DISTINGUISHED DEFORMATIONS OF ISOLATED SINGULARITIES
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Bernd Martin and Gerhard Pfister

Let fe{{X} be an snalytic function with isolated criticel point at

0, §=(X1,...,Xn)~ An important topological invariant is the Milnor
number u(f):dimc QUE), QM) =CX /(3f/8Xqse s+ y3 T/ 0%y )

The idea to study the following technique of "distinguished deforma-~
tions" goes back to a question of V.I.Arnold (cf.[i]):

Is the u-constant stratum in the miniversal unfolding of f smooth?

A positive answer is known in the fellowing cases:

n=2 (cf.[ﬁ],[?]), if £ is semi-quasihomogeneous (cf.[g], resp. for the
homogeneous case cf. (2], [8]).

A. Nobile (cf.[4]) introduced the ides of a-deformations, deforma-

1 of the

tions fixing the Hilbert-Samuel-function Hf(£)=dimc Q{f)/ga+
algebra Q(f). We connect this idea with the methods of Briangon (cf.
[2]) to study distinguished deformations of an ideal of finite codi-
mension (gpplied to the Jacobian ideal) to study the a-deformations
in more detail.

We consider here only plane curve singularities (n=2), probably the
results are also tru@gﬁigher dimension.

First we introduce the notion of a vertical standard base and the
stair-sequence E(I) of an ideal I (cf.[2]). Then we associate a
stair-sequence EP to a Newton polygon T such that for almost all func-
tions f with I' (f)= 1 and Jacobian ideal j(f)=(3f/3X,3f/3Y)

Er=E{j(f)) holds.

In the third chapter we consider distinguished deformations of f in

& fixed coordinate system:
A deformation (Fygyn) of £ and the coordinates X, Y over A is called
distinguished if A {E,n}/(3F/3E, 3F/an)+(gfrP,§a+1) is A-flat for all

a,b (here A is a local analytic algebra).
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This is slightly stronger than normal flatness of Q(F)=A(E,n} /BF/3E,
3F/31) over A along (E,n) which is required for a-deformations.

The canonical morphism from the distinguished deformation functor to
unfoldings is an embedding and the functor admits a hull,

For Er—nondegenerate functions (cf£.2.2) the reduced d stinguished de-
formation functor is smooth and any u-constant deformation over ({T} is

distinguished.

§1. Vertical standard bases and stair sequences

Let A be a local analytic (~algebra., We fix the lexicographic or-
der in N2 (N the positive integers).

For any f=2aininEA{X,Y} let A(£f)=min{(i,]), aij#O} denote the
bidegree and in(f)=ak£ for d(f)=(k,L) the initial form.

Note d(f)=(i,j) iff £=x'g(X,¥) and ord,qg(0,¥)=j.

Definition 1: The stair-diagram of an ideal I<A{X,Y} is the additive
semigroup é(1)={d(f), fEI}C_N2 and the stair-sequence is the finite mi-
nimal base E(I)=min (E,E +N°=B(I)} of E(I).
Obviously we have
E(I)={ligsdg) se-nrlig,3g))
Osioiil<...<is
3g>3;> ... >3g20

L
% 1—/{/// e £(1)
z o
31 e i:::
.
42 /j;i?f}/”/,
—

Definition 2: A base {fo,...,fs} of I is called (vertical) standard

base, if {d(fk)=(ik,jk)}=E(I). (1)

Remark: If A= than any set {fo,...,fs}QI with the property (1) is a
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base of I and there is a unique standard base of I given by the condi-

tion

supp (£,)N E(T1)=d(£,).

§2. The stair sequence of the Jacobian ideal and the

Newton-polyhedron of f

2.1. The stair sequence

Let I'  be the Newton-polygon of a function f:(CZ,O)*(C,O) with isola-

ted critical point at 0 (F+le2=supp(f)+N2). Let E' (T)={(v,,5,),(¥y,
2

871 senr (Y 10)ICN

with

(Yo,5 )=d(£f) and Y£=min{y,(y,5 -£)eF }

and let us denote by E(I') ¢ E’(I') the minimal base of r, (?N2 et
5o
_ £
= z ezl?o,..., 5, /X, {] and FP—FF E(r) "
60-1 if Y0=0
For k =) . _, we write the derivatives of F! in the following
60 if Yo—l r
form:
k k
aFr/ov= ) a,¥* % ana arr/ox= ) p,¥*t (2)
r =0 £ r 220 £

with a, sC[} x7].
Let RK(F )eC[ﬁ x] be the left side upper (2£,2f)-minor of the (2k,2k)

matrix

ao,.......,ak,O.......O

b yjeeeseesarby,00000...0
o’ t Py (3)

O,ao,.....,a 0...0

k-1’

0... bo by,e... by

Now for £=0,...,k let us denote by rK(F) the order of Rl(Ff) with res-

pect to X (r =0}, o, P)=r£(r)-r2_l(r) {o.,=0) and let E. Dbe the base

of



258

k 2
U (g k=2)+N°.
o

Lemma: (i) Rl#o, £=1,..,k

(ii)a,_j<a, , £=1,...,k.

2.2. Er-nondegeneracy

Definition 3: £ is called EF nondegenerated if I'(f)=I" and rz(flE,)=

=r£(F) for £=1,...,k.

Remark:

{i} The E_.-nondegeneracy of f depends only from the coefficients of

r
the monomials of £ on the polygon I' and "directly” above I' and is a Za-
riski~open condition for the "leading forms" flE, .

(ii) The following assertions remain valid if we replace the condition

in definition 3 by the weaker one
rl(f iB(r))=r£(Fr) (ry= =, if RZEO).
More explicit formulas for the az(r) are given in [5].

Proposition 1: E(j(f))=Er , if £ is E_-nondegenerated, j(£f)=(3£/3X,

r
3f/3Y)CIX,Y}.

Jdea of the prooof:

k

1. We may choose a base h_ =) a xyykt
0, t

X )
» hy= ] b, (X)Y of -j (£) such
£=0

that the a@:bKEC(X} have the same X~order as the corresponding ones in

(2) and more over rl(ho'h1)=r£(r)‘

2. The £-th elemént of a standard base can be written {using Galligo’s

algorithm) in the following form

phy + qh; = £, (hg=£,) (4)
where p,qe( {X}[¥] are polynomials in Y of degree £~1 and f)z has degree
k-£ with respect to Y.
Comparing the coefficients of Yk+£'l,...,Yk—£ in the equation (4) we

obtain linear equations for the Y~-coefficients of p and q:
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ao bO 0 0 .... O W, 0
2y bl 2 o
Aews= . a; by L=l (5}
. . a
. wzz X /

Let d(f£)=(a£k-f), then o, is the minimal exponent a, s.t. (5) has a

solution in ( {X}.

3, Let us denote the (2£,i)-th cofactor of A by A;. Using Cramer’s ru-
le (5) has a solution in ({X} iff ordeAi!+620rdXEAl=r£(F) for i=1,..
cesss22, But ordya =0 implies ordxlAzlzrl_l(P) (if v =0) resp. ordyb,=

=0 hence ordylA;l=r, ,(T) (if y,=1). Hence we obtain azzrz(r)*~nﬁi(Pl

4. But we know that rk(F)sXa£=dimC Q(£)=u(£f)=r, () hence a Fa,(I),
£=1,...,k.

Remark:
Using the proposition the Hilbert-Samuel~-function Hf of Q(f) can be
expressed in terms of ', In general He is different from Hg even if £

and g are contact eguivalent {(cf.[4]). But if £ is E_-nondegenerated

r
ef (e an unit) is nondegenerated too, i.e. in this case He is an inva-

riant of the contact class of f.
2.3, Examples

1. Let £ be homogeneous of degree k+1, theén Rz(f)sC[X] is homogeneous
of degree £2. £ is Er—nondegenerated iff Rz(f)#o, £=1,...,k i.e. af-

ter a suitable linear change of coordinates f becomes EP_ nondegenerate,

2., If E(F)=Pf7N2 (r=union of compact faces of T,), then any f with

I'(£f)=r is E_.-nondegenerated and az(F)=21£-1 (YZ as in 2.1).

r
3. If mult(f)=60+Yo (for instance if f is semi-quasihomogeneous, chan-
ge X and Y if necessary) than E{([)=E’(I’) and E has only stairs of hei-

ght 1, i.,e. ao<a1<...<ck.

§3. Distinguished deformations
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3.1, Deformations along a coordinate system

Definition 4: Let A be a local analytic algebra with maximal ideal m.
FeA{X,Y} is called a deformation of f, if F=f (F=F mod m). A triple
(F,E,n)eA{X,Y}3 is called a deformation of f over A along the coordina-
te system (X,Y) if

F=f, E=X, n=Y and A{X,Y}/(E,n)=A.

The last isomorphism lifts to an isomorphism A{E,n}=A(X,Y}. Two defor-

mations (F,E,n) and (F’,E’,n’) are called equivalent, if there is an

automorphism @eAut {X,¥)} such that ¢{F)=F’, ®(E)=E’, ®(n)=n’ and

&=i .
10, v

3.2, Distinguished deformations

Definition 5: A deformation (F,E,n) of f over A along (X,Y) is called

distinguished if

Q(F)=A{E,n}/{3F/3E, 3F/3n)
is A-flat along the bigrading generated by (E,n), i.e. if
Q(F) /(E%P,E3%Y)  is a-flat for all a,bel,
Remark:
1. The deformation functor on the category of Artin rings
§f'x'Y(A)={(F,§,n) distinguigshed} /equivalence
admits a hull.

2, Every distinguished deformation is an a-deformation along I=(E,n)

in the sense of [4].

3, Every o~deformation (F,I) leads to a distinguished deformation for

a suitable choice of X,Y and generators E,n of I,

4, In the case A=( {T} a distinguished deformation is u~constant and
the Hilbert-Samuel-function Hft is constant with respect to t. But not
every u-constant deformation is distinguished.

A nontrivial example of a distinguished deformation is a homogeneous

deformation of a E_.~-nondegenerated homogeneous function.

r
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3.3, Characterization of distinguished deformations

Proposition 3: The following conditions are equivalent:

{i) (F,X,Y) is a distinguished deformation
(i1} E(G{F))=E(J(£f))
(iii) J(F)={(3F/2X,2F/2Y) admits a standard base Foreserfy and the ini-
tial forms (in the sense of 1) in(Fi) are units (than 50,...,55 is a
standard base of J(£)}).

b

Proof: (iii)-{i) One has to 1lift every relation of 3£/3X, 3f/sY, x8¢y°,

Xa+l. Such a relation corresponds to

g(X,Y)ej(f) and d(g)=(a,b).
Let GeA[X,Y} be any element over g. By the divisions-theorem (cf.[2])
G=2HiFi + R and d(R)=d(G) and Rem, {X,Y}, hence G~Rej (F) 1ifts the gi-
ven relation.
(1)+(ii) obvious by definition
(ii)--(iii) Again using the division theorem a standard basis fo,....
cevrf, of j(f) can be lifted to ForeooFoe j(F) in such a way that

d(Fi)=d(fi). But this implies in(Fi)eAx.

Corollary: If f is E_-nondegenerated and F a deformation of £ by mono-

T
mials of I' (£} than (F,X,Y) is distinguished.

The other direction is true for Er-nondegenerate functions,

Proposition 4: Ler £ be Er-nondegenerated and F a deformation of £ over
C{t}. Than (¥ ,X,Y) is distinguished iff I'(f)=r(F),.

Idea of the proof: Let {(a,b) be the smallest vertice of I'(F) not belon-
ging to I'(f). Than there is a minimal £ such that rz(F)<r£(f). Similar-
ly to 2.2.(4) one can construct an element hej (F) with d(h)=(x,(F)-

~r,_ k=L EE(3 () .

Corollary: If f is Er-nondegenerated than the reduced hull Hioea of
&f,X,Y is smooth of dimension m(f).

Here m(f)=modality of f=number of monomials of an admissible monomial
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base of Q(f) {cf.[B}) which are in I (f).

Remark:

1. Even for Er—nondegenerate functions in general Sf,x,y is not a
smooth functor, This shows the following example:

Let f=Y3+aX2Y2+bX3Y+cX5. If b#0 than r;=2, r,=7, f is Er-nondegenera—
ted and equivalent to the smooth function simple function E4. Let
r=£+ex?. Than R, (F)=R,(£f) and R,(F)=81e°X®+..., hence for €’=0,F is
distinguished and dim ef’X'Y(C[ej)>0.

For more details ¢f [ 5).

2. Every deformation of f is equivalent by versality to a deformation
in terms of an admissible base. Similarly to proposition 4,holds:

For E_.-nondgenerate functions f every admissible u~constant deformation

r
of £ over ({T} is distinguished.
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