DISTINGUISHED DEFORMATIONS OF ISOLATED SINGULARITIES OF PLANE CURVES

Bernd Martin and Gerhard Pfister

Let fc({X} be an analytic function with isolated critical point at O, $\underline{X} = (X_1, \dots, X_n)$. An important topological invariant is the Milnor number $\mu(f) = \dim_{\Gamma} Q(f), Q(f) = (\{\underline{X}\}/(\partial f/\partial X_1, \dots, \partial f/\partial X_n).$ The idea to study the following technique of "distinguished deformations" goes back to a question of V.I.Arnold (cf. [1]): Is the μ -constant stratum in the miniversal unfolding of f smooth? A positive answer is known in the following cases: n=2 (cf. [6], [7]), if f is semi-quasihomogeneous (cf. [9], resp. for the homogeneous case cf. [2], [8]). A. Nobile (cf. [4]) introduced the idea of α -deformations, deformations fixing the Hilbert-Samuel-function $H_{f}(\ell) = \dim_{\Gamma} Q(f) / \underline{m}^{\ell+1}$ of the algebra Q(f). We connect this idea with the methods of Briangon (cf. [2]) to study distinguished deformations of an ideal of finite codimension (applied to the Jacobian ideal) to study the a-deformations in more detail. We consider here only plane curve singularities (n=2), probably the results are also true higher dimension. First we introduce the notion of a vertical standard base and the stair-sequence E(I) of an ideal I (cf. [2]). Then we associate a stair-sequence $\mathbf{E}_{\mathbf{p}}$ to a Newton polygon Γ such that for almost all functions f with $\Gamma(f) = \Gamma$ and Jacobian ideal $j(f) = (\partial f/\partial X, \partial f/\partial Y)$ $E_{\Gamma}=E(j(f))$ holds. In the third chapter we consider distinguished deformations of f in

A deformation (F, g, η) of f and the coordinates X, Y over A is called distinguished if A $\{E, \eta\}/(\partial F/\partial E, \partial F/\partial \eta) + (\frac{a}{b}\eta, \frac{b}{b}$) is A-flat for all a,b (here A is a local analytic algebra).

a fixed coordinate system:

This is slightly stronger than normal flatness of $Q(F) = A\{\xi, n\}/(\partial F/\partial \xi, \partial F/\partial \eta)$ over A along (ξ, n) which is required for a-deformations. The canonical morphism from the distinguished deformation functor to unfoldings is an embedding and the functor admits a hull. For E_{Γ} -nondegenerate functions (cf.2.2) the reduced d stinguished deformation functor is smooth and any μ -constant deformation over (T) is distinguished.

§1. Vertical standard bases and stair sequences

Let A be a local analytic (-algebra. We fix the lexicographic order in N^2 (N the positive integers).

For any $f = \{a_{ij} X^i Y^j \in A\{X,Y\} \text{ let } d(f) = \min\{(i,j), a_{ij} \neq 0\}$ denote the bidegree and $in(f) = a_{k\ell}$ for $d(f) = (k,\ell)$ the initial form. Note d(f) = (i,j) iff $f = X^i g(X,Y)$ and $ord_y g(0,Y) = j$.

<u>Definition 1</u>: The stair-diagram of an ideal $I \subseteq A\{X,Y\}$ is the additive semigroup $\tilde{E}(I) = \{d(f), f \in I\} \subseteq \mathbb{N}^2$ and the stair-sequence is the finite minimal base $E(I) = \min\{E, E + \mathbb{N}^2 = \widetilde{E}(I)\}$ of $\tilde{E}(I)$.

Obviously we have

Definition 2: A base $\{f_0, \dots, f_s\}$ of I is called (vertical) standard base, if $\{d(f_k)=(i_k, j_k)\}=E(I)$. (1)

<u>Remark:</u> If A=(than any set $\{f_0, \ldots, f_s\}\subseteq I$ with the property (1) is a

base of I and there is a unique standard base of I given by the condition

$$supp(f_k) \cap E(I) = d(f_k).$$

2.1. The stair sequence

Let Γ_{+} be the Newton-polygon of a function $f: (\zeta^{2}, 0) + (\zeta, 0)$ with isolated critical point at $0 \quad (\Gamma_{+} \cap \mathbb{N}^{2} = \operatorname{supp}(f) + \mathbb{N}^{2})$. Let $E'(\Gamma) = \{(\gamma_{0}, \delta_{0}), (\gamma_{1}, \delta_{0} - 1), \dots, (\gamma_{\delta_{0}}, 0)\} \subseteq \mathbb{N}^{2}$ with $(\gamma_{0}, \delta_{0}) = d(f)$ and $\gamma_{\ell} = \min\{\gamma, (\gamma, \delta_{0} - \ell) \in \Gamma_{+}\}$

and let us denote by $E(\Gamma) \subseteq E'(\Gamma)$ the minimal base of $\Gamma_+ \cap \mathbb{N}^2$. Let $F' := \sum_{\ell=0}^{\infty} z_{\ell} X^{\gamma_{\ell}} Y^{\delta} e^{-1} z_{\ell} [z_{0}, \dots, z_{\delta_{0}}, X, Y] \text{ and } F_{\Gamma} = F_{\Gamma}' |_{E(\Gamma)}.$

For $k = \begin{cases} \delta_0 - 1 \text{ if } \gamma_0 = 0 \\ \delta_0 & \text{if } \gamma_0 = 1 \end{cases}$ we write the derivatives of F'_{Γ} in the following form:

$$\partial \mathbf{F}_{\Gamma}^{\prime} / \partial \mathbf{Y} = \sum_{\ell=0}^{k} a_{\ell} \mathbf{Y}^{k-\ell} \text{ and } \partial \mathbf{F}_{\Gamma}^{\prime} / \partial \mathbf{X} = \sum_{\ell=0}^{k} b_{\ell} \mathbf{Y}^{k-\ell}$$
(2)

with $a_{\ell}, b_{\ell} \in \mathbb{C}[\underline{z}, X]$. Let $R_{\ell}(F_{\Gamma}) \in \mathbb{C}[\underline{z}, X]$ be the left side upper (2 ℓ , 2 ℓ)-minor of the (2k, 2k) matrix

$$\begin{pmatrix} a_{0}, \dots, a_{k}, 0, \dots, 0 \\ b_{0}, \dots, b_{k}, 0, \dots, 0 \\ 0, a_{0}, \dots, a_{k-1}a_{k}, 0, \dots, 0 \\ \vdots \\ \vdots \\ 0, \dots \\ b_{0} b_{1}, \dots \\ b_{k} \end{pmatrix}$$
(3)

Now for $\ell=0,\ldots,k$ let us denote by $r_{\ell}(\Gamma)$ the order of $R_{\ell}(F_{\Gamma}')$ with respect to X $(r_0=0)$, $\alpha_{\ell}(\Gamma)=r_{\ell}(\Gamma)-r_{\ell-1}(\Gamma)$ $(\alpha_0=0)$ and let E_{Γ} be the base of

Lemma: (i)
$$R_{\ell} \neq 0$$
, $\ell = 1, ..., k$
(ii) $\alpha_{\ell-1} \leq \alpha_{\ell}$, $\ell = 1, ..., k$.

2.2. E_r-nondegeneracy

<u>Definition 3:</u> f is called E_{Γ} nondegenerated if $\Gamma(f) = \Gamma$ and $r_{\ell}(f|_{E_{\ell}}) = =r_{\ell}(\Gamma)$ for $\ell=1,\ldots,k$.

Remark:

(i) The E_{Γ} -nondegeneracy of f depends only from the coefficients of the monomials of f on the polygon Γ and "directly" above Γ and is a Zariski-open condition for the "leading forms" fl_E, .

(ii) The following assertions remain valid if we replace the condition in definition 3 by the weaker one

$$\mathbf{r}_{\ell}(\mathbf{f} \mid_{\mathbf{E}(\Gamma)}) = \mathbf{r}_{\ell}(\mathbf{F}_{\Gamma}) \qquad (\mathbf{r}_{\ell} = \infty, \text{ if } \mathbf{R}_{\ell} \equiv 0).$$

More explicit formulas for the $\alpha_{\ell}(\Gamma)$ are given in [5].

Proposition 1: $E(j(f))=E_{\Gamma}$, if f is E_{Γ} -nondegenerated, $j(f)=(\partial f/\partial X, \partial f/\partial Y)(\{X,Y\}$.

Idea of the procof:

1. We may choose a base $h_0 = \sum_{\ell=0}^{k} a_\ell(X) Y^{k-\ell}$, $h_1 = \sum_{\ell=0}^{k} b_\ell(X) Y^{k-\ell}$ of j(f) such that the $a_\ell, b_\ell \in C\{X\}$ have the same X-order as the corresponding ones in (2) and more over $r_\ell(h_0, h_1) = r_\ell(\Gamma)$.

 The l-th element of a standard base can be written (using Galligo's algorithm) in the following form

$$ph_{o} + qh_{1} = f_{\ell} \qquad (h_{o} = f_{o})$$
(4)

where $p,q\epsilon[{X}[X]$ are polynomials in Y of degree l-1 and f_l has degree k-l with respect to Y.

Comparing the coefficients of $Y^{k+\ell-1}, \ldots, Y^{k-\ell}$ in the equation (4) we obtain linear equations for the Y-coefficients of p and q:

Let $d(f_{\ell}) = (\alpha_{\ell}k - \ell)$, then α_{ℓ} is the minimal exponent α , s.t. (5) has a solution in $C\{X\}$.

3. Let us denote the (2ℓ,i)-th cofactor of A by A_i . Using Cramer's rule (5) has a solution in (X) iff $\operatorname{ord}_X|A_i|+\alpha\geq\operatorname{ord}_X|A|=r_\ell(\Gamma)$ for i=1,.. ..., 2ℓ. But $\operatorname{ord}_Xa_0=0$ implies $\operatorname{ord}_X|A_2|=r_{\ell-1}(\Gamma)$ (if $\gamma_0=0$) resp. $\operatorname{ord}_Xb_0=0$ hence $\operatorname{ord}_X|A_1|=r_{\ell-1}(\Gamma)$ (if $\gamma_0=1$). Hence we obtain $\alpha_\ell\geq r_\ell(\Gamma)-\gamma_{\ell-1}(\Gamma)$, 4. But we know that $r_k(\Gamma)\leq \alpha_\ell=\dim_{\Gamma} Q(f)=\mu(f)=r_k(\Gamma)$ hence $\alpha_\ell=\alpha_\ell(\Gamma)$, $\ell=1,\ldots,k$.

Remark:

Using the proposition the Hilbert-Samuel-function H_f of Q(f) can be expressed in terms of Γ . In general H_f is different from H_g even if f and g are contact equivalent (cf.[4]). But if f is E_{Γ} -nondegenerated ef (ϵ an unit) is nondegenerated too, i.e. in this case H_f is an invariant of the contact class of f.

2.3. Examples

1. Let f be homogeneous of degree k+1, then $R_{\ell}(f) \in C[X]$ is homogeneous of degree ℓ^2 . f is E_{Γ} -nondegenerated iff $R_{\ell}(f) \neq 0$, $\ell=1,\ldots,k$ i.e. after a suitable linear change of coordinates f becomes E_{Γ} - nondegenerate. 2. If $E(\Gamma) = \Gamma \cap \mathbb{N}^2$ (Γ =union of compact faces of Γ_+), then any f with $\Gamma(f) = \Gamma$ is E_{Γ} -nondegenerated and $\alpha_{\ell}(\Gamma) = 2\gamma_{\ell} - 1$ (γ_{ℓ} as in 2.1).

3. If mult(f)= $\delta_0 + \gamma_0$ (for instance if f is semi-quasihomogeneous, change X and Y if necessary) than $E(\Gamma) = E'(\Gamma)$ and E has only stairs of height 1, i.e. $\alpha_0 < \alpha_1 < \ldots < \alpha_k$.

Distinguished deformations

259

3.1. Deformations along a coordinate system

<u>Definition 4</u>: Let A be a local analytic algebra with maximal ideal <u>m</u>. FEA{X,Y} is called a deformation of f, if $\overline{F}=f$ ($\overline{F}=F \mod \underline{m}$). A triple (F, ξ,η)EA{X,Y}³ is called a deformation of f over A along the coordinate system (X,Y) if

$$\overline{F}=f$$
, $\overline{E}=X$, $\overline{\eta}=Y$ and $A(X,Y)/(\xi,\eta)\simeq A$.

The last isomorphism lifts to an isomorphism $A\{\xi,\eta\} \cong A\{X,Y\}$. Two deformations (F,ξ,η) and (F',ξ',η') are called equivalent, if there is an automorphism $\Phi \in Aut\{X,Y\}$ such that $\Phi(F) = F'$, $\Phi(\xi) = \xi'$, $\Phi(\eta) = \eta'$ and $\overline{\Phi} = id_{\bigcap\{X,Y\}}$.

3.2. Distinguished deformations

Definition 5: A deformation (F,ξ,η) of f over A along (X,Y) is called distinguished if

 $Q(F) = A\{\xi, \eta\} / (\partial F / \partial \xi, \partial F / \partial \eta)$

is A-flat along the bigrading generated by (ξ,η) , i.e. if

 $Q(F)/(\xi^a \eta^b, \xi^{a+1})$ is A-flat for all a, beN,

Remark:

1. The deformation functor on the category of Artin rings

 $\xi_{f,X,Y}(A) = \{(F,\xi,\eta) \text{ distinguished}\} / equivalence$

admits a hull.

2. Every distinguished deformation is an α -deformation along $I=(\xi,\eta)$ in the sense of [4].

3. Every α -deformation (F,I) leads to a distinguished deformation for a suitable choice of X,Y and generators ξ,η of I.

4. In the case $A=C{T}$ a distinguished deformation is μ -constant and the Hilbert-Samuel-function H_{f_t} is constant with respect to t. But not every μ -constant deformation is distinguished.

A nontrivial example of a distinguished deformation is a homogeneous deformation of a E_r -nondegenerated homogeneous function.

3.3. Characterization of distinguished deformations

Proposition 3: The following conditions are equivalent:

(i) (F,X,Y) is a distinguished deformation

(ii) E(j(F))=E(j(f))

(iii) $j(F) = (\partial F/\partial X, \partial F/\partial Y)$ admits a standard base F_0, \dots, F_s and the initial forms (in the sense of 1) $in(F_\ell)$ are units (than $\overline{F}_0, \dots, \overline{F}_s$ is a standard base of j(f)).

<u>Proof</u>: (iii) \rightarrow (i) One has to lift every relation of $\partial f/\partial X$, $\partial f/\partial Y$, $X^{a}Y^{b}$, X^{a+1} . Such a relation corresponds to

$$g(X,Y)\varepsilon j(f)$$
 and $d(g)=(a,b)$.

Let GEA $\{X,Y\}$ be any element over g. By the divisions-theorem (cf.[2]) G= $[H_iF_i + R$ and d(R)=d(G) and REm_A $\{X,Y\}$, hence G-Rej(F) lifts the given relation.

(i)+(ii) obvious by definition

(ii)+(iii) Again using the division theorem a standard basis f_0, \ldots, f_s of j(f) can be lifted to $F_0, \ldots F_s < j(F)$ in such a way that $d(F_i)=d(f_i)$. But this implies in $(F_i)\in A^*$.

<u>Corollary</u>: If f is E_{Γ} -nondegenerated and F a deformation of f by monomials of $\Gamma_{+}(f)$ than (F,X,Y) is distinguished.

The other direction is true for E_r-nondegenerate functions.

<u>Proposition 4</u>: Ler f be E_{Γ} -nondegenerated and F a deformation of f over C{t}. Than (F,X,Y) is distinguished iff $\Gamma(f)=\Gamma(F)$.

Idea of the proof: Let (a,b) be the smallest vertice of $\Gamma(F)$ not belonging to $\Gamma(f)$. Than there is a minimal ℓ such that $r_{\ell}(F) < r_{\ell}(f)$. Similarly to 2.2.(4) one can construct an element hej(F) with $d(h) = (r_{\ell}(F) - -r_{\ell-1}, k-\ell) \tilde{E}(j(f))$.

<u>Corollary</u>: If f is E_{Γ} -nondegenerated than the reduced hull H_{red} of $\mathcal{E}_{f,X,Y}$ is smooth of dimension m(f).

Here m(f)=modality of f=number of monomials of an admissible monomial

base of Q(f) (cf. [3]) which are in $\Gamma_+(f)$.

Remark:

1. Even for E_{Γ} -nondegenerate functions in general $\varepsilon_{f,X,Y}$ is not a smooth functor. This shows the following example: Let $f=Y^3+aX^2Y^2+bX^3Y+cX^5$. If $b\neq 0$ than $r_1=2$, $r_2=7$, f is E_{Γ} -nondegenerated and equivalent to the smooth function simple function E_7 . Let $F=f+\varepsilon X^4$. Than $R_1(F)=R_1(f)$ and $R_2(F)=81\varepsilon^2X^6+\ldots$, hence for $\varepsilon^2=0$,F is distinguished and dim $\varepsilon_{f,X,Y}(C[\varepsilon])>0$. For more details cf[5].

2. Every deformation of f is equivalent by versality to a deformation in terms of an admissible base. Similarly to proposition 4,holds: For E_{Γ} -nondgenerate functions f every admissible μ -constant deformation of f over ({T} is distinguished.

References

- 1 V.I.Arnold, On some problems in singularity theory, Proc.Indian Acad.Sc.90(1), 1-9(1981)
- 2 J.Briançon, Contribution à l'Etude des Déformations de Germes de Sous-Espaces Analytiques de (ⁿ, Thése Nice 1976
- 3 A.G.Kouchnirenko, Polyedres de Newton et nombres de Milnor, Invent.Math.32, 1-31 (1976)
- 4 A.Nobile, On certain numbers associated to isolated critical points, Math.Z.177, 503-517 (1981)
- 5 B.Martin, On distinguished deformations of plane curve singularities, Preprint Berlin 1983
- 6 M.Oka, On stability of the Newton boundary, Preprint Arcata 1982
- 7 J.Wahl, Equisingular deformations of plane algebroid curves, Trans. AMS 193, 143-170 (1974)
- 8 A.M.Gabrielov, A.G.Koushnirenko, Description of the deformations with constant Milnor number for homogeneous functions (In Russian), Funkt.Anal.Pril.9/4, 67-68 (1975).

9 A.N.Varchenko- Evaluation of the codimension of the μ -constant stratum by the mixed Hodge Structure (In Russian) Vesnik MGU 6, 28-31 (1982).

Bernd Martin and Gerhard Pfister Humboldt-Universität zu Berlin Sektion Mathematik 108 Berlin, Unter den Linden 6 DDR