Singularities of Moduli Spaces

B. Martin, G. Pfister
Humboldt-Universität Berlin
Sektion Mathematik
Postfach 1297
DDR-1086 Berlin

Let (X,0) be the germ of an irreducible curve singularity in the complex plane \mathbb{C}^2 defined by the equation f=0, f being holomorphic in a neighbourhood of o. Let $B_d=\left\{(x,y), |(x,y)| \langle d\right\}$ be a small ball and $K_d=\left\{(x,y), |(x,y)| \langle d,f(x,y)=0\right\}$. For small d the homeomorphy class of (B_d,K_d) does not depend on d and is called the topological type of the singularity. Denote by $T_{a,b}$ the topological type of the singularity defined by f^{axa+yb} , a and b relatively prime. The moduli space $M_{a,b}$ of all germs of plane curve singularities with the same topological type $T_{a,b}$ is a disjoined union of analytic varieties $M_{a,b,t}$, $t=1,\ldots,g$. The generic component $M_{a,b,g}$ of $M_{a,b}$ is an algebraic variety, locally an open subset in a weighted projective space P_w . There are examples that the other components are not algebraic varieties $(cf.\langle 1\rangle)$. $M_{a,b}$ is constructed in the following way: Consider the family $p:X \longrightarrow C^r$, X the subset of C^rxC^2 defined by the equation

 $F = x^{a}+y^{b}+ \sum_{n=1,j} t_{i,j}x^{i}y^{j},$ $B=\{(i,j),ib+ja\}ab,i\langle a-1,j\langle b-1\}, p \text{ the projection.}$

This family has the following properties: If (Y,o) is any germ of an irreducible plane curve singularity with the topological type $T_{a,b}$ then there is an t in C^r such that $(p^{-1}(t),o)=(Y,o)$. Using the relative Kodaira-Spencer map of this family one can compute the analytically trivial subfamilies: The kernel K of the Kodaira-Spencer map is a sub Lie-algebra of the derivation of C^r . Along the integral manifolds of K the family $X \longrightarrow C^r$ is trivial. It turns out that $M_{a,b}=C^r/K$ and $M_{a,b,i}=S_i/K$, S_i the set of all points t in C^r such that the integral manifold through t has dimension i, $(cf.\langle 3\rangle)$. Let $\{a_i\}_{i=1,...a}$ be a free base of $C[[t,x,y]]/(\partial F/\partial x,\partial F/\partial y)$ then $\delta_i = \sum_{h_i,h_i} \sum_{k=1}^{N} \sum_{k=$

The generic component $M_{a,b,g}$ od $M_{a,b}$ may have singularities, according to singularities of the corresponding weighted projective space P_w . The singular points of $M_{a,b,g}$ are of special intrest because they correspond to singular curves with a non connected automorphism gruop G, the quotient of G by its connected component turns out to be the isotropy group of the corresponding point in P_w , $(cf.\langle 5\rangle)$. These singularities are characterized by the weights and can be computed in a combinatorial way.

The weights of P_{ω} depend only on a and b and can also be computed in a combinatorical way, $(cf.\langle 2\rangle,\langle 3\rangle)$. $M_{a,b,g}$ is defined in P_{ω} by the non vanishing of one or two polynomials with integer coefficients. These polynomials are certain minors of the matrix $(h_{1,k1})$ and can also be described in a combinatorial way in terms of a and b, $(cf.\langle 2\rangle,\langle 3\rangle)$.

The components of the singular locus of P_{ω} are suitable intersections of coordinate hyperplanes such that the weights of the corresponding coordinates have a non-trivial common factor. Now using Buchbergers algorithm (cf. $\langle 4 \rangle$) we get the singular locus of $M_{a,b,g}$.

REFERENCES

- (1) Martin,B., Pfister,G.: The moduli of irreducible curve singularities with the semigroup = <5,11>, Rev. Roumaine Math. pures Appl.. 33(1988), 4, 359-368
- (2) Martin,B., Pfister,G.: An algorithm to compute the kernel of the Kodaira-Spencer map for an irreducible plane curve singularity, to appear in J. of Symbol. Computation
- <3> Laudal,O.A., Martin,B., Pfister,G.: Moduli of plane curve singularities with C*-action, to appear in the publser. of the Banach Centre, Warsaw, Vol. 20
- (4) Buchberger, B.: An algorithm for constructing canonical bases of polynomial ideals, ACM Trans. Math. Software 11 (1985) 1, 66-78
- <5> Schönemann, H., Automorphismengruppen von semi-quasihomogenen Kurvensingularitäten, Preprint 175, HUB, 1988