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Abstract. Computations over the rational numbers often suffer from in-
termediate coefficient swell. One solution to this problem is to apply the
given algorithm modulo a number of primes and then lift the modular re-
sults to the rationals. This method is guaranteed to work if we use a suf-
ficiently large set of good primes. In many applications, however, there
is no efficient way of excluding bad primes. In this note, we describe a
technique for rational reconstruction which will nevertheless return the
correct result, provided the number of good primes in the selected set of
primes is large enough. We give a number of illustrating examples which
are implemented using the computer algebra system SINGULAR and the
programming language JULIA. We discuss applications of our technique
in computational algebraic geometry.
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1 Introduction

Many exact computations in computer algebra are carried out over the ratio-
nals and extensions thereof. Modular techniques are an important tool to im-
prove the performance of such algorithms since intermediate coefficient growth
is avoided and the resulting modular computations can be done in parallel. For
this, we require that the algorithm under consideration is also applicable over
finite fields and returns a deterministic result. The fundamental approach is
then as follows: Compute the result modulo a number of primes. Then recon-
struct the result over Q from the modular results.

Example 1. To compute
1
2
+

1
3
=

5
6
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using modular methods, the first step is to apply Chinese remainder isomor-
phism:

Z/5 × Z/7 × Z/101 ∼= Z/3535
1
2 7−→ ( 3 , 4 , 51 )

+
1
3 7−→ ( 2 , 5 , 34 )

q
( 0 , 2 , 85 ) 7−→ 590

The second step is to reconstruct a rational number from 590.

2 Rational Reconstruction

Theorem 1. [8] For every integer N, the N-Farey map{
a
b ∈ Q

∣∣∣∣ gcd(a, b) = 1
gcd(b, N) = 1 |a| , |b| ≤

√
(N − 1)/2

}
−→ Z/N

a
b 7−→ a · b−1

is injective.

There are efficient algorithms for computing preimages of the Farey map,
see, for example, [8, Sec. 5].

Example 2. We use the computer algebra system SINGULAR [6] to compute the
preimage of the Farey map the setting of Example 1:
> ring r = 0, x, dp;

> farey(590,3535);

5/6

The basic concept for modular computations is then as follows:

1. Compute the result over Z/pi for distinct primes p1, . . . , pr.
2. Use the Chinese remainder isomorphism

Z/N ∼= Z/p1 × . . .×Z/pr

to lift the modular results to Z/N where N = p1 · · · pr.
3. Compute the preimage of the lift with respect to the N-Farey map.
4. Verify the correctness of the lift.

This will yield the correct result, provided N is large enough (that is, the
Q-result is contained in the domain of the N-Farey map), and provided none of
the pi is bad.

Definition 1. A prime p is called bad (with respect to a fixed algorithm and input) if
the result over Q does not reduce modulo p to the result over Z/p.

By convention, this includes the case where, modulo p, the input is not defined
or the algorithm in consideration is not applicable.



Bad Primes in Computational Algebraic Geometry 3

3 Bad primes

3.1 Bad primes in Gröbner basis computations

Consider a set of variables X = {x1, . . . , xn} and a monomial ordering > on
the monomials in X. For a set of polynomials G, write LM(G) for its set of lead
monomials. For G ⊂ Z[X] and p prime, write Gp for the image of G in Z/p [X].

Theorem 2. [2] Suppose F = { f1, ..., fr} ⊂ Z[X] with all fi primitive and homoge-
neous. Let G be the reduced Gröbner basis of 〈F〉 ⊂ Q[X], G(p) the reduced Gröbner
basis of

〈
Fp
〉
, and GZ a minimal strong Gröbner basis of 〈F〉 ⊂ Z[X]. Then

p does not divide any lead coefficient in GZ⇔ LM(G) = LM(G(p))⇔ Gp = G(p).

Example 3. Using SINGULAR, we determine the bad primes for a Gröbner basis
computation of the Jacobian ideal of a projective plane curve. We compute a
minimial strong Gröbner basis over Z:
> option("redSB");

> ring R = integer,(x, y, z),lp;

> poly f = x7y5 + x2yz9 + xz11 + y3z9;

> ideal I = groebner(ideal(diff(f, x), diff(f, y), diff(f,z)));

> apply(list(I[1..size(I)]),leadcoef);

13781115527868730344777310464613260 83521912290113517241074608876444 60 12

4 12 12 45349632 12 1473863040 12 22674816 12 3888 12 12 12 13608 12 108 54

6 2 27 3 1 4 2 2 1 216 1 2 3 1 540 12 108 27 3 1 9 3 1 1 1 1 1 7 1 5 1 1

The bad primes, that is, the primes p with Gp 6= G(p), are then the prime factors

p = 2, 3, 5, 7, 11, 13, 257, 247072949, 328838088993550682027

of the lead coefficients. In contrast, the lead coefficients of the Gröbner basis
over Q involve only the prime factors 2, 3, 5, 7, 13, and hence not all bad primes.
As shown by the following computation, 257 is indeed a bad prime:
> ring R0 = 0,(x, y, z),lp;

> size(lead(groebner(fetch(R,I))));

15
> ring R1 = 257,(x, y, z),lp;

> size(lead(groebner(fetch(R,I))));

14

3.2 Classification of Bad Primes

Bad primes can be classified as follows, see [3, Sec. 3] for details:

– Type 1: The input modulo p is not valid (this poses no problem).
– Type 2: There is a failure in the course of the algorithm (for example, a matrix

may not be invertible modulo p; this wastes computation time if it happens).
– Type 3: A computable invariant with known expected value (for example, a

Hilbert polynomial) has a wrong value in a modular computation (to detect
this we have to do expensive tests for each prime, although the set of bad
primes usually is finite, and hence bad primes rarely occur).
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– Type 4: A computable invariant with unknown expected value (for example,
the lead ideal in a Gröbner basis computation) is wrong (this can be han-
dled by a majority vote, however we have to compute the invariant for each
modular result and store the modular results).

– Type 5: otherwise.

The Type 5 case in fact occurs, as is shown by the following example. For an
ideal I ⊂ Q[X] and a prime p define Ip = (I ∩Z[X])p.

Example 4. Consider the algorithm I 7→
√

I + Jac(I) computing the radical of
the Jacobian ideal for the curve

I =
〈

x6 + y6 + 7x5z + x3y2z− 31x4z2 − 224x3z3 + 244x2z4 + 1632xz5 + 576z6〉.
Note that, with respect to the degree reverse lexicographic order, LM(I) =〈

x6〉 = LM(I5), that is, 5 is not bad with respect to the input. The following
computation in SINGULAR first determines the minimal associated primes of
U(0) =

√
I + Jac(I) and U(5) =

√
I5 + Jac(I5).

> LIB "primdec.lib";

> ring R0 = 0, (x, y, z), dp;

> poly f = x6+y6+7x5z+x3y2z-31x4z2-224x3z3+244x2z4+1632xz5+576z6;

> ideal U0 = radical(ideal(f, diff(f, x), diff(f, y), diff(f, z)));

> minAssGTZ(U0);

[1]: [1]=y [2]: [1]=y

[2]=x+6z [2]=x-4z

> ring R5 = 5, (x, y, z), dp;

> poly f =imap(R0,f);

> ideal U5 = radical(ideal(f, diff(f, x), diff(f, y), diff(f, z)));

> minAssGTZ(U5);

[1]: [1]=y [2]: [1]=y

[2]=x-z [2]=x+z

> minassGTZ(imap(R0,U0));

[1]: [1]=y

[2]=x+z

This shows that U(0)5 6= U(5), but LM(U(0)) =
〈
y, x2〉 = LM(U(5)).

4 Error-Tolerant Reconstruction

Our goal is to reconstruct the Q-result a
b from the modular result r ∈ Z/N in

the presence of bad primes. Our basic strategy will be to find an element (x, y)
with x

y = a
b in the lattice

Λ = 〈(N, 0), (r, 1)〉 ⊂ Z2.

Lemma 1. [3, Lem. 4.2] All (x, y) ∈ Λ with x2 + y2 < N are collinear.

Now suppose N = N′ ·M with gcd(N′, M) = 1. We assume that N′ is the
product of the good primes with correct result s, and M is the product of the
bad primes with wrong result t.
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Theorem 3. [3, Lem. 4.3] If

r 7→ (s, t) with respect to Z/N ∼= Z/N′ ×Z/M

and a
b

mod N′ = s

then (aM, bM) ∈ Λ. So if (a2 + b2)M < N′, then (by Lemma 1)

x
y
=

a
b

for all (x, y) ∈ Λ with (x2 + y2) < N

and such vectors exist. Moreover, if gcd(a, b) = 1 and (x, y) is a shortest vector 6= 0
in Λ, we also have gcd(x, y)|M.

Hence, if N′ � M, the Gauss-Lagrange-Algorithm for finding a shortest
vector (x, y) ∈ Λ gives a

b independently of t, provided x2 + y2 < N. We use the
programming language JULIA6, to illustrate the resulting algorithm.

function ErrorTolerantReconstruction(r::Integer, N::Integer)

a1 = [N, 0]

a2 = [r, 1]

while dot(a1, a1) > dot(a2, a2)

q = dot(a1, a2)//dot(a2, a2)

a1, a2 = a2, a1 - Integer(round(q))*a2

end

if dot(a1, a1) < N

return a1[1]//a1[2]

else

return false

end

end

The following table shows timings (in seconds), for r and N of bit-length
500, comparing the JULIA-function with implementations in the SINGULAR-
kernel (optimized C/C++ code) and the current SINGULAR-interpreter:

SINGULAR-kernel JULIA SINGULAR-interpreter
0.001 0.005 0.055

Building on JULIA as a fast mid-level language, a backwards-compatible just-
in-time compiled SINGULAR-interpreter is under development.

Example 5. In the setting of Example 1, we obtain 5
6 from 590 ∈ Z/3535 by

julia> ErrorTolerantReconstruction(590, 3535)

5//6

which computes the sequence

(3535, 0) = 6 · (590, 1) + (−5,−6),
(590, 1) = −48 · (−5,−6) + (350,−287).

6 See http://julialang.org/.

http://julialang.org/
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Example 6. Now we introduce an error in the modular results:

Z/5 × Z/7 × Z/101 ∼= Z/3535

( 1 , 2 85 ) 7→ 2711

Error tolerant reconstruction computes

(3535, 0) = 1 · (2711, 1) + (824,−1),
(2711, 1) = 3 · (824,−1) + (239, 4)
(824,−1) = 3 · (239, 4) + (107,−13)
(239, 4) = 2 · (107,−13) + (25, 30)

(107,−13) = 1 · (25, 30) + (82,−43)

hence yields
25
30

=
5 · 5
5 · 6 =

5
6

.

Note that
(52 + 62) · 5 = 305 < 707 = 7 · 101.

5 General Reconstruction Scheme for Commutative Algebra

For a given ideal I ⊂ Q[X], we want to compute some ideal (or module) U(0)
associated to I by a deterministic algorithm. We proceed along the following
lines:
1. Over Z/p compute U(p) from Ip for p in a suitable finite set P of primes.
2. Replace P by a subset according to a majority vote on LM(U(p)) (see also

[3, Rmk. 5.7]).
3. For N = ∏p∈P p compute the coefficient-wise CRT–lift U(N) to Z/N, iden-

tifying generators by their lead monomials.
4. Lift U(N) by error tolerant rational reconstruction to U.
5. Test Up = U(p) for some random extra prime p.
6. Verify U = U(0).
7. If the lift, test or verification fails, then enlarge P and repeat.

Theorem 4. [3, Lem. 5.6] If the bad primes form a Zariski closed proper subset of
Spec Z, then this strategy terminates with the correct result.

6 Computing Adjoint Ideals

We discuss an application from algebraic geometry. The goal is to compute
adjoint curves, that is, curves which pass with sufficiently high multiplicity
through the singularities of a given curve, see Figure 1. We consider an integral,
non-degenerate projective curve Γ ⊂ Pr with normalization map π : Γ → Γ,
and a saturated homogeneous ideal I with I(Γ) $ I ⊂ k[x0, ..., xr]. We write
Sing(Γ) for the singular locus of Γ. Let H be the pullback of a hyperplane, and
∆(I) the pullback of Proj(S/I). Then the exact sequence
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0→ ĨOΓ → π∗( ĨOΓ)→ F → 0

induces, for m� 0, an exact sequence

0→ Im/I(Γ)m
$m→ H0 (Γ,OΓ (mH − ∆(I))

)
→ H0 (Γ,F )→ 0.

Definition 2. The ideal I is an adjoint ideal of Γ if $m is surjective for m� 0.

Since h0 (Γ,F ) = ∑P∈Sing(Γ) length(IPOΓ,P/IP), we obtain:

Theorem 5. [1] With notation as above:

I is an adjoint ideal of Γ ⇐⇒ IPOΓ,P = IP for all P ∈ Sing(Γ).

The conductor COΓ,P of OΓ,P ⊂ OΓ,P is the largest ideal of OΓ,P which is also an
ideal in OΓ,P.

Definition 3. The Gorenstein adjoint ideal of Γ is the largest homogeneous ideal
G ⊂ K[x0, . . . , xr] with

GP = COΓ,P for all P ∈ Sing(Γ).

Fig. 1. Degree 3 adjoint curve of a rational curve of degree 5

The Gorenstein adjoint ideal has many applications in the geometry of curves.

Example 7. If Γ be an irreducible plane algebraic curve of degree n, then Gn−3
cuts out the canonical linear series.

Example 8. If Γ is a rational plane curve of degree n, then Gn−2 maps Γ to a
rational normal curve of degree n− 2 in Pn−2.

Example 9. The Gorenstein adjoint ideal can be used in the Brill-Noether-Algorithm
to compute Riemann-Roch spaces for singular curves.

The Gorenstein adjoint ideal can be computed via a local-to-global strategy.

Definition 4. The local adjoint ideal of Γ at P ∈ Sing Γ is the largest homogeneous
ideal G(P) ⊂ k[x0, . . . , xr] with G(P)P = COΓ,P .

Lemma 2. [5, Prop. 5.4] With notation as above,

G =
⋂

P∈Sing Γ
G(P).
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Definition 5. Let A be the coordinate ring of an affine model C = Spec A of Γ and
let P ∈ Sing(A). A ring A ⊂ B ⊂ A ⊂ Quot(A) is called a minimal local
contribution to A at P if BP = AP and BQ = AQ for all P 6= Q ∈ C.

The minimal local contribution to A at P is unique and can be computed us-
ing Grauert-Remmert-type normalization algorithms, see [4]. It can be written
as B = U

d with an ideal U ⊂ A and a common denominator d ∈ A.

Algorithm 6 [5, Alg. 4] With notation as above, G(P) ⊂ k[x0, . . . , xr] is the homog-
enization of the preimage of (d : U) under k[x1, . . . , xr]→ k[x1, . . . , xr]/I = A.

7 Modular version of the algorithm

Applying the general modular strategy gives an algorithm which is two-fold
parallel (taking Lemma 2 into account). We use primes p such that the algorithm
is applicable to the variety Γp defined by I(Γ)p. Efficient verification can be re-
alized through a semi-continuity argument, see [5, Theorem 8.14]. Table 1 gives
timings (in seconds on a 2.2 GHz processor) for plane curves fn of degree n with
(n−1

2 ) singularities of type A1. Rows LA and IQ refer to global computations of

parallel probabilistic f5 f6 f7

Maple-IB 5.1 47 318
LA 98 4400 -
IQ 1.3 54 3800
locIQ � 1.3 (1) 54 (1) 3800 (1)
modLocIQ 6.4 [33] 19 [53] 150 [75]

� 6.2 [33] 18 [53] 104 [75]
� .36 (74) 1.6 (153) 51 (230)
� � .21 (74) 0.48 (153) 5.2 (230)

Table 1. Timings

the Gorenstein adjoint ideal via linear algebra [9] and ideal quotients, respec-
tively. The row Maple-IB shows timings for the normalization of the curve via
a computation of an integral basis in MAPLE [10]. The row locIQ gives timings
for the local-to-global (Lemma 2), and modLocIQ for the modular local-to-global
strategy. In square brackets, the number of primes in the modular strategy is
shown, in round brackets the number of cores used simultaneously in a paral-
lel computation. We also give timings for the modular probabilistic algorithm
obtained by omitting the verification, and for parallel computations. Observe
that, in the example, a local-to-global strategy does not give any benefit when
computing over the rationals, since the singular locus does not decompose.
However, by Chebotarev’s density theorem, the singular locus is likely to de-
compose when passing to a finite field, as illustrated by the last two rows of the
table.
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