Bernd Martin and Gerhard Pfister

Let $f \varepsilon[\{\underline{X}\}$ be an analytic function with isolated critical point at $0, \underline{X}=\left(X_{1}, \ldots, X_{n}\right)$. An important topological invariant is the Milnor number $\mu(f)=d i m C Q(f), Q(f)=C\{\underline{X}\} /\left(\partial f / \partial X_{1}, \ldots, \partial f / a X_{n}\right)$.
The idea to study the following technique of "distinguished deformations" goes back to a question of V.I.Arnold (cf.[I]):

Is the μ-constant stratum in the miniversal unfolding of f smooth? A positive answer is known in the following cases: $n=2$ (cf. $[6],[7]$), if f is semi-quasihomogeneous (cf. [9], resp. for the homogeneous case cf. [2], [8]).
A. Nobile (cf.[4]) introduced the idea of a-deformations, deformations fixing the Hilbert-Samuel-function $H_{f}(\ell)=d i m C Q(f) / \underline{m}^{\ell+1}$ of the algebra $Q(f)$. We connect this idea with the methods of Briançon (cf. [2]) to study distinguished deformations of an ideal of finite codimension (applied to the Jacobian ideal) to study the a-deformations in more detail.

We consider here only plane curve singularities ($n=2$), probably the results are also true ${ }^{i n}$ higher dimension.

First we introduce the notion of a vertical standard base and the stair-sequence $E(I)$ of an ideal $I(c f \cdot[2])$. Then we associate a stair-sequence E_{Γ} to a Newton polygon Γ such that for almost all functions f with $\Gamma(f)=\Gamma$ and Jacobian ideal $j(f)=(\partial f / \partial X, \partial f / \partial Y)$ $E_{\Gamma}=E(j(f))$ holds.

In the third chapter we consider distinguished deformations of f in a fixed coordinate system:

A deformation ($F, \boldsymbol{\xi}, \eta$) of f and the coordinates X, Y over A is called distinguished if $A\{E, \eta\} /(\partial F / \partial E, \partial F / \partial \eta)+\left(E_{n}^{a} \eta^{b} \xi^{a+1}\right)$ is A-flat for all a, b (here A is a local analytic algebra).

This is slightly stronger than normal flatness of $Q(F)=A(F, \eta) / O F / \partial \xi$, $\partial F / \partial \eta)$ over A along (ξ, η) which is required for a-deformations. The canonical morphism from the distinguished deformation functor to unfoldings is an embedding and the functor admits a hull.

For E_{Γ}-nondegenerate functions (cf.2.2) the reduced d stinguished deformation functor is smooth and any μ-constant deformation over $C\{T]$ is distinguished.
§1. Vertical standard bases and stair sequences
Let A be a local analytic C-algebra. We fix the lexicographic order in N^{2} (N the positive integers).

For any $f=\left\{a_{i j} X^{i} y^{j} \in A\{X, Y\}\right.$ let $d(f)=\min \left\{(i, j), a_{i j} \neq 0\right\}$ denote the bidegree and in $(f)=a_{k \ell}$ for $d(f)=(k, \ell)$ the initial form. Note $d(f)=(i, j)$ iff $f=X^{i} g(X, Y)$ and $\operatorname{ord}_{Y} g(0, Y)=j$.

Definition 1: The stair-diagram of an ideal $I \subseteq A\{X, Y\}$ is the additive semigroup $\tilde{E}(I)=\{d(f), f \varepsilon I\} \subseteq N^{2}$ and the stair-sequence is the finite minimal base $E(I)=\min \left\{E, E+N^{2}=\tilde{E}(I)\right\}$ of $\tilde{E}(I)$.

Obviously we have

$$
\begin{aligned}
& \tilde{E}(I)=\left\{\left(i_{0}, j_{0}\right), \ldots,\left(i_{s}, j_{s}\right)\right\} \\
& 0 \leq i_{0} x i_{1}<\ldots<i_{s} \\
& j_{0}>j_{1}>\ldots>j_{s} \geq 0
\end{aligned}
$$

Definition 2: A base $\left\{f_{0}, \ldots, f_{s}\right\}$ of I is called (vertical) standard base, if $\left\{d\left(f_{k}\right)=\left(i_{k}, j_{k}\right)\right\}=E(I)$.

Remark: If $A=C$ than any set $\left\{f_{o}, \ldots, f_{s}\right\} \subset I$ with the property (1) is a
base of I and there is a unique standard base of I given by the condition

$$
\operatorname{supp}\left(f_{k}\right) \cap \tilde{E}(I)=d\left(f_{k}\right) .
$$

\}2. The stair sequence of the Jacobian ideal and the Newton-polyhedron of f

2.1. The stair sequence

Let Γ_{+}be the Newton-polygon of a function $f:\left(C^{2}, 0\right) \rightarrow(C, 0)$ with isolated critical point at $0\left(\Gamma_{+} \cap N^{2}=\operatorname{supp}(f)+N^{2}\right)$. Let $E^{\prime}(\Gamma)=\left\{\left(\gamma_{0}, \delta_{0}\right),\left(\gamma_{1}\right.\right.$, $\left.\left.\delta_{0}-1\right), \ldots,\left(\gamma_{\delta_{0}}, 0\right)\right\} \subseteq N^{2}$
with
$\left(\gamma_{0}, \delta_{o}\right)=d(f)$ and $\gamma_{\ell}=\min \left\{\gamma,\left(\gamma, \delta_{0}-\ell\right) \varepsilon \Gamma_{+}\right\}$
and let us denote by $E(\Gamma) \subseteq E^{\prime}(\Gamma)$ the minimal base of $\Gamma_{+} \cap N^{2}$. Let $F^{\prime}:=\sum_{\ell=0}^{\delta_{0}} Z_{\ell} X^{Y_{\ell}}{ }_{Y}^{\delta \sigma_{0}^{-1}} \varepsilon Z\left[Z_{0}, \ldots, z_{\delta_{0}}, X, Y\right]$ and $F_{\Gamma}=\left.F_{\Gamma}^{\prime}\right|_{E(\Gamma)}$.

For $k=\left\{\begin{array}{lll}6_{0}-1 & \text { if } & \gamma_{0}=0 \\ \delta_{0} & \text { if } & \gamma_{0}=1\end{array}\right.$ we write the derivatives of F_{Γ}^{\prime} in the following form:

$$
\begin{equation*}
\partial F_{\Gamma}^{\prime} / \partial Y=\sum_{\ell=0}^{k} a_{\ell} Y^{k-\ell} \text { and } \partial F_{\Gamma}^{\prime} / \partial X=\sum_{\ell=0}^{k} b_{\ell} Y^{k-\ell} \tag{2}
\end{equation*}
$$

with $a_{\ell}, b_{\ell} \varepsilon[[\underline{z}, x]$.
Let $R_{\ell}\left(F_{\Gamma}^{\rho}\right) \varepsilon C[\underline{Z}, x]$ be the left side upper $(2 \ell, 2 \ell)$-minor of the $(2 k, 2 k)$ matrix

$$
\left(\begin{array}{ccc}
a_{0}, \ldots \ldots, a_{k}, 0 \ldots \ldots, 0 \tag{3}\\
b_{0}, \ldots \ldots, b_{k}, 0 \ldots \ldots .0 \\
0, a_{0}, \ldots \ldots, a_{k-1} a_{k}, 0 \ldots 0 \\
\vdots & & \\
\vdots & b_{0}, b_{1}, \ldots . & b_{k}
\end{array}\right)
$$

Now for $\ell=0, \ldots, k$ let us denote by $r_{\ell}(\Gamma)$ the order of $R_{\ell}\left(F_{\Gamma}^{\prime}\right)$ with respect to $X\left(r_{0}=0\right), a_{\ell}(\Gamma)=r_{\ell}(\Gamma)-r_{\ell-1}(\Gamma)\left\langle a_{0}=0\right)$ and let E_{Γ} be the base of

$$
\bigcup_{0}^{k}\left(\alpha_{\ell}, k-\ell\right)+N^{2}
$$

Lemma: (i) $R_{\ell} \neq 0, \ell=1, \ldots, k$

$$
\text { (ii) } \alpha_{\ell-1} \leq \alpha_{\ell}, \ell=1, \ldots, k
$$

2.2. E_{r}-nondegeneracy

Definition 3: f is called E_{Γ} nondegenerated if $\Gamma(f)=\Gamma$ and $r_{\ell}\left(\left.f\right|_{E \prime}\right)=$ $=r_{\ell}(\Gamma)$ for $\ell=1, \ldots, k$.

Remark:

(i) The E_{Γ}-nondegeneracy of f depends only from the coefficients of the monomials of f on the polygon Γ and "directly" above Γ and is a $Z a-$ riski-open condition for the "leading forms" $f l_{E}$. .
(ii) The following assertions remain valid if we replace the condition in definition 3 by the weaker one

$$
r_{\ell}\left(\left.E\right|_{E(\Gamma)}\right)=r_{\ell}\left(F_{\Gamma}\right) \quad\left(r_{\ell}=\infty, \text { if } R_{\ell} \equiv 0\right) .
$$

More explicit formulas for the $\alpha_{\ell}(\Gamma)$ are given in [5].

Proposition 1: $E(j(f))=E_{\Gamma}$, if f is E_{Γ}-nondegenerated, $j(f)=(\partial f / \partial X$, $\partial f / \partial Y) \subset\{X, Y\}$.

Idea of the prooof:

1. We may choose a base $h_{0}=\sum_{\ell=0}^{k} a_{\ell}(X) Y^{k-\ell}, h_{1}=\sum_{\ell=0}^{k} b_{\ell}(X) Y^{k-\ell}$ of $j(f)$ such that the $a_{\ell}, b_{\ell} \in C\{X\}$ have the same X-order as the corresponding ones in (2) and more over $r_{\ell}\left(h_{0}, h_{1}\right)=r_{\ell}(\Gamma)$.
2. The ℓ-th element of a standard base can be written (using Galligo's algorithm) in the following form

$$
\begin{equation*}
\mathrm{ph} \mathrm{p}_{0}+\mathrm{qh}_{1}=\mathrm{f}_{\ell} \quad\left(\mathrm{h}_{0}=\mathrm{f}_{0}\right) \tag{4}
\end{equation*}
$$

where $p, q \varepsilon C[X][Y]$ are polynomials in Y of degree $\ell-1$ and f_{ℓ} has degree $k-\ell$ with respect to Y.

Comparing the coefficients of $\mathrm{Y}^{\mathrm{k}+\ell-1}, \ldots, \mathrm{y}^{\mathrm{k}-\ell}$ in the equation (4) we obtain linear equations for the x-coefficients of p and q :

$$
A \cdot w=\left(\begin{array}{cccccc}
a_{0} & b_{0} & 0 & 0 & \ldots & 0 \tag{5}\\
a_{1} & b_{1} & a_{0} & b_{0} & & \\
\vdots & & a_{1} & b_{1} & & \\
\vdots & & \vdots & &
\end{array}\right)\left(\begin{array}{c}
w_{1} \\
\vdots \\
\vdots \\
w_{2 \ell}
\end{array}\right)=\left(\begin{array}{c}
0 \\
\vdots \\
\vdots \\
x
\end{array}\right)
$$

Let $d\left(f_{\ell}\right)=\left(\alpha_{\ell} k-\ell\right)$, then α_{ℓ} is the minimal exponent α, s.t. (5) has a solution in $C\{x\}$.
3. Let us denote the ($2 \ell, i$) th cofactor of A by A_{i}. Using Cramer's rule (5) has a solution in $C\{X\}$ iff ord $X_{X}\left|A_{i}\right|+a \geq o r d_{X}|A|=r_{\ell}(\Gamma)$ for $i=1, \ldots$ $\ldots .2 \ell$. But ord $x_{0}=0$ implies ord $X_{X}\left|A_{2}\right|=r_{\ell-1}(\Gamma)$ (if $\gamma_{0}=0$) resp. ord ${ }_{x} b_{0}=$ $=0$ hence ord $X_{X} \mid=r_{\ell-1}(\Gamma)$ (if $\gamma_{0}=1$). Hence we obtain $\alpha_{\ell} \geq r_{\ell}(\Gamma)-r_{\ell-1}(\Gamma)$. 4. But we know that $r_{k}(\Gamma) \leq \sum \alpha_{\ell}=\operatorname{dim} C \quad Q(f)=\mu(f)=r_{k}(\Gamma)$ hence $\alpha_{\bar{\ell}}=\alpha_{\ell}(\Gamma)$, $\ell=1, \ldots, k$.

Remark:

Using the proposition the Hilbert-Samuel-function H_{f} of $Q(f)$ can be expressed in terms of Γ. In general H_{f} is different from H_{g} even if f and g are contact equivalent (cf.[4]). But if f is E_{Γ}-nondegenerated Ef (ε an unit) is nondegenerated too, i.e. in this case H_{f} is an invariant of the contact class of f.
2.3. Examples

1. Let f be homogeneous of degree $k+1$, then $R_{\ell}(f) \varepsilon C[x]$ is homogeneous of degree ℓ^{2}. f is E_{Γ}-nondegenerated iff $R_{\ell}(f) \neq 0, \ell=1, \ldots, k$ i.e. after a suitable linear change of coordinates $£$ becomes $E_{\Gamma^{-}}$nondegenerate.
2. If $E(\Gamma)=\Gamma \cap N^{2}$ ($\Gamma=$ union of compact faces of Γ_{+}), then any f with $\Gamma(f)=\Gamma$ is E_{Γ}-nondegenerated and $\alpha_{\ell}(\Gamma)=2 \gamma_{\ell}-1 \quad\left(\gamma_{\ell}\right.$ as in 2.1).
3. If mult $(f)=\delta_{o}+\gamma_{o}$ (for instance if f is semi-quasihomogeneous, change X and Y if necessary) than $E(\Gamma)=E^{\prime}(\Gamma)$ and E has only stairs of height 1, i.e. $\alpha_{0}<\alpha_{1}<\ldots<\alpha_{k}$.
§3. Distinguished deformations
3.1. Deformations along a coordinate system

Definition 4: Let A be a local analytic algebra with maximal ideal m. F\&A $[X, Y)$ is called a deformation of f, if $\bar{F}=f(\bar{F}=F \bmod m$) A triple $(F, F, \eta) \varepsilon A\{X, Y\}^{3}$ is called a deformation of f over A along the coordinate system (X,Y) if

$$
\overline{\mathrm{F}}=\mathrm{f}, \overline{\mathrm{E}}=\mathrm{X}, \bar{\eta}=\mathrm{Y} \quad \text { and } \mathrm{A}\{\mathrm{X}, \mathrm{Y}\} /(\bar{\xi}, \eta) \approx \mathrm{A} .
$$

The last isomorphism lifts to an isomorphism $A\{\xi, \eta\}=A\{X, Y\}$. Two deformations (F, ξ, η) and $\left(F^{\prime}, \xi^{\prime}, \eta^{\prime}\right)$ are called equivalent, if there is an automorphism Φ eAut $\{X, Y\}$ such that $\Phi(F)=F^{\prime}, \Phi(\xi)=\xi^{\prime}, \Phi(\eta)=\eta^{\prime}$ and $\bar{\Phi}=i d_{C\{, Y\}} \cdot$
3.2. Distinguished deformations

Definition 5: A deformation (F, E, η) of f over A along (X, Y) is called distinguished if

$$
Q(F)=A\{\xi, \eta\} /(\partial F / \partial \xi, \partial F / \partial \eta)
$$

is A-flat along the bigrading generated by (E, $\overline{\text { I }}$), i.e. if

$$
Q(F) /\left(\xi^{a} n^{b}, \xi^{a+1}\right) \text { is } A-f l a t \text { for all } a, b \in N \text {. }
$$

Remark:

1. The deformation functor on the category of Artin rings

$$
\xi_{f, X, Y}(A)=\{(F, \xi, \eta) \text { distinguished }\} \text { /equivalence }
$$

admits a hull.
2. Every distinguished deformation is an α-deformation along $I=(\xi, \eta)$ in the sense of [4].
3. Every α-deformation (F, I) leads to a distinguished deformation for a suitable choice of X, Y and generators ξ, η of I.
4. In the case $A=C\{T\}$ a distinguished deformation is u-constant and the Hilbert-Samuel-function $\mathrm{H}_{f_{t}}$ is constant with respect to t. But not every μ-constant deformation is distinguished.

A nontrivial example of a distinguished deformation is a homogeneous deformation of a E_{Γ}-nondegenerated homogeneous function.

3.3. Characterization of distinguished deformations

Proposition 3: The following conditions are equivalent:
(i) (F, X, Y) is a distinguished deformation
(ii) $E(j(F))=E(j(f))$
(iii) $j(F)=(\partial F / \partial X, \partial F / \partial Y)$ admits a standard base F_{0}, \ldots, F_{s} and the initial forms (in the sense of 1) in $\left(F_{\ell}\right)$ are units (than $\bar{F}_{o}, \ldots, \bar{F}_{s}$ is a standard base of $j(f))$.

Proof: (iii)-(i) One has to lift every relation of $\partial f / \partial X, \partial f / \partial Y, X{ }^{a_{Y} b}$, x^{a+1}. Such a relation corresponds to

$$
g(X, Y) \varepsilon j(f) \quad \text { and } \quad d(g)=(a, b)
$$

Let $G \varepsilon A\{X, Y\}$ be any element over g. By the divisions-theorem (cf. [2]) $G=\sum_{i} H_{i}+R$ and $d(R)=d(G)$ and $\operatorname{Rem}_{A}\{X, Y\}$, hence $G-R e j(F)$ iffs the given relation.
(i) \rightarrow (ii) obvious by definition
(ii) \rightarrow (iii) Again using the division theorem a standard basis fo,.... $\ldots f_{s}$ of $j(f)$ can be lifted to $F_{0} \ldots F_{s} \subset j(F)$ in such a way that $d\left(F_{i}\right)=d\left(f_{i}\right)$. But this implies in $\left(F_{i}\right) \varepsilon A^{*}$.

Corollary: If f is E_{Γ}-nondegenerated and F deformation of f by monomials of $\Gamma_{+}(f)$ than (F, X, Y) is distinguished.

The other direction is true for E_{Γ}-nondegenerate functions.
Proposition 4: Ler f be E_{Γ}-nondegenerated and F deformation of f over $C\{t\}$. Than (F, X, Y) is distinguished iff $\Gamma(f)=\Gamma(F)$.

Idea of the proof: Let (a, b) be the smallest vertice of $\Gamma(F)$ not belonging to $\Gamma(f)$. Than there is a minimal ℓ such that $r_{\ell}(F)<r_{\ell}(f)$. Similar$1 y$ to $2.2 .(4)$ one can construct an element $h \in j(F)$ with $d(h)=\left(r_{\ell}(F)-\right.$ $\left.-r_{\ell-1}, k-\ell\right) \notin E(j(f))$.

Corollary: If f is E_{Γ}-nondegenerated than the reduced hull $H_{r e d}$ of $\mathcal{E}_{\mathrm{f}, \mathrm{X}, \mathrm{Y}}$ is smooth of dimension $\mathrm{m}(\mathrm{f})$.
Here $m(f)=m o d a l i t y$ of $f=n u m b e r$ of monomials of an admissible monomial
base of $Q(f)(c f .[3])$ which are in $\Gamma_{+}(f)$.

Remark:

1. Even for E_{Γ}-nondegenerate functions in general $\varepsilon_{f, X, Y}$ is not a smooth functor. This shows the following example:
Let $f=Y^{3}+a X^{2} Y^{2}+b X^{3} Y+c X^{5}$. If $b \neq 0$ than $r_{1}=2, r_{2}=7$, is E_{Γ}-nondegenerated and equivalent to the smooth function simple function E_{7}. Let $F=f+\varepsilon X^{4}$. Than $R_{1}(F)=R_{1}(f)$ and $R_{2}(F)=81 \varepsilon^{2} X^{6}+\ldots$, hence for $\varepsilon^{2}=0, F$ is distinguished and $\operatorname{dim} \varepsilon_{f, X, Y}(C[\varepsilon])>0$.
For more details cf [5].
2. Every deformation of f is equivalent by versality to a deformation in terms of an admissible base. Similarly to proposition 4 holds:

For E_{Γ}-nondgenerate functions f every admissible μ-constant deformation of f over $C\{T\}$ is distinguished.

References

1 V.I.Arnola, On some problems in singularity theory, Proc.Indian Acad.Sc. $90(1), 1-9(1981)$
J.Briançon, Contribution a l'Etude des Déformations de Germes de Sous-Espaces Analytiques de C^{n}, These Nice 1976

3 A.G.Kouchnirenko, Polyedres de Newton et nombres de Milnor, Invent.Math. 32, 1-31 (1976)

4 A.Nobile, On certain numbers associated to isolated critical points, Math. 2.177, 503-517 (1981)

5 B.Martin, On distinguished deformations of plane curve singularities, Preprint Berlin 1983

6 M.Oka, On stability of the Newton boundary, Preprint Arcata 1982
7 J.Wahl, Equisingular deformations of plane algebroid curves, Trans. AMS 193, 143-170 (1974)

8 A.M.Gabrielov, A.G.Koushnirenko, Description of the deformations with constant Milnor number for homogeneous functions (In Russian), Funkt.Anal.Pril.9/4, 67-68 (1975).

9 A.N.Varchenko- Evaluation of the codimension of the μ-constant stratum by the mixed Hodge Structure (In Russian) Vesnik MGU 6, 28-31 (1982).

Bernd Martin and Gerhard Pfister Humboldt-Universität zu Berlin Sektion Mathematik 108 Berlin, Unter den Linden 6 DDR

