A CLASSIFIER FOR SIMPLE ISOLATED COMPLETE INTERSECTION SINGULARITIES

DEEBA AFZAL AND GERHARD PFISTER

Abstract

M. Guisti's classificaton of the simple complete intersection singularities is characterized in terms of invariants. This is a basis for the implementation of a classifier in the computer algebra system Singular-

1. Introduction

We report about a classifier for simple isolated complete intersection singularities in the computer algebra system SINGULAR [DGPS13],[GP07]. In [AVI95] V. Arnold classified the simple hypersurface singularities, the famous A-D-E-singularities. M.Giusti gave a classification of simple complete intersection singularities which are not hypersurfaces [GM83]. The singularities in Giusti's classification are given by normal forms.

The aim of this paper is to describe Giusti's classification in terms of certain invariants. Based on this description we are not forced to compute the normal form for finding the type of the singularity. This is usually more complicated and may be space and time consuming. For the classification of hypersurface singularities we refer to the SINGULAR library classify.lib [DGPS13].

2. Simple Complete Intersection Singularities In Dimesion 0

Let $(V(<f, g>), 0) \subseteq\left(\mathbb{C}^{2}, 0\right)$ be the germ of a complete intersection singularity. M.Giusti proved in [GM83] that $(V(<f, g>), 0)$ is simple iff it is isomorphic to a complete intersection in the following list.

Type	Normal Form	MilnorNumber
$F_{n+p-1}^{n, p, n, p \geq 2}$	$\left(x y, x^{n}+y^{p}\right)$	$\mathrm{n}+\mathrm{p}-1$
G_{5}	$\left(x^{2}, y^{3}\right)$	5
G_{7}	$\left(x^{2}, y^{4}\right)$	7
$H_{n+3}, n \geq 4$	$\left(x^{2}+y^{n}, x y^{2}\right)$	$\mathrm{n}+3$
$I_{2 p-1}, p \geq 4$	$\left(x^{2}+y^{3}, y^{p}\right)$	$2 \mathrm{p}-1$
$I_{2 q+2}, q \geq 2$	$\left(x^{2}+y^{3}, x y^{q}\right)$	$2 \mathrm{q}+2$

We want to give a description of the type of the singularity without producing the normal form. Given $(V(<f, g>), 0) \subseteq\left(\mathbb{C}^{2}, 0\right)$ we consider the ideal $I=<f, g>\subseteq$ $\mathbb{C}[[x, y]]$. We fix the local degree reverse lexicographical ordering $>$ on $\mathbb{C}[[x, y]]$ with

[^0]$y>x$. We will denote by $L(I)$ the leading ideal of I with respect to this ordering and by $L M(f)$ the leading monomial of $f, f \in \mathbb{C}[[x, y]]$.
Proposition 2.1. Let $I=<f, g>\subseteq \mathbb{C}[[x, y]]$ be an \mathfrak{m}-primary ideal and $d=$ $\operatorname{dim}_{\mathbb{C}}(\mathbb{C}[[x, y]] / I), \mathfrak{m}=\langle x, y\rangle$.
(1) If $\operatorname{dim}_{\mathbb{C}}\left(I+\mathfrak{m}^{3} / \mathfrak{m}^{3}\right)=2$ then $(V(I), 0)$ is of type $F_{d-1}^{2, d-1}$.
(2) If $\operatorname{dim}_{\mathbb{C}}\left(I+\mathfrak{m}^{3} / \mathfrak{m}^{3}\right)=1$ and a generator of $I+\mathfrak{m}^{3} / \mathfrak{m}^{3}$ is reduced in $\mathbb{C}[[x, y]] / \mathfrak{m}^{3}$, let $\phi: \mathbb{C}[[x, y]] \rightarrow \mathbb{C}[[x, y]]$ be an automorphism such that $\phi(I)=<x y+a, b>, a, b \in \mathfrak{m}^{3}$. If $L(\phi(I))=<x y, x^{p}, y^{q}>$ then $(V(I), 0)$ is of type $F_{d-1}^{p, q-1}$.
(3) If $\operatorname{dim}_{\mathbb{C}}\left(I+\mathfrak{m}^{3} / \mathfrak{m}^{3}\right)=1$ and a generator of $I+\mathfrak{m}^{3} / \mathfrak{m}^{3}$ is a square let $\psi: \mathbb{C}[[x, y]] \rightarrow \mathbb{C}[[x, y]]$ be an automorphism such that $\psi(I)=<x^{2}+g, h>$, $g, h \in \mathfrak{m}^{3}$ and assume that x^{2} does not divide the monomials of h of degree $\leq d$.
Let c be the Milnor number of $\left(V\left(x^{2}+g\right), 0\right) \subseteq\left(\mathbb{C}^{2}, 0\right)$. If $d=6$ then $(V(I), 0)$ is of type G_{5}.
If $d \geq 7$ and $c=2$ then $(V(I), 0)$ is of type I_{d-1}.
If $L M(h)=y^{4}, c \geq 3$ then $(V(I), 0)$ is of type G_{7}.
If $L M(h)=x y^{2}, c \geq 3$ then $(V(I), 0)$ is of type H_{d-1}.
(4) In all other cases $(V(I), 0)$ is not simple.

Proof.
Since a minimal standard basis of $\langle x y+a, b\rangle, a, b \in \mathfrak{m}^{3}$ is $\left\{x y+a, x^{p}+f, y^{q}+g\right\}$ for suitable $f, g \in \mathbb{C}[[x, y]], f \in \mathfrak{m}^{p+1}, g \in \mathfrak{m}^{q+1}$. (1) and (2) follow directly from the classification of Giusti. To prove (3) note that a minimal standard bases of $<x^{2}+g, h>, g, h \in \mathfrak{m}^{3}$, is $\left\{x^{2}+g, h\right\}$, monomials of h of degree $\leq d$ are not divisible by x^{2}. If $L M(h)=y^{p}$ for some p (in this case $d=2 p$) then obviously $\left\{x^{2}+g, h\right\}$ is a minimal standard basis. If $L M(h)=x y^{q}$ for some q then a minimal standard basis is $\left\{x^{2}+g, h, y^{p}+e\right\}$ for some $p \geq q+3$ and a suitable $e \in \mathfrak{m}^{q+3}$ (in this case $d=p+q$). This is a consequence of the fact that $y>x$, the monomials of h up to degree d are not divisible by x^{2} and therefore $\operatorname{spoly}\left(x^{2}+g, h\right) \in \mathfrak{m}^{q+3}$. If $d=6$ then $L M(h)=y^{3}$ since in the other case $d \geq 7$. It follows from Giusti's classification that $<x^{2}+g, y^{3}+h>, g, h \in \mathfrak{m}^{3}, L M(h)<y^{3}$ is of Type G_{5}.

If $c=2$ and $d \geq 7$ then we may assume that $g=y^{3}$. If $L(I)=<x^{2}, y^{p}>$, $p \geq 4$ (in case $p=3$ we have $d=6$) then we obtain from Giusti's classification that $(V(I), 0)$ is of type $I_{2 p-1}$.

If $L(I)=<x^{2}, x y^{q}, y^{p}>$, for some $p \geq q+3$ we obtain $p=q+3$ since $L M\left(\operatorname{spoly}\left(x^{2}+y^{3}, h\right)\right)=y^{q+3}$. Again Giusti's classificationn gives $I_{2 q+2}$. Now we may assume $c \geq 3$ (the case $c=\infty$ included). If $L M(h)=y^{p}$ and $d=8$ we obtain $p=4$. We may assume $g=y^{c+1}$, since $c \geq 3$ we can change $x^{2}+g$ adding a suitable multiple of h to increase c. If $L M(h)=x y^{2}$ then $(V(I), 0)$ is of type H_{d-1}. This we obtain anaylyzing the proof of Giusti's classification.

We summarize this case in Algorithm 1. ${ }^{1}$

[^1]```
Algorithm 1 0-dimensional simple complete intersections
Input: \(I=<f, g>\epsilon<x, y>^{2} \mathbb{C}[[x, y]]\)
Output: the type of the singularity \((V(I), 0)\)
 compute \(d=\operatorname{dim}_{\mathbb{C}}(\mathbb{C}[[x, y]] / I)\);
 compute \(s=\operatorname{dim}_{\mathbb{C}}\left(I+<x, y>^{3} /<x, y>^{3}\right)\);
 if \(s=2\) then
 return \(\left(F_{d-1}^{2, d-1}\right)\);
 if \(s=1\) then
 choose a homogenous generator h of \(I+<x, y>^{3} /<x, y>^{3}\);
 if \(h\) splits into two factors then
 choose an automorphism \(\phi\) such that \(\phi(h)=x y\). Compute generators of
 the leading ideal \(L(\phi(I))=<x y, x^{p}, y^{q}>\)
 return \(\left(F_{d-1}^{p, q-1}\right)\);
 else
 if \(d=6\) then
 return \(\left(G_{5}\right)\);
 choose an automorphism \(\phi\) such that \(\phi(h)=x^{2}\) choose \(g, h \in<x, y>^{3}\) such
 that \(x^{2}\) does not divide the monomials of \(h\) of degree \(\leq d\) and \(\phi(I)=<\)
 \(x^{2}+g, h>\).
 Compute \(c\) the Milnor number of \(x^{2}+g\).
 if \(c=2\) then
 return (\(I_{d-1}\));
 else
 if \(L M(h)=y^{4}\) then
 return \(\left(G_{7}\right)\);
 if \(L M(h)=x y^{2}\) then
 return \(\left(H_{d-1}\right)\);
 return (not simple);
```


## 3. Simple Complete Intersection Singularities In Dimension 1

Let $(V(<f, g>), 0) \subseteq\left(\mathbb{C}^{3}, 0\right)$ be the germ of a complete intersection singularity. Assume it is not a hypersurface singularity. M.Giusti proved in [GM83] that ( $V(<$ $f, g>), 0$ ) is simple if and only if it is isomorphic to a complete intersection in the following list.

| Type | Normal form | MilnorNumber |
| :---: | :---: | :---: |
| $S_{n+3}, n \geq 2$ | $\left(x^{2}+y^{2}+z^{n}, y z\right)$ | $n+3$ |
| $T_{7}$ | $\left(x^{2}+y^{3}+z^{3}, y z\right)$ | 7 |
| $T_{8}$ | $\left(x^{2}+y^{3}+z^{4}, y z\right)$ | 8 |
| $T_{9}$ | $\left(x^{2}+y^{3}+z^{5}, y z\right)$ | 9 |
| $U_{7}$ | $\left(x^{2}+y z, x y+z^{3}\right)$ | 7 |
| $U_{8}$ | $\left(x^{2}+y z+z^{3}, x y\right)$ | 8 |
| $U_{9}$ | $\left(x^{2}+y z, x y+z^{4}\right)$ | 9 |
| $W_{8}$ | $\left(x^{2}+z^{3}, y^{2}+x z\right)$ | 8 |
| $W_{9}$ | $\left(x^{2}+y z^{2}, y^{2}+x z\right)$ | 9 |
| $Z_{9}$ | $\left(x^{2}+z^{3}, y^{2}+z^{3}\right)$ | 9 |
| $Z_{10}$ | $\left(x^{2}+y z^{2}, y^{2}+z^{3}\right)$ | 10 |

Similarly to section 2 we want to give a description of the type of a singularity without producing the normal form. Giusti's classification is based on the classification of the $2-j$ et $I_{2}$ of $\langle f, g\rangle$. The $2-j e t$ is a homogenous ideal generated by 2 polynomials of degree 2 . Let $\bigcap_{i=1}^{s} Q_{i}$ be the irreduntant primary decomposition in $\mathbb{C}[x, y, z]$. According to Giusti's classification we obtain simple singularities only in the following cases.

| Type | Charaterization | Normal form of $I_{2}$ |
| :---: | :---: | :---: |
| $S_{5}$ | $s=4, Q_{1}, \ldots, Q_{4}$ prime | $\left(x^{2}+y^{2}+z^{2}, y z\right)$ |
| $S_{n}$ | $s=3$, mult $\left(Q_{1}\right)=\operatorname{mult}\left(Q_{2}\right)=1, \operatorname{mult}\left(Q_{3}\right)=2$ | $\left(x^{2}+y^{2}, y z\right)$ |
| $T$ | $s=2$, mult $\left(Q_{1}\right)=\operatorname{mult}\left(Q_{2}\right)$ | $\left(x^{2}, y z\right)$ |
| $U$ | $s=2, \operatorname{mult}\left(Q_{1}\right)=1$, mult $\left(Q_{2}\right)=3$ | $\left(x^{2}+y z, x y\right)$ |
| $W$ | $s=1{\overline{I T}_{2}}^{3} \nsubseteq I_{2}$ | $\left(x^{2}, y^{2}+x z\right)$ |
| $Z$ | $s=1$ and ${\bar{I}_{2}}^{3} \subseteq I_{2}$ | $\left(x^{2}, y^{2}\right)$ |

Here the multiplicity is given by the Hilbert polynomial of the corresponding homogeneous ideal.

Proposition 3.1. Let $I=<f, g>\subseteq<x, y, z>^{2} \mathbb{C}[[x, y, z]]$ define a complete intersection singularity and $I_{2}$ is 2 - jet. Let $I_{2}=\bigcap_{i=1}^{s} Q_{i}$ be the irreduntant primary decomposition. Let $\mu$ be the Milnor number of $\mathbb{C}[[x, y, z]] / I$.
(1) if $s=4$ then $(V(I), 0)$ is of type $S_{5}$.
(2) if $s=3$ then $(V(I), 0)$ is of type $S_{\mu}$.
(3) if $s=2$ and $\operatorname{mult}\left(Q_{1}\right)=\operatorname{mult}\left(Q_{2}\right)=2$ and
(a) $7 \leq \mu \leq 8$ then $(V(I), 0)$ is of type $T_{\mu}$.
or
(b) $\mu=9$ and $(V(I), 0)$ has two branches then $(V(I), 0)$ is of type $T_{9}$.
(4) if $s=2,7 \leq \mu \leq 9$ and $\operatorname{mult}\left(Q_{1}\right) \neq \operatorname{mult}\left(Q_{2}\right)$ then $(V(I), 0)$ is of type $U_{\mu}$.
(5) if $s=1,8 \leq \mu \leq 9$ and ${\sqrt{I_{2}}}^{3} \nsubseteq I_{2}$ then $(V(I), 0)$ is of type $W_{\mu}$.
(6) if $s=1,8 \leq \mu \leq 9$ and ${\sqrt{I_{2}}}^{3} \subseteq I_{2}$ then $(V(I), 0)$ is of type $Z_{\mu}$.
(7) In all other cases $(V(I), 0)$ is not simple.

The following two lemmas are the basis for the propositon.
Lemma 3.2. With the notations of Propositon 3.1. assume that $s=2$. There is an automorphism $\phi \in$ Aut $_{\mathbb{C}}(\mathbb{C}[[x, y, z]])$ such that $\phi(I)=<x^{2}+y^{a}+z^{b}, y z+h>$, $3 \leq a \leq b \leq \infty, g \in<x, y, z>^{b+1}, h \in<x, y, z>^{3}$.
(1) If $a=3$ and $b \geq 6$ or $a \geq 4$ and $b \geq 5$ then $\mu(\mathbb{C}[[x, y, z]] / I) \geq 10$.
(2) If $a=3$ and $b=5$ or $a=b=4$ then $\mu(\mathbb{C}[[x, y, z]] / I) \geq 9$.

Proof. We may assume that $I=<x^{2}+g, y z+h>$ with $g, h \in<x, y, z>^{3}$. Let $g=x g_{1}+g_{2}, g_{2} \in \mathbb{C}[[y, z]], g_{1} \in<x, y, z>^{2}$. Consider $\phi \in A u t_{\mathbb{C}}(\mathbb{C}[[x, y, z]])$ defined by $\phi(x)=x-\frac{1}{2} g_{1}, \phi(y)=y, \phi(z)=z$ then $\phi\left(x^{2}+g\right)=x^{2}+g_{2}+\frac{1}{4} g_{1}^{2}$. Since $g_{1} \in<$ $x, y, z>^{4}$ we may iterate this process and assume that $I=<x^{2}+g, y z+h>$ with $g \in \mathbb{C}[[y, z]]$. Let $a=\operatorname{ord}(g)$. If $y z$ does divide the $a-j e t$ of g we subtract a suitable multiple of $y z+h$ from $x^{2}+g$ and obtain $I=<x^{2}+\tilde{g}, y z+h>$, ord $(\tilde{g})>a$. Using an automorphism as in the begining we may assume that $\tilde{g} \in \mathbb{C}[[y, z]]$. Repeating this we obtain $I=<x^{2}+g, y z+h>, g \in \mathbb{C}[[y, z]]$. If $g \neq 0$ and $\operatorname{ord}(g)=a$ then we may assume (if necessary exchanging y and z) that $g=y^{a}+\alpha z^{a}+g_{1}$,
$g_{1} \in<y, z>^{a+1} \mathbb{C}[[y, z]]$. If $\alpha=0$ we continue like this. We obtain finally $I=<x^{2}+y^{a}+z^{b}+g, y z+h>, 3 \leq a \leq b \leq \infty(a=\infty, b=\infty \quad$ included $), \operatorname{ord}(g)>$ $b, h \in<x, y, z>^{3}$.

To estimate the Milnor number in case (1) consider the following deformation $I_{t}=<x^{2}+y^{a}+z^{b}+g, t x+y z+h>$ for small $|t|$ we have $\mu(\mathbb{C}[[x, y, z]] / I) \geq$ $\mu\left(\mathbb{C}[[x, y, z]] / I_{t}\right)$. If $t \neq 0 I_{t}$ defines a plane curve singularity. It is enough to consider the cases $a=3, b=6$ and $a=4, b=5$. We obtain as Newton polygon

with corresponding Milnor numbers 10. Now we assume that $a=b=4$ (case (2)) then the singularity is semi-quasihomogeneous with weights $\left(w_{1}, w_{2}, w_{3}\right)=(2,1,1)$ and degrees $\left(d_{1}, d_{2}\right)=(4,2)$. The corresponding formulae for the Milnor number is (cf. [GM77])

$$
\mu=1+\frac{d_{1} d_{2}}{w_{1} w_{2} w_{3}}\left(d_{1}+d_{2}-w_{1}-w_{2}-w_{3}\right)
$$

and we obtain 9 .
Similarly the other case ( $a=3$ and $b=5$ ) can be settled. This proves the Lemma.

Lemma 3.3. With the notations of 3.1 assume that $s=1$. There exists automorphism $\phi \in$ Aut $_{\mathbb{C}}(\mathbb{C}[[x, y, z]])$ such that $\phi(I)=<x^{2}+\alpha z^{a}+\beta y z^{a-1}+g, y^{2}+\gamma z^{b}+$ $\delta x z^{b-1}+h>, 3 \leq a \leq b<\infty, g \in<x, y, z>^{a+1}, h \in<x, y, z>^{b+1}$.
(1) If $a=b=3$ and $\alpha=\gamma=0$ then $\mu(\mathbb{C}[[x, y, z]] / I) \geq 11$.
(2) If $b \geq 4$ then $\mu(\mathbb{C}[[x, y, z]] / I) \geq 11$.

Proof. Assmue that $\operatorname{ord}(g)=a$ and $g=x g_{1}+g_{2}, g_{2} \in \mathbb{C}[[y, z]]$. Using the transformation $x \rightarrow x-\frac{1}{2} g_{1}$ and reducing with $y^{2}+h$ we may assume that $I=<x^{2}+\alpha z^{a}+\beta y z^{a-1}+g, y^{2}+h>, g \in<x, y, z>^{a+1}$. Similarly we can adjust $h$. It remains to prove the estimation of the Milnor number. It is enough to prove this for the case $a=b=3$ and $\alpha=\gamma=0, \beta \neq 0, \delta \neq 0$, since we can always find a deformation to this case. We have $I=<x^{2}+y z^{2}+g, y^{2}+x z^{2}+h>$, $g, h \in<x, y, z>^{4}$. The Milnor number of $\mu(\mathbb{C}[[x, y, z]] / I)$ is given by the following formula

$$
\mu(\mathbb{C}[[x, y, z]] / I)=
$$

$\operatorname{dim}_{\mathbb{C}}(\mathbb{C}[[x, y, z]] /<f, M>)-\operatorname{dim}_{\mathbb{C}}(\mathbb{C}[[x, y, z]] /<\partial f / \partial x, \partial f / \partial y, \partial f / \partial z>)$
with $f=x^{2}+y z^{2}+y^{2}+x z^{2}+g+h$ and $M$ the ideal of the $2-$ minors of $\partial\left(x^{2}+y z^{2}+g, y^{2}+x z^{2}+h\right) / \partial(x, y, z)$.

Analyzing the standard basis computations to compute the corresponding dimensions we see that their leading terms do not depend on $g$ and $h$. We obtain 16 resp. 3 and therefore the Milnor number is 13.

Proof of proposition 3.1 (1) and (2) are direct consequences of the proof of Guisti's classification.

Using lemma 3.2 we obtain (3) as follows. According to Guisti's classification a simple singularity of type $T$ must have Milnor number 7,8 or 9 . We obtain 7 in case $a=b=3,8$ in case $a=3, b=4$ and 9 in case $a=3, b=5$ or $a=b=4$. If $a=3$ and $b=5$ then we obtain the type $T_{9}$ according to Guisti's classification. The corresponding curve has two irreducible branches. It can be distinguished from the curve defined by $a=b=4$ since the curve has 4 smooth branches. This proves (3).

To prove (4) we may assume that $I=<x^{2}+y z+g, x y+h>, g, h \in<x, y, z>^{3}$. Using a suitable automorphism we may assume that $I=<x^{2}+y z+g, x y+\beta z^{3}+h>$, $g \in<x, y, z>^{3}$ and $h \in\left\langle x, y, z>^{4}\right.$. According to the proof of Guisti's classification we obtain the type $U_{7}$ if $\beta \neq 0$. In case that $\beta=0$ and $z^{3}$ is a monomial in $g$ we obtain $U_{8}$. If $z^{3}$ is not a monomial in g and $z^{4}$ is a monomial in $h$ we obtain $U_{9}$. In all other cases the singularity is not simple. It remains to prove that $\mu(\mathbb{C}[[x, y, z]] / I) \geq 10$, in case that $\beta=0$ and $z^{3}$ is not a monomial of $\mathrm{g}, z^{4}$ is not a monomial of $h$. Using a suitable deformation of $I$ we may assume that $z^{4}$ is a monomial of $g$. In this case the singularity is semi-quasihomogeneous with weights $\left(\frac{1}{2}, \frac{3}{4}, \frac{1}{4}\right)$ of degree $\left(1, \frac{5}{4}\right)$ as one can easily check. The corresponding Milnor number is 11 . This implies $\mu(\mathbb{C}[[x, y, z]] / I) \geq 11$.

To prove (5) we may assume that $I=<x^{2}+g, y^{2}+x z+h>, h, g \in<x, y, z>^{3}$. Using a suitable automorphism we may assume that $I=<x^{2}+\alpha z^{3}+\beta y z^{2}+g, y^{2}+$ $x z+h>, h \in<x, y, z>^{3}, g \in<x, y, z>^{4}$. According to the proof of Guisti's classfication we obtain the type $W_{8}$ if $\alpha \neq 0$ and $W_{9}$. if $\alpha=0$ and $\beta \neq 0$. It remains to prove that $\mu(\mathbb{C}[[x, y, z]] / I) \geq 10$, if $\alpha=\beta=0$. Using a suitable defromation we may assume that $z^{4}$ is a monomial in $g$. Then $<x^{2}+g, y^{2}+x z+h>$ is semi-quasihomogeneous with weights $\left(\frac{1}{2}, \frac{3}{8}, \frac{1}{4}\right)$ and degree ( $1, \frac{3}{4}$ ) as one can easily check the coressponding Milnor number is 11 . This implies $\mu(\mathbb{C}[[x, y, z]] / I) \geq 11$.

To prove (6) we may assume that $I=<x^{2}+g, y z+h>, g, h \in<x, y, z>^{3}$. Using Lemma 3.3 we obtain $I=\left\langle x^{2}+\alpha z^{a}+\beta y z^{a-1}+g, y^{2}+\gamma z^{b}+\delta x z^{b-1}+h\right\rangle, 3 \leq$ $a \leq b, g \in\langle x, y, z\rangle^{a+1}, h \in\langle x, y, z\rangle^{b+1}$.
According to the proof in Guisti's classification we obtain for $a=b=3$ and $\alpha \gamma \neq 0$ the type $Z_{9}$ and $\alpha \gamma=0, \alpha+\gamma \neq 0$ the type $Z_{10}$. If $\alpha=\gamma=0$ or $b \geq 4$ then because of the lemma 3.3 the Milnor number is greater than 10. This proves (6). We summarize this case in Algorithm 2. ${ }^{2}$

[^2]```
Algorithm 2 1-dimensional complete intersections
Input: \(I=<f, g>\subseteq<x, y, z>^{2} \mathbb{C}[[x, y, z]]\) isolated complete intersection curve
    singularity.
Output: The type of the singularity \((V(I), 0)\).
    compute \(I_{2}\) the \(2-j e t\) of \(I\);
    compute \(I_{2}=\bigcap_{i=1}^{s} Q_{i}\) the irreduntant primary decomposition over \(\mathbb{C}\);
    copmute \(\mu\) the Milnor number of \((\mathbb{C}[[x, y, z]] / I))\);
    if \(s=4\) then
        return ( \(S_{5}\) );
    if \(s=3\) then
        return \(\left(S_{\mu}\right)\);
    if \(s=2\) then
        compute \(m_{1}=\operatorname{mult}\left(Q_{1}\right), m_{2}=\operatorname{mult}\left(Q_{2}\right)\)
        if \(m_{1}=m_{2}\) then
            if \(7 \leq \mu \leq 8\) then
                return \(\left(T_{\mu}\right)\);
            if \(\mu=9\) then
                compute the number \(b\) of branches of the curve using a resolution of the
                    singularity
                    if \(b=2\) then
                    return \(\left(T_{9}\right)\);
            else
            return (not simple);
        else
        if \(7 \leq \mu \leq 9\) then
            return \(\left(U_{\mu}\right)\);
    if \(s=1\) then
        compute R the radical of \(I_{2}\)
        if \(R^{3} \nsubseteq I_{2}\) then
            if \(8 \leq \mu \leq 9\) then
            return \(\left(W_{\mu}\right)\);
            else
            return not simple;
    else
        if \(8 \leq \mu \leq 9\) then
            return \(\left(Z_{\mu}\right)\);
        else
            return (not simple);
    return (not simple);
```


References

[AVI95] Arnold, V.I.: Normal form of functions near degenerate critical points. Russian Math. Survays 29, (1995), 10-50.
[DGPS13] Decker, W.: Greuel, G.-M.; Pfister, G.; Schönemann, H.: SinguLAR 3-1-6 - A computer algebra system for polynomial computations. http://www.singular.uni-kl.de (2013).
[GM77] Giusti,M.: Sur les singularities isoleés d'intersections complètes quasihomogènes.Annales de L'institut Fourier, tome 27, n3(1977) p.163-192

A CLASSIFIER FOR SIMPLE ISOLATED COMPLETE INTERSECTION SINGULARITIES
[GM83] Giusti,M.: Classification Des Singularités Isolées Simples D'Intersections Complètes.Proc.Symp.Pure Math.40,457-494(1983)
[GP07] Greuel, G.-M.: Pfister, G.: A Singular Introduction to Commutative Algebra. Second edition, Springer (2007).

Deeba Afzal, Abdus Salam School of Mathematical Sciences, GC University, Lahore, $68-\mathrm{B}$, New Muslim Town, Lahore 54600, Pakistan

E-mail address: deebafzal@gmail.com
Gerhard Pfister, Department of Mathematics, University of Kaiserslautern, Erwin-Schrödinger-Str., 67663 Kaiserslautern, Germany

E-mail address: pfister@mathematik.uni-kl.de

[^0]: Date: July 4, 2013.
 Key words and phrases. simple complete intersection singularity, Milnor number.

[^1]: ${ }^{1}$ The corresponding procedures are implemented in SINGULAR in the library classifyci.lib.

[^2]: ${ }^{2}$ The corresponding procedures are implemented in SINGULAR in the library classifyci.lib.

