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Let fsC{X} be an analytic function with isolated critical point at 

O, X=(XI,...,Xn). An important toFological invariant is the Milnor 

number u(f)=dim C Q(f), Q(f)=C{X_}/(Bf/~Xl .... ,Bf/SXn ). 

The idea to study the following technique of "distinguished deforma- 

tions" goes back to a question of V.I.Arnold (el. Eli): 

Is the u-constant stratum in the miniversal unfolding of f smooth? 

A positive answer is known in the following cases: 

n:2  ( e f . [ 6 7 , / 7 ~ ) ,  i f  f i s  semi-quasihomogeneous ( o f .  E9], r esp .  f o r  the 

homogeneous case Of. L'2], gS] ) .  

A- Nob i le  ( o f . [ 4 ~ )  i n t r o d u c e d  the ides  o f  s - d e f o r m a t i o n s ,  deforma-  

t i o n s  f i x i n g  the H i l b e r t - S a m u e l - f u n c t i o n  H f (1 )=d im C q(f) /m ~+I of  the 

algebra Q(f). W~ connect this idea with the methods of Brian~on (cf. 

L2]) tQ study distinguished deformations of an ideal of finite codi- 

mansion (applied to the Jacobian ideal) to study the ~-deformations 

in mere detail. 

We consider here only plane curve singularities (n--2), probably the 
4 ~  

results are also true~higher dimension. 

First we introduce the notion of a vertical standard base and the 

stair-sequence E(1) of an ideal I (cf.[2l). Then we associate a 

stair-sequence E t~ a Newton ~olygon F such that for almost all func- 
F 

tions f with F(f)= F and Jacobian ideal j(f):(~f/~X,~f/~Y) 

EF=E(j(f)) holds. 

In the third chapter we consider distinguished deformations of f in 

a fixed coordinate system: 

A deformation (F, ~,n) of f and the coordinates X, Y over A is called 

a b a + l )  d i s t i n g u i s h e d  i f  A {E ,n } / (~F /~E ,  ~ F / ~ n ) ÷ ( E  n ~E i s  A - f l a t  f o r  a l l  

a ,b  (here A i s  a l o c a l  a n a l y t i c  a l g e b r a ) .  
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This is slightly stronger than normal flatness of Q(F)=A[~,n]~F/~, 

~F/~q) over A along (~,~) which is required for s-deformations. 

The canonical morphism from the distinguished deformation functor to 

unfoldings is an embedding and the functor admits a hull. 

For EF-nondegenerate functions (cf.2.2) the reduced d stinguished de- 

formation functor is smooth and any ~-constant deformation over C[T] is 

distinguished. 

~I. Vertical standard bases and stair sequences 

Let A be a local analytic C-algebra. we fix the lexicographic or- 

der in N 2 (N the positive integers). 

For any f=[aijxiyJEA{X,Y } let d(f)=min[(i,j), aij#0} denote the 

bidegree and in(f)=akl for d(f)=(k,Z) the initial form. 

Note d(f)=(i,j) iff f=Xig(X,Y) and ordyg (0 ,Y) =j . 

Definition I: The stair-diagram of an ideal I~A{X,Y] is the additive 

semigroup E(I)=[d(f), fEI]~N 2 and the stair-sequence is the finite mi- 

nimal base E(I)=min{E,E +N2=E(I)] of E(I). 

Obviously we have 

E(I)={(io,Jo), .... (is,Js)] 

0Sio~il<...<i s 

Jo>Jl>...>JsZ0 

J1 

Definition 2: A base [fo,...,fs} of I is called (vertical) standard 

base, if {d(fk)=(ik,Jk)]=E(1). (1) 

Remark: If A= C than any set [fo,...,fs]~I with the property (i) is a 
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base of I and there is a unique standard base of I given by the condi- 

tion 

supp (fk)~ E (I)=d (fk) . 

~2. The stair sequence of the Jacobian ideal and the 

Newton-polyhedron of f 

2.1. The stair sequence 

Let F+ be the Newton-polygon of a function f: (C2,0)-(C,0) with isola- 

ted critical point at 0 (F+~ N2=supp(f)+N2). Let E' (F)=[(yo,8o),(yl , 

6o-1) . . . .  ' (Y6 '°)}~N2 
o 

with 

(yo,6o)=d(f) and yg=min{y, (y,8o-g)eF+} 

and let us denote by E(F)CE' (F) the minimal base of F+~ N 2. Let 

5-0 Y~ 661 ,Y~ and FF=F~[E(F) F':= >~ rex Y ~Z[z ,x 
l=0 ~ ~' " " " ' ZSo 

For k =I 6°-4ifif Y°=0 
o Yo =I 

forrd: 

• in the following we write the derivatives of F F 

k k 
eFfigY= [ agyk-g and BF~/@X= [ bgY k-g 

g=0 £=0 

with az,bzEC[Z,X ]. 

Let Rg(F~)g~,XT, -~-- ~ be the left side upper (2Z,2g)-minor of the 

matrix 

(2) 

(2k,2k) 

l 
eo, ....... ,ak,0 ....... 0h 

bo, ....... ,bk,0 ....... 0 (3) 

0,a O, ..... ,a k lak,0... 0 

i i .... 
NOW for £=0,...,k let us denote by rl(F) the order of Rz(F~) with res- 

pect to X (ro=0) , aZ(F)=rz(F)-r£_I(F) ~o=0) and let E F be the base 

of 
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Lemma: 

k 
[_2 (~l,k-Z)+N 2- 

(i) R/C0, /=l,..,k 

(ii)~z_iS~ £ , £=l,...,k. 

2.2. EF-nondegeneracy 

Definition 3: f is called E F nondegenerated if F(f)=F and r/(fIE,)= 

=r/(F) for /=l,...,k. 

Remark: 

(i) The EF-nondegeneracy of f depends only from the coefficients of 

the monomials of f on the polygon F and "directly" above F and is a Za- 

riski-open condition for the "leading forms" fiE, . 

(ii) The following assertions remain valid if we replace the condition 

in definition 3 by the weaker one 

rz(f IE(F))=rI(FF) (r/=-, if R/~O). 

More explicit formulas for the a/(F) are given in E~J" 

Proposition I: E(j(f))=E F , if f is EF-nondegenerated, j(f)=(~f/~X, 

~f/%x)C[x,x]- 

Idea of the prooof: 

k k 
i. We may choose a base ho=/[0a/(x)yk-I , =  hl=/~0b£(x)yk-/= of ~j(f) such 

that the al,b£~C[x} have the same X-order as the corresponding ones in 

(2) and more over r/(ho,hl)=r/(F). 

2. The £-th element of a standard base can be written (using Galligo's 

algorithm) in the following form 

ph ° + qh I = f~ (ho=fo) (4) 

where p,q~C{x}[y] are polynomials in Y of degree l-i and fl has degree 

k-l with respect to Y. 

Comparing the coefficients of yk+/-l,...,yk-/ in the equation (4) we 

obtain linear equations for the Y-coefficients of p and q: 
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a -w-- 

la O b o 0 0 

1 b i ao bo 

i al b I eli!f2 
x=/ 

(5) 

Let d(f£)=(~zk-~), the!n ~l is the minimal exponent ~, s.t. (5) has a 

solution in C {X} . 

3. Let us denote the (2~,i)-th cofactor of A by A i. Using Cramer's ru- 

le (5) has a solution in C[x} iff ordxIAil+cu~ordxIAl=r£(F) for i=l,.. 

.... ,2£. But ordxao=0 implies ordxIA21=rZ_l(F) (if Yo=0) resp. ordxbo = 

=0 hence ordXJAll=r£_l(F) (if Yo=l). Hence we obtain ~l>rl(F)--~'l_l~P). 

4. But we know that rk(F)<[~/=dim C Q(f)=~(f)=rk(F) hence ~C~I(F), 

/=i, . . . ,k. 

Remark : 

Using the proposition the Hilbert-Samuel-function Hf of Q(f) can be 

expressed in terms of F. In general Hf is different from Hg even if f 

and g are contact equivalent (cf.~43). But if f is EF-nondegenerated 

Ef (E an unit) is nondegenerated too, i.e. in this case Hf is an inva- 

riant of the contact class of f. 

2.3. Examples 

i. Let f be homogeneous of degree k+l, then R~(f)~C~x ] is homogeneous 

of degree f2 f is EF-nondegenerated iff Rl(f)#0, £=l,...,k i.e. af- 

ter a suitable linear change of coordinates f becomes E F- nondegenerate. 

2. If E(F)=FO N 2 (F=union of compact faces of F+), then any f with 

F(f)=F is EF-nondegenerated and ~£(F)=2y£-I (y£ as in 2.1). 

3. If mult(f)=8o+¥ O (for instance if f is semi-quasihomogeneous, chan- 

ge X and Y if necessary) than E(F)=E'(F) and E has only stairs of hei- 

ght i, i.e. ~o<~l<...<~k. 

~3. Distinguished deformations 
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3.1. Deformations along a coordinate system 

Definition 4: Let A be a local analytic algebra with m~Ximal ideal ~. 

F~A[X,Y] is called a deformation of f, if F=f (F=F mod ~). A triple 

(F,~,n)~A[X,Y] 3 is called a deformation of f over A along the coordina- 

te system (X,Y) if 

F=f, ~=X, ~=Y and A{X,Y]/(~,n)=A. 

The last isomorphism lifts to an isomorphism A[~,n]~A[X,Y}. Two defor- 

mations (F,~,n) and (F',~',~') are called equivalent, if there is an 

automorphism ~cAut[X,Y] such that ~(F)=F', ~(~)=~', ~(n)=n' and 

~=id C {X,Y] " 

3.2. Distinguished deformations 

Definition 5: A deformation (F,~,n) of f over A along (X,Y) is called 

distinguished if 

Q (F)=A [~,~} / (~F/~, ~F/~) 

is A-flat along the bigrading generated by (~,~), i.e. if 

Q(F)/(~anb,E a+l) is A-flat for all a,beN, 

Remark: 

I. The deformation functor on the category of Artin rings 

~f,X,y(A)={(F,~,n) distinguished] /equivalence 

admits a hull. 

2. Every distinguished deformation is an ~-deformation along I=(~,n) 

in the sense of [43. 

3. Every ~-deformation (F,I) leads to a distinguished deformation for 

a suitable choice of X,Y and generators ~,n of I. 

4. In the case A=C[T} a distinguished deformation is ~-constant and 

the Hilbert-Samuel-function Hft is constant with respect to t. But not 

every ~-oonstant deformation is distinguished. 

A nontrivial example of a distinguished deformation is a homogeneous 

deformation of a EF-nondegenerated homogeneous function. 
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3.3. Characterization of distinguished deformations 

Proposition 3: The following conditions are equivalent: 

(i) (F,X,Y) is a distinguished deformation 

(ii) E(j (F))=E(j (f)) 

(iii) j(F)=(~F/~X,~F/~Y) admits a standard base Fo,...,F s and the ini- 

tial forms (in the sense of i) in(F£) are units (than Fo,...,Fs is a 

standard base of j(f)). 

Proof: (iii)-(i) One has to lift every relation of ~f/~X, ~f/~Y, xay b, 

X a+l. Such a relation corresponds to 

g(X,Y)Ej (f) and d(g) =(a,b) . 

Let G6A[X,Y} be any element over g. By the divisions-theorem (cf.~2~) 

G=~HiF i + R and d(R)=d(G) and REmA{X,Y}, hence G-R¢j(F) lifts the gi- 

ven relation. 

(i)-(ii) obvious by definition 

(ii)-(iii) Again using the division theorem a standard basis fo' .... 

''''fs of j(f) can be lifted to Fo,...Fs~ j(F) in such a way that 

d(Fi)=d(fi). But this implies in(Fi)EA ~. 

Corollary: If f is EF-nondegenerated and F a deformation of f by mono- 

mials of F+(f) than (F,X,Y) is distinguished. 

The other direction is true for EF-nondegenerate functions. 

Proposition 4: Ler f be EF-nondegenerated and F a deformation of f over 

C[t}. Than (F,X,Y) is distinguished iff £(f)=F(F). 

Idea of the proof: Let (a,b) be the smallest vertice of F(F) not belon- 

ging to F(f). Than there is a minimal I such that rz(F)<r£(f). Similar- 

ly to 2.2.(4) one can construct an element h6j(F) with d(h)=(r£~F)- 

-r£_ 1 ,k-~)~E (j (f)) . 

Corollary: If f is EF-nondegenerated than the reduced hull Hre d of 

~f,X,Y is smooth of dimension m(f). 

Here m(f)=modality of f=number of monomials of an admissible monomial 



base of Q(f) 

Remark: 
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(cf.~3J) which are in F+(f). 

i. Even for EF-nondegenerate functions in general Cf,X, Y is not a 

smooth functor. This shows the following example: 

Let f=y3+aX2y2+bX3y+cX5. If b#0 than rl=2 , r2=7 , f is EF-nondegenera- 

ted and equivalent to the smooth function simple function E 7. Let 

F=f+~X 4. Than RI(F)=RI(f) and R2(F)=81~2X6+..., hence for E2=0,F is 

distinguished and dim Ef,X,X( C[e~)>0. 

For more details Cf L5~. 

2. Every deformation of f is equivalent by versality to a deformation 

in terms of an admissible base. Similarly to proposition 4,holds: 

For EF-nondgenerate functions f every admissible ~-constant deformation 

of f over C[T] is distinguished. 
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