cod b} =dim V42 (resp. =dim V+1).

Now we can start with

2.2, D Ruam-lemma, If s=r, then
()cr»des,_—_dJ —p for di=p+s—1;
(if) 0 !2‘ - (LIJ .Q” - B 027, is cxact;

A€Wy g

/\df ~
(i) 0 - Q0" %6 Qr_, 070 isexact for p+s—1=m.1)

Proof. If p=0 ors=0, (i) and (ii) are fulfilled by (1.2.) and the fact that !:?ﬁ
is a free 4 ,-module. Let (i) a_nd (i1) be fulfilled for (s —1, p) and (s, p — 1), then we

1y d is the differential induced byti in the graded modules. Usually we will simply write d instead
of d,d, d ect. if the « onnectlon is clear. df; depends only on the initial form f§"’. But we will also not
distinguish between f;, /, s (J).
11
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show the lemma for (s, p). We regard the commutative diagramme:

0 0 0
! | |
v Y
: v-1 ¥ NP 0%
00— Qs — Qa—‘l - QS -0
v Vv v
or—1 s o7 oY)
00— @ 'Qs,J - ®'Qa—1,d - @Qs,_l -0
4 ¥y
! | |
} ; ‘
o1 A o o 0P
0~ ® & — @R 4> D, 0.
Aewp+s—1

By induction hypothesis the diagramme has exact first and second columns.

Over Spec A,— V(3(f,)) from the second row all is exact because of (x). Now
cod k2?7 =d —p+1=s=dim V(J(f,))+1, hence by (2.1.) all rows are exact. So
we get (i), (iii) and also (ii) by looking at the diagramme carefully.

2.3. Corollary, For 1 =s=r and p+s=m. The sequence is exact:
A Adfy =~

O—’ég_1 —"—>!’j;_1 -, . ___}Qg)_—l-‘l "’9"?-{”1 —-0.
2.4. Proposition.
(i) f, is a regular sequence of 2% for p+s=m;

(o022~ @ O ,». .~ @© % ,isexactfor p+s+2=m,t=s;
3 AEWm 1t Aé\”pﬂ; sty

(i) Qn 7 @ Qp 7 is injective, t=s.
S sz,

Proof. For t=0 (ii) and (iii) follows by (2.2.). Now we consider again some

diagramme:

0 0 0
v 1) v
- £ ~ ~
0~ X s Q8 B -0
{ v v
~ .ft —~ —~
0~ @ Q1 — @ 14> DL ,—0
A€ ¥y,
| | g
i , } !
Y ) g M
O"’ @ ‘Qgt—l,d'—’ @Qs’:t_i,d—"@.gf’t,d —'O .
A€¥p 45

Because [ is non-degenerate from (x), (2.1) and the induction hypothesis for
t—1 we get that all sequences are exact besides the last map of the third column.

But if p+s+2=m and w€ @ 7 4 is mapped to 0, then w has a preimage

4E¥y 1541

over all points of Spec A, outside V(f,_,J(f,)) which are induced by some ¢¢
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61”(_1 . Q;’,, There exist such a ¢ because of cod b2 g =d—p—t=s —t+2>
8 ]

=dim V(f,_, 3(f,)) +2 and (2.1.). The image of ¢ coincides with »» in y ‘p@ .Qs,,r_,
by the same reason. et

In order to proof exactness of the relative pE-RuAM-complex for _Q . we first
look at the restrictions to some A.

d A5 .
2.5. Proposition. For t=s and any face A, 0—R,, ,~22, | 5> ... ~ Q7" is
exact. R,,:=K[[L, ..., [PIC A, with induced grading.

Proof. step 1: s=t and localized at some p¢ V(fs, 3(]‘8) For s={=0 the
complex (2, d) is exact and strict, therefor the graded comp]ex is also exact and
the kernel of the first map is just KA.

We use induction on s. For 1\p<dA—s let we.QgM be homogeneous of
degree ¢, such that do=0. Let wEQ'!r fa—1,4 be a homogeneous representative of @,
then there are ¢,€Ds 1e—1,4 and € .Qsj 1,s—1,4 both of degree ¢ —m,, such that

do=df e+ fpi=dlfsr )+, (p —dey),
hence
0=df,A(pi—dg) +fdy, .

(7n—~s+1

1 ) at p and df, belongs to a free hasis. So

Now !}f_*il,s_ 1.1 18 free of rank
we get that
—dip,=0 in .Qg’s ;-
So again there are ¢, and y. of degree g —2m,, such that
yi—dq =2df, Ngat [
and we get
d (0 —[og0) =2f B Apsrt [ =d(f92) + 5 (p2+dg)
hence 0=/, (2df, A (v —dg.) +fdy.) and again
#a—dg,=0 in !}fym .
If we continue like this, we get for some I with
Img<q=(l+1) m,

py—dg,=0 in !25 1s—1.1 and therefor
d(o—fgi— . —[g)=0€00 ..

By induction hypothesis there exist ﬂ€é§:1%3-1, ;» such that o=f,¢,+. .. +fp+dp
hence
D =dije Qi)
(respectively for p=1: w—fp,—. .. —f'pc K ie. @€ K.)
Step 2: s=>t, localized at some p¢ V(f,,J(f,)). Suppose the proposition is true
for (s—1,£). Choose @ as in the first Sté])‘ Let we.ég’:,{,, 4 be a homogeneous re-
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presentative of @, then there exist some ¢1EQ “ 4 of degree ¢ —m,. such that

do= dfs A P1
hence

0=df, Adp € Q1
But df, belongs to a free basis of Qr ¥4 8t P, hence
do,=df, A@,, —degree @.=q—2m, .
Similarly to the first step we get for some 1:dg;=0. For p=2 this means ¢,=
=d1p,€.9~§":1{,’ 4- Going back we see
dg, - =df,\dy,_y = —d (df, Ay 1)
hence
gt Ay =dy_y
and so on . .. hence dw=df, Ady, which implies
o+dfANp,=dy, and o= d!pOE.Qa,A .
For p=1:¢,c®_,, 4. Going back we see
do, =g, df,=dlf,p), hence ¢4 "‘fa‘PlEﬁa 1,4,
and so on ... Finally o —f9€R, 1,4, 1.€. D€ER,, -

Step 3: The sequence 0, ,—.. .——éff,”f is exact outside the closed set
V(f.8(f,)) of dimension max {0,s—¢—1}. But codh !53,,,4 =d,—p—t and using
(2.1.) it is not difficult to see that the sequence is exact everywhere.

2.6. Remark. 0-®,,~ @ &R,,,—...~ D &,,, is exact.

acw, A

The proof is the same as in 1.2. (iii) knowing that f is a regular sequence in
A, d,=s.

2.7. Corollary. For t=s 08,0, L 5 onoeis exadt.

Proof. The first row is exact because in the following diagramme all collumns
are exact (2.4.), (2.6.) and all other rows are exact (2.5.).

0 0 0
Lo ! i
0— K — Q;‘J - Q:’ff”‘i—» o
v V | v
0—~ @ ﬁo,t,A"C’B-Qg,t,J—’---"@Qm - 1"@ atA
AWy,
¥ 4 )
' { i
0—~ @ 9”4*(439“4—»@!28“
dEWs 1y
v 4

0~ @ 8,4 ®'Q:,t,A
4w,
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Now we will try to get similar results about .5;,,,. Let IS{1, ..., m}beasubset
and

A J i dX; A . .AdX,)

Qpi=ioe@ o= Xl g

iy <-~~<ip 1] '

l } a/nd X’[k/fil"'ip if ikQI ]
i.e. !jf‘ is the subset of all differential forms which have at most X, i€1 in the do-
minator. With this notation we have:
fl}’::gr Q}’ and !5{;:!3,, .
2.8. Proposition. For t=s,s+p=m
5 t - - LI ¢ -
(2 @t 3 10 )ndpei= 37 Gpnarer 3 10
{=1 i=1 i=1 j=t
2.9. Corollary.
. Ay = 0 g
() 090, — QP ;007" ~0

is exact for all I;

(if) .Q", is a graded submodule of Q,,;
(iii) The graded sequence (A) is exact:

—  Adfy — —
00— 2_1—‘—’- . .".in—ll —*.Qf-H—»O

(iv) f, is a regular sequence of .(—J—f.

Proof of 2.8. We will prove the proposition by using induction on ¢, s, m
and [I|=card 1.

Step 1: =0 and s=1 m=1 implies p=0 and all is trivial. Suppose now the
proposition is true for (m —1) variables and for m and all JE{1, ..., m} with

|[Ji=]I]=1. We start with @€ 0P such that (D/\dfie.(}f'“. We choose J DI mini-
mal, such that @€ Q9. Without restriction of generality we can suppose that

J={1,...,l+1} and I={2,...,1+1}.
Now we can write

dX ~ -
=wn/\X x+w1, 0, €27 and w P!
1

dX,
does not depend on X . We are intrested to find wog.Qp, such that wOASI - Adfy=
=w, Adf,. Now let f1—2 fi Xi. We get wgAdf, 0=0, since

dX -
wo/\}f/\dfiegf:“.
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Now we apply induction hypothesis for (m —1) variables together with 2.9. (i) to

. This is possible because fis non-degenerate. So we get w,€ 2} ~* (not depending
LA dX ,

on X,), such that wy=w,Adf, . If we now put ¢= — Edef,,i/\i—l and wy,=

d i=1 1
=A@, then wyA /\dfl- wy Adfy can easily be computed.

Step 2: t=0, suppose the proposition is true for (s—1, m, I), (s, m—1, I) and
8 ~ ~
(s, m, J) with |J|=>|I]. We start with ®= 3] o, Adf,€ 2}, &,€04. We look for
=1

w€ 2P and @y €2%, such that
s—1
&= Y o;A\df;+ o Ndf, .
=1

With the same notations as in the first gtep, we have

' dXxX
J)A:wzo/\ ’,{,1"' W; and (pUtting fi E'f”‘Y )

A j=0

8§

;o A\df;y=0€ !5‘," without X,.
=t

Again by induction hypothesis and 2.9. (i) for (s, m —1, I) we obtain §ie!§}’ ~2 not
depending on X, such that

8
ws,o=_2 fz/\dff,o .
. X
Now putting ¢;= ZX af ;A\ amd using

X
dst/\X ‘Ndf,= g Ndf, and for i<s
1

dX, dX
df o A /\dfs+dfao ,‘Adfi=q>mdfs+w\dfi
1

we get

S
I
b«,

Ndf;

1
-1

ﬂa‘ﬁ‘

ix o1 dX,
Y l)l\dfﬁ Y ENdfuo N /\df,
“q

i=

(cbi —&Ndf oA

I
-

+

dX
@; =& Ndf o N '}+fi/\%) Ndf;

Xy

i
W -
l |
——

i=1

+(we,1 + 2 £i/\q’i)/\dfa .
i=1
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Now we have finished by putting

i dX =
@; :(;,i—-fi/\dfs’”/\—?--!-}—E.i/\%E-Q;
“*q

and
w=w,, +_281’ rft-/\qm-E!}f' .
Step 3: Suppose é;le proposition is true for (t—1, s, m, I), (¢, s, m —1, 1) and
(t, s m, J) with |[J|=>]|I]. Let
qs:j; cbt-/\dfi—i-z;' Ly €2, b.e@n,  qent.
i= i=
Using the same notations as before we get
Z;’ oy Ndf o+ 21' fiofs0=0—in 0 (without X ).
i= iz

according to 2.8, (iv) it follows that

(/)t(i 2 5 /\dftu'i" 2 f]Of']]'

5,;6!2:}"1, 1;,-6!2}‘. (not depending on X,) .

Hence we get
i1

¢:i§v<@rﬁ5¢./\d )/\df+2fj(¢7+fm, ;1)
e S0 50 5)

But by construction X, divices the expression in the square brackets, hence the
last summand belongs to £27. The proof is finished.

2.10. Corollary. For t=s
O—».@“»a@,t L .gé’,ﬁ‘t"’ is exuct. (For t=0 this is the graded sequence (B)).

Proof. We have to show that
- 8 4 - - 8 _ t -
(dQ”-I—Z .Qp/\d-fi+2f,-Q"'“)ﬂ.Q}’“:d.Q%’-i—2 .Q‘}’/\df,--i-z fj.Qf’“ .
=1 j=1 i=1 j=1

This is done by induction in the same way as 2.8. For s=t=0 it suffices to show

for J)E!}{ O such that dwé!)”“f‘ ap that there is some w¢ Q” with dd=dw. We

1X X, dX,
write d;:wl-i—wo/\( 1. Then of course cl(wo/\ ) dwgA——€Q?*!, which
X, X, X,
implies dw,=0, hence do=dm,. For the induction step we calculate like this:

Assume
[A l

Qll+1
X, €

s ¢
O=da+ Y §:Ndf+ Y] fp; and PA
i=1 j=l
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@, F y),e.Q, not depending on X,. Then dw+2 q),/\dfm—}-Zf,oyJ, OE.Q,

(without X ), hence we have all without X, in Q7 1

& =dy +i§ @ Ndfio +j§ fioWs
(fi; 88 in 2.8.) and
G=da+ 3] dp\dfi— 3] difw) — 3 windf;
+2fﬁd%'—2 d‘Pi)\dfi+2 @i/\dfrl'z 1i9;
=d (& —dn— 3/ e Ndf;— ) f)+ Y] (@ +de) A

w*

=) wiNdfi+ 3 i (dw+ ) -

dX, - .
But w*A X €0¥, so we reduced it to 2.8.
1

All we have to do now is to look for the graded sequence (C).

2.11. Corollary. f, is a regular sequence of V' =§:',‘,"'/d!—2-§"‘,”"1.

Proof. For 0 =t<r we have to show that the last row in the diagramme is
exact. But all the other rows are exact by (2.9. (iv)) and all columns are exact by
(2.10.), hence the last row is exact too.

—_ fro1 —= —
0 + 0 0
0 _"Qr,t — 'Qr,t RSN -0

‘Ld ¢d J'd
¥ v v
—n—pTt+1 -
02— 'Q;”t e :nt+l 0
v > XS
07 fit1 7 Pt
v 3 v
0 0 0

3. Poincare series

With the same assumtion of f as in chapter 2 we will compute here the PoIn-

CARE series of the .5}’ using the exact sequences of (2.9.), (2.10.) and (2.11.). Let us
start with some general facts about POINCARE series. Let G=® G, be a graded
K-algebra and M =@ M, a graded G-module, then
P(M)= )] (dimgM,) T*€Z((T))
g€z
is called the PoINCARE serie of M. Now it is not difficult to get the following pro-
perties of POINCARE series:
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3.1. Lemma.
(i) Let G=K[Y, ..., Y,] be a free K-algebra and deg(Y)=d; then P(G)=

=ﬁ (1—T1"9)-1,
i=1

(it) Let 0——117,(-";. . .gﬂﬂ—»o be an exact sequence of graded G-modules and deg
.

(pi:di’ then 2(— 1)1 Td1+m+d£P(Mi):O-

1=0
(iii) Let hi€Gy, ..., heG, be a reqular G-sequence, then P(G/(hy, ..., k,))=

=(1=T" ... (1-T") P
Now this lemma will be applied to our graded algebra A. Let ¢ be any subdivi-
sion of simplexes of I'; such that the vertices of these simplexes are exactly the
points of I'yNMW;. For any face A let o, , be the set of all 4’ o such that A'c 4 is
not on the boundary of 4 and dim A’ =d — 1. If A’ €¢ is such a simplex, we put P,.
to be the set of the integral points of the half open parallelepiped defined by A4’ and

v4.(1

v, (T):= 3} T""® . Then ;(‘—) is just the volume of the d,-dimensional pyra-
e P A

mid defined by A’ with vertex 0. Here d . =dim 4’4 1.

ops = _ v(T)
3.2. Proposition. P(A)= 3/ (—1)" 92 77
f? (1™

o9& o is the set of all simplexes which are not contained in a coordinate hyper-
plane.

Proof. We apply lemma 3.1. (ii) to the following exact sequences:

0-4 -~ @ Agj—...— @ A,~0

agw, Acy

0-4,~ Ay~ ..~ A, ~0?

1 A'GC?A,J a A'QAJ 4 )
v, v (T) .
We have to show that P(4,)= g, - Let py, ..o, ug be the vertices of
| (1 7y
A€oy, then h(p)=1 and A,=K[XY, ..., X% is a free K-algebra with
. 1

deg X*'= 1. By lemma 3.1. (i) we get P(Ao)z(1 'TM_)"_' Now we know that

A,= ® XtA,and we get

BEP)

(T
P(A,)= }] P(Xt4)= )Y e pag= 3;«:
HEP - HeP (1=17)

Hence the proposition is proved.

Now we areready to compute the POINCARE series of Q7. LetyS {1,...,m}bea
subset. By 4% we will denote the ring KXy oo X {ip -y ={1.... ,m}\y.

2) This sequence is exact as sequence of K-vector spaces
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Furthermore, let A= @ A% (A™ =4) and A” be the corresponding graded

IYl=m—i
algebra. Using proposition 3.2. we obtain
1 ~ay _V4(T)
P(AY) = (— 1)’ dy _Za\7)
2

and ¢¥Zo is the set of all simplexes contained in an I-dimensional coordinate
hyperplane and not in a lower dimensional coordinate hyperplane.
— Now let us have a look at the following exact sequences which one gets simi-
larly to proposition 1.2.

0—~(U A(y)) N @ AD @ A% . LAV 0.

icy Juia€y
As a consequence we get

UA(J))_ 2( 1)l+i P(A("))

jey 1 1
=t
v’

Ilﬂ‘— it

4
If we sum up about all y with }y|=p, we get

2 P U A(?)) Z 1)l+1 P(fi[m'”) ("Z:;)

ivi=p i€y

-1 _
since every ' with |p’| =1 occurs exactly (Zlo ) (Z:) (";) =(?z B ;) times in this sum.

Now it ig not difficult to prove the following proposition:

2 -1
fim-11
3.3. Proposition. P(Q: l é‘: ( l) (A™7).
0
Proof. We know that 2= @ AdX, A...N\dX, and - gives
iy <7 iy » M ex, . eX,
us a surjective graded map of 4 to AJXM/\' ..AdX, with cernel U AP, So
we get FEL i pernsip}

4 P(é") ( ) Zp] 1)+ ("n l) (A[m iy
» =1 r-

This result we can use to get the POINCARE series of .Q}’e. Using the exact sequence
of 2.5. (iii) we obtain

_p » lmaP ép-—i

GRS
if we notice that Adf,;is a graded map of the degree deg (Adf,) =deg f;=m;). Re-
peating this process we get

P(.Q,)— 37 (—1)iparm PP~

nN=lil=p
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(with i=(iy, ..., %,), li|=t,+...+i; and @& M -M)=im+...+im,). Now we
can applyv 3.3. to obtain:

3.4. Proposition. P(Q})= Y] (_l)lw(pjzl—_lm)'T“'M'm PA™.

0siFlil=p

Finally we are interested in the POINCARE series of
— — r —
v __Om-—r 7 —r—1 m—1
VI=pTT Aoy +.217 [
} =

We know that fy, ..., f,is a regular sequence of ?)}f"/dﬁ;’;‘“‘ (Corollary 2.11.)
and the sequence of Corollary 2.10. is exact.
Using lemma 3.1. we get

P(V’):ié:j (1 —T™) (P@2 ) 4. . .+ (=)™ P(Q})
+(=1)"" P(KIS)) -
Now K[f]is a free K-algebra (f=(f,, . . ., f,)) s0 we get
PIf) =[] (1-1")1.
By using this we obtain

(V’)—( m r+1+2 (_1 Qm r—L) (I_Tmz) .
k=0 i=1
We use 3.4. to obtain
<Vr): _ m r+l+[] 2 (_1)l+]i[+k

Osl+lil+lc§m—r

m—1 (i, M- M) Alm—ti
><(,+kTm)T P(At)

r . _
:(—l)m_r+1+n(1—Tmi) 2 (_1)11|+k dg+m
i=1 Oslii+ksm—r—i,

A€o(m_ld>
( m—1, )TO'.M-M‘ @A(T)
. AT
r+k+|i (1—T)%

(using 3.2.).

4. Proof of the theorem

Let us first suppose that fis non-degenerate. Then we can apply the results of
chapter 3. Now we know that the MiLNoR number of fis u(®,)=dimgV" (cf. [1]
resp. chapter 1). On the other hand we have dimg V"= P(V")|4..,. It remains to



174 Martin/Pfister, Milnor Number

show that »(I;, M)= P(V")|y-,. Using the last result of chapter 3 we can write

PV =(—1)" r+1+17 Y (mpfrErn
() il +k=m—r—14
J€u(m—l‘4)
( m—1, )T@,M-m_pﬂ_(T_?_ .
r ki (17"

If we write shortly

. - | 3
C (T)Y= —1 |n|+k( m _1.) VM)
A0 OélinéZmY—ld—r( ) r+k+ [

L,
u§lif§2my—td—r(Oékém—zl;—r—lil(— ) (7’+Ic+ll|

_ 27 (1)|i| (m 1, —‘_1) A,

Oslil=m—l —r r—14Ji

- > =Ty =Ty

Ji+ -t =m=lg-r

)) (_ ])lil T(f,M'M}

we get

1—7")
P(V)=(-1)" "'y 37 (—1)”‘““.‘H( — - C(T)- VAT).
J&a(m ) ( TJI)L -

In T=1 C(T) has a zero of order m —1l,—r=d,—r (because A< (m —I,)-dimen-
sional hyperplane and d ;=dim 44-1). So we obtain

PV) lpoy = (=" 744 3 (-

_'liu(m—l)
I7a-1"
%‘W“ cOT) - VAT 1y

l.e. we just bave to sum up about all simplexes of maximal dimension of the corre-
sponding coordinate hyperplane, respectively. Now

0,(T)= x A—-T™ (=T

J i mm—T =y
Using m—1,=d, we get

T i WY B i
A (1—T")d" -~ O, (T

-t DRI s CRRP PR (T L L

M4
(1-T )A11+ ‘tip=d gt

(14T 4. .. 4 TH-1) % PN ]7(1+T+...+Tm’"’)j"‘“.

Gy dmdg—r B=1
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This yields
P(I_/r) |T=1=(_1)m—r+1+ 2 (_l)m-d_l JI_dA
JEn(m"'l)
m—1,=d,
X P mitthe L YLy

fyto i =dg—r

Let us recall the notations of chapter 1:

M="0 h=d [TM, Y MM

i=1 Ju+Hip=d-r

This means

= m—d Ada
PV) lpoy=(=1"7* 37 (="M A v,
4 (m—-i_,,) dJ’
,Eg
m=lq=d,

Vv, . .

Now we know that [J(i—) is just the volume of the d-dimensional pyramid defined
4 2K

by 4 with vertex 0. All d-dimensional volumes of the d-dimensional simplexes

together give the d-dimensional volumes of I'_(f) and we get
pu— m

P( ‘VT) IT=1 = ( - l)m*r-‘-l 27 ( - l)m—d j’dVd:v(Ff’ M)
d=r

and the theorem is proved in case f is non-degenerate.
Let us now consider the general case.
Let V; be the K-vector space generated by the
Xy Xor with R(p)=Mi, u=(py o )
{(k — the function defined by the NEwToN polygon I7). Furthermore, let V=V ,®
@...&V,, then the inertial form f of f is an element of V.

4.1. Proposition. U={gcV, g non-degenerate} SV contains a ZARISKI open
dense subset of V.

Using the proposition it is not difficult to prove the theorem in the general
case. Suppose f is degenerate and consider the family F,=f+1-g and geU
non-degenerate. Then F, is non-degenerate for almost all 2. Now pu is upper semi-
continuous, then u(Fo)=u(®y)=v(ly, M), because u(F)=v(I;, M). The theorem
is proved.

Proof of proposition 4.1.: Let U, ,={g¢ ¥V, such that g{* is non-degenerate},
d,z=s. It is enough to show that U, contains an open dense set. We can use the
following lemma of KOUCHNIRENKO (cf. [4]):

4.2. Lemma. Let 1€y be a face of I'. The homogenous gy, . . . , g, € A, generate an
W -primary idcal iff for any face A’ A the polynomials ¢{*°, . . ., g5 have no

common zero in (K\{0})™.
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Remark. If A is in a coordinate plane defined by X; =. . =X, =0 then this
lemma holds if (K\{0})™ is replaced by (K\{O})™, y={j1 - .., s}

Let g¢V, then ge U, iff for all 4'S4 the ideal (¢¢"”, 3(g¢*?)) has no zero in
(K\{0})™. So it is enough to show that the W,.,={geV, s.t. (g, J(g*"")) has no
zero in (K\{0})™ contains an open dense subset for all faces 4’ of I" and all s,
1=s=r. Now we {ix a face 4 and choose an injective homomorphism ¢ : Z™ ~Z"
such that for a positive integer ¢: p(A)S{(ny, ..., n,), n;=0, n, =t} and points
0, ...,0,8),(0,...,Pp_44t)y-..,(0,...,0, Pr—dys1dg—10 - -+ 8) are in o(4),
p;>0.

@ give us a finite injective homomorphism ¢, : K[ X]— K[X]. Let us suppose

that (f,3(f¢")) has a zero in (K\{0})™, then the ideal generated by f*> and the
(d)

s-minors of (—L) has also a zero £=(&y, ..., &,), &+0. Then ¢(&) is a zero of

ox;
(4)
(cp*f,("), s-minors of <3<P*fi_
ox;
d,=s because of the special type of A, we can construct a family of mi -regular
sequences using polynomials with general coefficients f{*> depending on X,, only,
fi%on X, Xpp_ys - .. up to f§) depending on X,,, ..., Xp_g i1 I dy>s, we
get fN=x"" (9Xy ..., Xp_()—a;), a,€K, i=1,...,s. By the same reason
the g, form a regular sequence of K[X] for f from an open set.

We consider the map o,: A™ ! A’ of the affin K-spaces given by o,(&y, . . ..

>) For this reason we can replace 4 by ¢(4). If

En-1)=(91), - . ., g,(§)). Since g is a regular sequence, the set of critical values of
o, i.e. theset of all (a4, ..., a,) €A’ such that g(§)=a; and rank (o‘gs (5))<s, is
)

contained in a proper closed subset of A*. So, for an open set U, of A, we have that
. [ 99;

the ideal generated by (gl —~@y, . . . §y—0&,, S-minors of (»f{’)) has no zero.
o .
?

Hence we found an open subset {f), g is a regular sequence and @€ U, } contained

in W, ,. Proposition 4.1. is proved.
A more usefull criterion for non-degeneration we find in the following situation:

4.3. Proposition. Let M=(1, ..., 1) be the weight of f and let any face of I be a
simplex. If f;= )] a,-«XE"‘, U, Tuns over all vertices of I', the f is non-degenerate iff
for all s=r and all faces A of I with d,=s, vertices y;,, . . . , u;,: detla;;)=+0.

4.4. Corollary. If any face of I' is a simplex, any cquation f with I\ N™=
{vertices of the simplexes of I'} is non-degenerate.

Proof of 4.3. Again using 4.2. we have to show that for any 4 and any s the
ideal (f@, 3(f?)) has no zero in (K\{0})™ For d,=s it is trivially seen that
i, ..., f,‘,‘:l))—_—(XE"‘, ..., X" pecause the matrix of coefficients of 1) has full

rank. Hence our ideal contains monomials with all possible X, hence no zero is
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from (K\{o})". For d,>s the ideal J(f¢) is generated by (?) equations

of$h H YR
det ('X’f g 7'_)2 E det (/tkjl) det ((t,-]) X ! b. Sil’l(‘e the ‘tl‘ ey ’ld
¢ 0'4\1' 0=fy < <jg=d ‘ ‘

are linear independent, the matrix (det ("kﬁ'z)) has full rank (f) and §(f) is gener-

rotp

ated by the det (a;;,) x ™ 1=j,<...<j,=d.Soagain our ideal has no zero

in (A\{0})™. The proposition is proved.
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