THE MODULI OF IRREDUCIBLE CURVE
SINGULARITIES WITH THE SEMIGROUP.
= ¢5,11) T

BERND MARTIN and GERHARD PFISTER

We compute the moduli space of all irreducible curve singularities with the semigroup I'={5, 11>
and describe {he behaviour of several invariantcs on the components of this meduli space.

. 1. INTRODUGCTION

The moduli space M, , of all germs of irreducible curve singulari-
ties with the same semigroup I'=<(a, b> is a disjoint union of analytic va-
rieties My, t=0,...,9. The generic component M, ,, of M,, is an
algebraic variety, locally an open subset in a weighted projective space
(cf. [2]). Tt turns out that the other components are algebraic spaces bub

need not be algebraic varieties as M;y, 5 in the case of T' = ¢{5,11).
M, , is constructed in the following way. .

Oobmﬁoagompgqﬁuk«minuumgmmiomod%anw mmmbom._o%
the equation .

F: = 2"+ y° 4 Zetyr'y’ = 0,

B = {(i, ), ib + ja > ab, i<a—1,j<b—1}

p the projection.

This family has the following property (cf. [2]).

Tt is the versal deformation of the monomial curve (X,, 0) defined
by 2® + y® = 0 with constant semigroup I'. Moreover, if (¥, 0) is any
germ of an irreducible plane curve singularity with the semigroup I'=
= {a, by, then there is an ¢ in €’ such that (p~X?), 0) = (¥, 0). Using the
relative Kodaira-Spencer map of this family one can compute the analy-
tically trivial subfamilies.

Oonsider the relative Kodaira-Spencer map

2 0 Der, (C[t) — €[, @, y)/(F, 2o, aFjoy) =: T*

0(3) : = class (3F), t = (ti;). The kernel K of the Kodaira-Spencer map
is a sub Lie-algebra of the Lie-algebra of derivations of €. Along the in-
tegral manifolds of K the family X — €7 is trivial. .

Tt turns out that M,, = C’/K and M,,: = Si/K, S the set of all
points in €7 such that the integral manifolds of K through ¢ have
dimension 4. S, is a dense open subset in C* defined by the nonvanishing
of one or two polynomials.
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The stratification {S;} of C" is the reduced flattening stratification
of the relative T" of the family. The singularities corresponding to points
of S; have Tjurina number y — i, p = (¢ — 1) (b — 1) the Milnor num-
ber. There is an algorithm to compute generators of K (cf. [2], [3]).

Let {@i}i=1,.... be a free base of C[[t, », y]1/(0F/ox, oF|dy) as a
C[t] — module and let a.F = Zph, o'y’ mod (oF/dw, dF[dy) then
d; = Xphs jy J/dt, generate K as C[t]-module. Because of the C* —
action on the monomial curve (X, 0), K is a graded Lie-algebra.

deg 9/t = —deg t,; = kb + la — ab >0,

If we choose the a; to be homogeneous.then h;,, is a (weighted) homoge=
neous polynomial of degree deg a; + degt; and §; is homogeneous of
degree deg a; > O.

Let K* (resp. K°) be the Lie-algebra generated (as C— vector space)
by all homogeneous vector fields of K of degree > 0 (resp. >0) then K+
(resp. K°) is a finite dimensional solvable (resp. nilpotent) Lie-algebra. K+
has the same integral manifolds as K, because of 8;e K+ and M,y =
= Sy K+ = Sifexp(K*). G: = exp(K*) resp. G°: = exp(K°) is a solva-
ble (resp. nilpotent) algebraic group acting regularly on the quasiaffine
algebraic varieties §;- 8:/@ is an algebraic variety iff §; can be covered
by open G-invariant sets such that the G-invariant functions separate the
orbits (cf. [1]). For the semigroup I'= ¢5,11> we construct explicitely
M 1, and the corresponding universal family, compute the singularities
of M, and study the behaviour of several invariants as the irregula-~
rity, Steenbrink’s invariants «, 8, v and the polar curves.

The singularities of the moduli space are related to the automorp-
hism group of the germ of the singularity in the corresponding fibre.

2. THE REDUCED FLATTENING STRATIFICATION OF THE KODAIRA-SPENCER MAP

: The versal deformation with constant semi-group of the monomial
curve (X,, 0) defined by f = #® + »™ is given by the following polyno-
mial.

Fi=f+t ay? + 1, 27 + t; 3%9° + ¢, 2%* +
+ 15 @Y + 15 3% + &y @Y7 + £y 2%Y® -+ 1y aSyP.

We choose a suitable free base {ay, ..., a,} of the C [¢]-module
Clz,y,t))(oF |0z, oF|dy) with the properties :
: — a; i3 quasihomogeneous in z, y and ;

— for ¢t = 0 we get the monomial base of C[z, y]/(z% y1°) ordered
by degree: a; =1, a5(0) =y, a5(0) = y?, a,0) = z, a50) = y3, a,0) =
= xy, a(0) =y, ay0) = y? ay(0) = .

matrix of coefficients (ks ), ¢ < 9, with respect to that base has ﬁ-@
lowing form

[, 2%, 3ty T4, 8 121 13, 18t, 23,
o 0 0 A B C D E 18t
0 0 0 0 0 2, 3ttt D 13t
o 0 0 0 0 & 2, C 12,

! o 0 0 0 0 0 0o B 8
0 0 0 0 0 0 0 AT
0 ... e 0 3t,
0 ... e 0 ot,
0... e 0 t, )

B = 3t; — 11111,

A =28, — 9/11 &, .
D = 8, — 811 1;t, + 2/11 £t}

0 = T4, + 3/11 41},
B = 13t, — 117/11 #ts + 3/11 12,8, + 55/112% titststy 4+ T/(B - 113y83e213
Eoﬁa%%% wﬁm@%mﬂ mmm_ﬁmﬁwp%%\ mmw ww\m%vﬁmﬁww .W%owm.g rank of that ma-
trix is defined by the following equations and inequalities
| Sg: 412 — 3tty — 13ty # 0
S, : 412 — 3tt, — fit, = 0 and A # 0 or B#0orI#0,
I: = (A + 1118 4,((t,D — 21,0)* — 2(4* + 1/11 £24) (t; — 2late))-
S,: A =B =1(9C—11D) =0 and (2 — t,B # 0 or D* — (9/11)? BE #0
St A=B=D—9114,0 =0 —4,E=0 and t, #0 or B # 0

QNH&H”&N”...Hﬂm“sQHO MEHQ. &QW#O or ﬂmﬂo
MHH&HH...”&MHO pﬁﬁﬂ&@%o
s@cn&w“... ”swnc.

3. CONSTRUCTIGN OF THE MODULI SPACES

MWHVH mﬂwpwmmno @,-invariant open subset S, of C° the ring of Ginva-

= — its
riants is obviously generated by #, &, t; and I,: =B —t:A. The orbi

ted by the invariant functions.
e mw%wwwro EW@E@B& affine open subset defined by A#0

Ir: = —(1A), = t; —(BJA)y
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is invariant and G,-orbits look like
Goltyy -+ .y ty) = Goltyy. . -y by Lo, loy - oy tp) =

= (ty, 1y, U3, 4y + g1y Lo, 16+ g, .. sy lg 1 gs)

(with respect to the coordinates (1, ..., 1, IZ, 1,
4 #0; gy, ...,9, — arbitrary constants).

Hence the geometric quotient exists here and is given by

Spec Clty, by, by Iolza, Z: = 415 — 3ty1, — 128, = 2,4 — 4, B.
Dividing out by the C*-action we get an open subset D(ZA) =« P31, 2,3, 8)
in the weighted projective space.

The universal family is given by

I+ twy® + ta?y” + tatys + Ijxdys.
Similarly on the invariant affine open subset defined by B #0
Iy = A/B), = t, — (4/B) s
is invariant and Gg-orbits are given here by
Gty ) = Gyl ey Ty Tt . ) =
= (g tay Usy Loy 85 + g1y ..y B9 + 9s)-

Hence the geometric quotient is given by Spec C[#, 1,, 15, 1J']25.
Dividing out by the C*-action we get an open subset D(ZB)=P3(1, 2, 3, 7)
and the universal family

I+ tay® + 6,2%97 - tadys + Iy 225,
Both parts glue together to the moduli space
Ms6: = D(Z) in P3(1,2,3,10) with coordinates (B ity ity 0 1),
The singular locus is defined by #, = #, = 0, i.c. the points with coordina-
tes (0 :1:0:4%). The universal families glue together in etale topology.
(2) Mg

The geometric quotient of S5 by @, does not exist as algebraic variety. S,

is defined by Z = 2t,A — #,B = 0 and covered by the three invariant af-
fine open sets

..., 1) on the open set

U4 #0vresp. Uy: B #0vresp. Uy: I #0,
It is not difficult to see that the Gy-invariants on §; are generated by
by toy t3 Lo and Iy (vesp. Iy) on U, (vesp. on U,).
I} : = (1/4%) [A%; — ABly + (BC — ADY, + ((1/2)B — (4/11)t,4)%]
I : = (1/B%) [ B3, — ABY, + (ABD—B20)t; + (1/2)4B — (4/11) 1, A2)#2]

The orbits are separated by the invariant functions because the
Gy-orbits look like

QOA&Hu P va = QOA&HV “aay &Av mu &mu ‘N.“\: &mn ﬂwv =
= (b5, By B3, 4 + 91y Loy b6 + g2y I3y g + g3y T + g4)
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QQQH. ceoybg) = Q.ch 79 2% Iy, 15 IV, g 1s ly) = , ;
= (b1 Iy 13y Iy, t5 + g Yy fo+ G2 -0 1y -+ 94)- .
over U,(resp. U,) and is given by

etric quotient exists
Hence the geom: q AN

7(Z)n D(4) < P1,2,3,8,13) resp. V(2) 0 D(B)
Universal families are given by o
£+ tay® + t2?y” + 10%y° + Iow®y® + L%y

o F o+ toy® + tyaty? + taty® + I 2%y + LY

iet
Both families glue together in etale topology over the base variety

i i ity Byt
M n D(4, B) < P41, 2, 3,10, 17) with woowmﬁwwo.,mc Qw g “m " mv,
I,:1) and singular point t =1t =Io="15=0 ie (0:

where I,:=A1;=ABI + (1512 B 4411 4, A) IY +
4 (3/11 B — 211 4, AW I3
poti ol leebraic variety.

ic quotient does not exist as alg .

But o%rwwmw mmwuawwwmwwwm on U, are generated by #, I, and I,
I, = t,AI, .
. This 18
(t; is omitted because of the HmEEob.N —0and t, #0 on Us)
o,.mioﬁm for A # 0. But if H 18 ..549,593 we have
A'H = WQC toy Loy I,) = Py(ty, A, I, I,) = AP, + ‘NuuQ: Iy, Ip).

Putting 4 — 0 we get P, — 0! But the quotient map

7 €8 = €4 m(ly, ay by - - o ty) = (ty, 1oy Iy Io)
ent because the fibres do not

restricted to D(I) is not a geometric quoti 0 (then B = 0 t00). Ggorbits

separate the orbits. Look at points with A =
are of the form

G(ty, 9/22 Bty oy lo) = (t, 9/22 13 gy b5y T 40y te + g4)-

r, = 9/22 1}, consists of two orbits

The fibre # iz %o to tah are two different solutions of

Gy( Ty T T T 0, 0,0, 0) where 7, and s
o = Tts — 911 <2ty

] 9
i, — 143/227%3 — 8 ity + (5'3°7%/2°11°) Tty

. . es the
Tn the category of algebraic spaces the following etale covering gives

geometric quotient. Let
H: = AW? + 2(4,D — 26,0)W + 2(4 + H\H:U (tity — 28586) 5
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then H'® = 4(AH + I) /(4 + 1j11#)) and
Cltyy oy tle = Clty + .., T], [W/H is etale.

® is a Gymorphism by g(W): =W — ¢g,(4 inva
=W — 11182). invari
are ty, by I, and J : = AW -4 t,D — QN%.HA AR, The Geinvariants

m: V(H) n DtH') = €0 - DGH'), nlty, ..., gy W) = (4, oy Ty J)
is a qooEman quotient with respect to the G @oﬂ
- on. The fi
EHT.: 9/22 2, 4,,j) is just the G -orbit of (ty, 9/22 <, w4, 75 0 Hw.vm
where =, @Ew 1; are the unique moﬂﬁﬁocm of Vb o e

. e

ty = 71 (& — 9/11 7yt,)
ji= — 9/11 <2C = 8i, — (105/21 114) ~} + H\HH .:
The universal mmh:q is given by
I+ by + 2% + (26,438 + 7/33t1,) 2%y° +

+( + AWNA +11182) a2y® + (f; + (411 AWI(A + 1/118) 2%
(3) My,

On 8, we have A = B =14,(D — -
affine covering is given EMA @\HH t0) =0 and an E<@Em_§ open

U,: 02— tE # 0 and U,: D? — 81/121 E # 0.
The invariants are generated by t,, 1, {; and N..“.Qamw. Iy) with
L =t — (0D — 9/1L B B)/(C? — 1B 1
3. = t,(0D — 9/11 $2E)/(D* — 81/121 4§ E)t,.
On U, n U; we have an invariant function
= (0D — 911 &E) I; = (D? — 81/121 ~iE) I3.

The invari i i
The I Wpﬁ@g functions separate the G -orbits on U, and U; which are gi-

QGAN: ... *? smvv = QQAN: @\Nwﬁwu MH\N%N«W& &E ﬂmu &av .Nmu umu .«wv =
resp. = ﬁ:\. oy Usy g + g1y Isy g + gay te + gs)
Golty, - .., 1) = Go(ty, 9/22 7, 21/242 8, 1y, &, Iy 1y, By, By) =
=y ..oyl T3y B3+ g1, B3+ g2y b 1 9s)
hence the geometric quotient exists and is given by
V(t,(9t,C — 11D)) n D(C? — 4, B) < P¥1,7,8,13)
Tesp.
V(#,(9¢,C — 11D)) n D(D? — 81/121 }E) < P3(1,7,8,12)
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Both pieces glue together to .
Mypa = V(960 —11D) N D(C? — B, D* — m:E:S ) in P%(1,7,8,28)
with coordinates (£ : %, :15: Is).

The singular points are (0:1: 0: 3 and (0:0:1:1). -
Notice that in the set of singular points (0 :1:0:7) only (0:1:0:0)

is a singular point of the éeo&g@ projective space.
The EB?%& families

f + tay® + 9/228a%" + 21/242 Bx®y® + 1028 + 123y’ + Ly’

Tesp.
f 4+ tay® + 9/22 2a2y? + 21/242 2y’ + taty® + tady® + Iyo%y®

glue together in etale topology.
A%v Em 11,3
On S, we have A = B = D — EHH&Q = (2 — t,F = 0 with -open inva-
riant affine covering
Us:t, #0 and U,: E #0
i.e. §; is a smooth variety : an open subset of
Spec Clty, by Ty bay Uss t,1/(C* — 4L E).

The invariant functions on Ug (resp. U,) are generated by

by By L0y L5 (resp. &y, by, 11, Is)
I,: =1, — 9111t V= t; — (911 410) B
I: =ty — (Ot Iy =t — (C — Bt
On Ugn U, we have
I,:=I=1Iy— 911 &HN = CI{ = —EIy.

The invariant functions separate orbits on Ug and U, because the
@,-orbits are given by

Qoﬁt gy lgy - - v 1) = A«o?ﬁ lgy Ty H& .NE &ov
= (t;, tsy b + 915 I, I, 8y + 92)

resp. .‘ ,
Qc@b by gy -9 1) = QoQ: lyy Hw@ Nmﬁ 7% acv =

= (ty, by Iy, I, ts + 9 ty + gz)
hence the geometric quotients exists and are given by
v(c: — 4, E) n D) < P3(1,7,13,18)

resp. -
V(C* — t,B) n D(B) = P¥(1,7,13,12).
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Both pieces glue together to
M5 = V(C? — 4E) n D(t, B) = P3(1,7,13,25)

with coordinates (t,:4,:1,: I, i i
Thy. amates Emp mmp * wmw quﬂm&& one singular point (0:0:1: 0).

F 4 toy® + 9/22 0% - 21/242 B0ys - tyx?y® +

71/88%,t, -212/32. : :
s (71/8848, 4 5-212/32.1144,) z%y® + Idy? -+ Tia3y®
I+ hay® + 9/22822%7 + 21/242 Badyd + t,o2®

(T1/881%, ¢, + 5~ 21732 - 11%)a%® + Iywdy? + Iygtyd

slue together in etale topology.
5) As a trivial exercise owmawmﬂm

M; 0, = P12, 18)

wd universal family (in the category of algebraic varieties 1
I+ zy® - teadys

U551 Yesp. M., , is just one point corresponding to

J =+ x%® resp. f.
‘hus we got the following results
wwmb g..% exactly seven components with dimensions wvwvw,vwhuo,c and
18 & quast ) jects

5,11,6 i ﬁwmquu.wwvwe“@ open subset of the wetghied projeclive space
M5 18 a 3-dimensional algebraic space;
M4 and My, . are open sets of (huper- )
, ot 2 A.ﬁﬁumvmmf f .ﬁ yper-) surfaces in P3(1,7,8,28)
M 11,5 is the weighted projective line P! (12,18).

niversal families exist for M, M ;
510,67 -« -y wn the cale Y
aces and for M, 51,2 8 algebraie ea“,s.& u..z_u gory of algebraio

4. THE AUTOMORPHISM GROUP

We will describe the automorphi
v i phism group of a
wmzego curve with - the semigroup (5, H@Hv. Wod X MMEMQMM%V dom fo
LA&%@@ mm%mc denote R: = C {z, y}/f. vIe
et Derc (£) be the sub Lie-algebra generated (as E-
3oy 0/0s -+ ofjoa ofoy of the Lie-algebra Dery(R). & A%p%ﬂmv ey
asinomogeneous then Der (R)/Dery(R) is a finite &Bgm&b& nilpo-

1t Lie-ale : ; s
uodmuodwmumvs. If (X, 0) is quasihomogeneous then it is solvable. Let us

Auty(R) resp. Auig(R)
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the corresponding normal subgroups of Aut(E), i.e.
AutyR) = exp Derd(R), Aut§(R) = exp Der(ER).

Then Aute(R)/Autl(R) is an algebraic group (solvable resp. nilpotent)
and Autf(R)/Aut(R) is its connected component of the identity.

If (X,0) is generic then Autc(R)/Aut}(R) is connected.
(X, 0) corresponds to a suitable point ¢ € U My, The My, are locally
quasiprojective with respect to a weighted projective space P,.

It turns out that the isotropy group @; of te P, is isomorphic to

Aut(R)/Aut§(R).

This is a special property of our moduli spaces and is not true in ge-
neral for families of singularities defined on subsets of a weighted pro-
jective space.

It is also not clear whether this fact will be true for other semi groups
{a, b). It is true for the moduli spaces corresponding to the minimal Tju-
rina number.

If the weights of the corresponding projective space P, are reduced,
points with a nontrivial isotropy group are the singular points of P,. In
this case these singular points of the moduli space correspond to the sin-
gular curves with a non connected antomorphism group (ILdea of A.
Dimea). . ,

We give a list of all singularities with the semigroup (5, 11) and
automorphism group not connected.

i _ points in M 444 _ Aut (R)/Aut &(R)
6 (0:1:0:i)ePid,2,3,8) Z2Z
5 (0:0:1:0:0eP*1,2,3,7,12) Z[3Z
4 (0:1:0:0)ePy1,7,8,13) Z)7Z

(0:0:1:i)ePy1, 7,8, 12) ZJAZ
(0:0:1:0)eP3(1, 7, 8, 12) Z[3Z
3 (0:0:1:0)eP3(1, 7,13, 12) Z]137,
2 _ (1: 0)e P1(12, 18) Z)12Z
(0:1)e PY{(12, 18) Z/18Z
else ) Z|6Z
1 point Z/23Z

For i = 3,4,5 and 6 these points in M, ; are singular points.

5. STEENB RINX'S INVARIARTS

Let us consider t he singularities with the semigroup (5, 11) as sur-
face singularities by ad d ing 2? to the corresponding equation. We compute
the geometric genus p,, t he irregularity g, the genus g, and «, B, v (c¢f. [4]) : -




368 : B. MARTIN and G. PFISTER . . 10

Let ¥ — X be a good resolution of the normal surface singularity
(X, 0) and E the reduced exceptional divisor, {Bi}i=1..+ the components
of £ and F their disjoint union. Then

g = Zg(B), p, = dim HY(0y), ‘¢ = dim HY(QL, ,)/H(Q})
« = dim HYQ})/dH(Q(log B) (—B)), § = dim H(Q})/Im H(OL)
= rk(HL(QL) — HYQL)) — .
For the singularities considered here we get

Po=4 g=0, =0, « =36 +¢q— T, Y=17—2¢—32

T ﬁ 34 35 36 37 38 39 40
gl o 1if A#0or B+#0 1 2t #0 2 -3 4
0 else 2 else .
5. THE POLAR CURVES /

For e 8; denote by P, the polar curve of the corresponding singu-

larity defined by F, = 0.

There are three possible types of polar curves )

I P, is irreducible with Milnor number 24 defined by an equation
o* + 3° 4 terms of degree > 1 with respect“to the weights 1/4, 1/9
iff ¢, # 0. :

I P, is reducible with Milnor number 25 defined by an equation
#* + oy + terms of degree >1 with respect to the weights 1/4,
3/28 iff ¢, =0 &, # 0. ,

IIT P, is reducible with Milnor number 27 defined by an equation
#* + y'° + term of degree > 1 with respect to the weights 1/4, 1/10
if 4 =1, =0

T | 34 35 36 37 38 39 40

type LI LIII I 1,11 1881 III 111
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