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Abstract. M. Guisti’s classificaton of the simple complete intersection sin-
gularities is characterized in terms of invariants. This is a basis for the imple-
mentation of a classifier in the computer algebra system Singular-

1. Introduction

We report about a classifier for simple isolated complete intersection singular-
ities in the computer algebra system SINGULAR [DGPS13],[GP07]. In [AVI95]
V. Arnold classified the simple hypersurface singularities, the famous A-D-E-singula-
rities. M.Giusti gave a classification of simple complete intersection singularities
which are not hypersurfaces [GM83]. The singularities in Giusti’s classification are
given by normal forms.

The aim of this paper is to describe Giusti’s classification in terms of certain
invariants. Based on this description we are not forced to compute the normal form
for finding the type of the singularity. This is usually more complicated and may
be space and time consuming. For the classification of hypersurface singularities
we refer to the SINGULAR library classify.lib [DGPS13].

2. Simple Complete Intersection Singularities In Dimesion 0

Let (V (< f, g >), 0) ⊆ (C2, 0) be the germ of a complete intersection singularity.
M.Giusti proved in [GM83] that (V (< f, g >), 0) is simple iff it is isomorphic to a
complete intersection in the following list.

Type Normal Form MilnorNumber
Fn,p
n+p−1, n, p ≥ 2 (xy, xn + yp) n+p-1

G5 (x2, y3) 5
G7 (x2, y4) 7

Hn+3, n ≥ 4 (x2 + yn, xy2) n+3
I2p−1, p ≥ 4 (x2 + y3, yp) 2p-1
I2q+2, q ≥ 2 (x2 + y3, xyq) 2q+2

We want to give a description of the type of the singularity without producing the
normal form. Given (V (< f, g >), 0) ⊆ (C2, 0) we consider the ideal I =< f, g >⊆
C[[x, y]]. We fix the local degree reverse lexicographical ordering > on C[[x, y]] with
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y > x. We will denote by L(I) the leading ideal of I with respect to this ordering
and by LM(f) the leading monomial of f , f ∈ C[[x, y]].

Proposition 2.1. Let I =< f, g >⊆ C[[x, y]] be an m-primary ideal and d =
dimC(C[[x, y]]/I),m = 〈x, y〉.

(1) If dimC(I +m
3/m3) = 2 then (V (I), 0) is of type F 2,d−1

d−1
.

(2) If dimC(I + m
3/m3) = 1 and a generator of I + m

3/m3 is reduced in

C[[x, y]]/m3, let φ : C[[x, y]] → C[[x, y]] be an automorphism such that

φ(I) =< xy + a, b >, a, b ∈ m
3. If L(φ(I)) =< xy, xp, yq > then (V (I), 0)

is of type F p,q−1

d−1
.

(3) If dimC(I + m
3/m3) = 1 and a generator of I + m

3/m3 is a square let

ψ : C[[x, y]] → C[[x, y]] be an automorphism such that ψ(I) =< x2+g, h >,
g, h ∈ m

3 and assume that x2 does not divide the monomials of h of degree

≤ d.
Let c be the Milnor number of (V (x2 + g), 0) ⊆ (C2, 0).
If d = 6 then (V (I), 0) is of type G5.

If d ≥ 7 and c = 2 then (V (I), 0) is of type Id−1.

If LM(h) = y4, c ≥ 3 then (V (I), 0) is of type G7.

If LM(h) = xy2, c ≥ 3 then (V (I), 0) is of type Hd−1.

(4) In all other cases (V (I), 0) is not simple.

Proof.
Since a minimal standard basis of < xy+a, b >, a, b ∈ m

3 is {xy + a, xp + f, yq + g}
for suitable f, g ∈ C[[x, y]], f ∈ m

p+1, g ∈ m
q+1. (1) and (2) follow directly from

the classification of Giusti. To prove (3) note that a minimal standard bases of
< x2 + g, h >, g, h ∈ m

3, is {x2 + g, h}, monomials of h of degree ≤ d are not
divisible by x2. If LM(h) = yp for some p (in this case d = 2p) then obviously
{x2+g, h} is a minimal standard basis. If LM(h) = xyq for some q then a minimal
standard basis is {x2 + g, h, yp + e} for some p ≥ q+3 and a suitable e ∈ m

q+3 (in
this case d = p+ q). This is a consequence of the fact that y > x, the monomials
of h up to degree d are not divisible by x2 and therefore spoly(x2 + g, h) ∈ m

q+3.
If d = 6 then LM(h) = y3 since in the other case d ≥ 7. It follows from Giusti’s
classification that < x2 + g, y3 + h >, g, h ∈ m

3, LM(h) < y3 is of Type G5.
If c = 2 and d ≥ 7 then we may assume that g = y3. If L(I) =< x2, yp >,

p ≥ 4 (in case p = 3 we have d = 6) then we obtain from Giusti’s classification that
(V (I), 0) is of type I2p−1.

If L(I) =< x2, xyq, yp >, for some p ≥ q + 3 we obtain p = q + 3 since
LM(spoly(x2 + y3, h)) = yq+3. Again Giusti’s classificationn gives I2q+2. Now
we may assume c ≥ 3 (the case c = ∞ included). If LM(h) = yp and d = 8 we
obtain p = 4. We may assume g = yc+1, since c ≥ 3 we can change x2 + g adding a
suitable multiple of h to increase c. If LM(h) = xy2 then (V (I), 0) is of type Hd−1.
This we obtain anaylyzing the proof of Giusti’s classification. �

We summarize this case in Algorithm 1.1

1The corresponding procedures are implemented in Singular in the library classifyci.lib.
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Algorithm 1 0–dimensional simple complete intersections

Input: I =< f, g >∈< x, y >2 C[[x, y]]
Output: the type of the singularity (V (I), 0)

1: compute d = dimC(C[[x, y]]/I);
2: compute s = dimC(I+ < x, y >3 / < x, y >3);
3: if s = 2 then

4: return (F 2,d−1

d−1
);

5: if s = 1 then

6: choose a homogenous generator h of I+ < x, y >3 / < x, y >3;
7: if h splits into two factors then
8: choose an automorphism φ such that φ(h) = xy. Compute generators of

the leading ideal L(φ(I)) =< xy, xp, yq >

9: return (F p,q−1

d−1
);

10: else

11: if d = 6 then

12: return (G5);
13: choose an automorphism φ such that φ(h) = x2 choose g, h ∈< x, y >3 such

that x2 does not divide the monomials of h of degree ≤ d and φ(I) =<
x2 + g, h >.

14: Compute c the Milnor number of x2 + g.
15: if c = 2 then

16: return (Id−1);
17: else

18: if LM(h) = y4 then

19: return (G7);
20: if LM(h) = xy2 then

21: return (Hd−1);
22: return (not simple);

3. Simple Complete Intersection Singularities In Dimension 1

Let (V (< f, g >), 0) ⊆ (C3, 0) be the germ of a complete intersection singularity.
Assume it is not a hypersurface singularity. M.Giusti proved in [GM83] that (V (<
f, g >), 0) is simple if and only if it is isomorphic to a complete intersection in the
following list.

Type Normal form MilnorNumber
Sn+3, n ≥ 2 (x2 + y2 + zn, yz) n+ 3

T7 (x2 + y3 + z3, yz) 7
T8 (x2 + y3 + z4, yz) 8
T9 (x2 + y3 + z5, yz) 9
U7 (x2 + yz, xy + z3) 7
U8 (x2 + yz + z3, xy) 8
U9 (x2 + yz, xy + z4) 9
W8 (x2 + z3, y2 + xz) 8
W9 (x2 + yz2, y2 + xz) 9
Z9 (x2 + z3, y2 + z3) 9
Z10 (x2 + yz2, y2 + z3) 10
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Similarly to section 2 we want to give a description of the type of a singularity
without producing the normal form. Giusti’s classification is based on the classifi-
cation of the 2− jet I2 of < f, g >. The 2− jet is a homogenous ideal generated by
2 polynomials of degree 2. Let

⋂s

i=1
Qi be the irreduntant primary decomposition

in C[x, y, z]. According to Giusti’s classification we obtain simple singularities only
in the following cases.

Type Charaterization Normal form of I2
S5 s = 4, Q1, ..., Q4 prime (x2 + y2 + z2, yz)
Sn s = 3, mult(Q1) = mult(Q2) = 1,mult(Q3) = 2 (x2 + y2, yz)
T s = 2, mult(Q1) = mult(Q2) (x2, yz)
U s = 2, mult(Q1) = 1,mult(Q2) = 3 (x2 + yz, xy)

W s = 1
√
I2

3
* I2 (x2, y2 + xz)

Z s = 1 and
√
I2

3 ⊆ I2 (x2, y2)

Here the multiplicity is given by the Hilbert polynomial of the corresponding ho-
mogeneous ideal.

Proposition 3.1. Let I =< f, g >⊆< x, y, z >2 C[[x, y, z]] define a complete

intersection singularity and I2 is 2 − jet. Let I2 =
⋂s

i=1
Qi be the irreduntant

primary decomposition. Let µ be the Milnor number of C[[x, y, z]]/I.

(1) if s = 4 then (V (I), 0) is of type S5.

(2) if s = 3 then (V (I), 0) is of type Sµ.

(3) if s = 2 and mult(Q1) = mult(Q2) = 2 and

(a) 7 ≤ µ ≤ 8 then (V (I), 0) is of type Tµ.
or

(b) µ = 9 and (V (I), 0) has two branches then (V (I), 0) is of type T9.
(4) if s = 2, 7 ≤ µ ≤ 9 and mult(Q1) 6= mult(Q2) then (V (I), 0) is of type

Uµ.

(5) if s = 1, 8 ≤ µ ≤ 9 and
√
I2

3
* I2 then (V (I), 0) is of type Wµ.

(6) if s = 1, 8 ≤ µ ≤ 9 and
√
I2

3 ⊆ I2 then (V (I), 0) is of type Zµ.

(7) In all other cases (V (I), 0) is not simple.

The following two lemmas are the basis for the propositon.

Lemma 3.2. With the notations of Propositon 3.1. assume that s = 2. There is

an automorphism φ ∈ AutC(C[[x, y, z]]) such that φ(I) =< x2 + ya + zb, yz + h >,
3 ≤ a ≤ b ≤ ∞, g ∈< x, y, z >b+1, h ∈< x, y, z >3.

(1) If a = 3 and b ≥ 6 or a ≥ 4 and b ≥ 5 then µ(C[[x, y, z]]/I) ≥ 10.
(2) If a = 3 and b = 5 or a = b = 4 then µ(C[[x, y, z]]/I) ≥ 9.

Proof. We may assume that I =< x2 + g, yz + h > with g, h ∈< x, y, z >3. Let
g = xg1+g2, g2 ∈ C[[y, z]], g1 ∈< x, y, z >2. Consider φ ∈ AutC(C[[x, y, z]]) defined
by φ(x) = x− 1

2
g1, φ(y) = y, φ(z) = z then φ(x2 + g) = x2+ g2+

1

4
g21 . Since g1 ∈<

x, y, z >4 we may iterate this process and assume that I =< x2 + g, yz + h > with
g ∈ C[[y, z]]. Let a = ord(g). If yz does divide the a−jet of g we subtract a suitable
multiple of yz+h from x2+ g and obtain I =< x2+ g̃, yz+h >, ord(g̃) > a. Using
an automorphism as in the begining we may assume that g̃ ∈ C[[y, z]]. Repeating
this we obtain I =< x2 + g, yz + h >, g ∈ C[[y, z]]. If g 6= 0 and ord(g) = a
then we may assume (if necessary exchanging y and z) that g = ya + αza + g1,
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g1 ∈< y, z >a+1 C[[y, z]]. If α = 0 we continue like this. We obtain finally
I =< x2+ya+zb+g, yz+h >, 3 ≤ a ≤ b ≤ ∞ (a = ∞, b = ∞ included), ord(g) >
b, h ∈< x, y, z >3.

To estimate the Milnor number in case (1) consider the following deformation
It =< x2 + ya + zb + g, tx + yz + h > for small |t| we have µ(C[[x, y, z]]/I) ≥
µ(C[[x, y, z]]/It). If t 6= 0 It defines a plane curve singularity. It is enough to
consider the cases a = 3, b = 6 and a = 4, b = 5. We obtain as Newton polygon
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         respectively

with corresponding Milnor numbers 10. Now we assume that a = b = 4 (case (2))
then the singularity is semi-quasihomogeneous with weights (w1, w2, w3) = (2, 1, 1)
and degrees (d1, d2) = (4, 2). The corresponding formulae for the Milnor number
is (cf. [GM77])

µ = 1 +
d1d2

w1w2w3

(d1 + d2 − w1 − w2 − w3)

and we obtain 9.
Similarly the other case (a = 3 and b = 5) can be settled. This proves the Lemma.

�

Lemma 3.3. With the notations of 3.1 assume that s = 1. There exists automor-

phism φ ∈ AutC(C[[x, y, z]]) such that φ(I) =< x2 + αza + βyza−1 + g, y2 + γzb +
δxzb−1 + h >, 3 ≤ a ≤ b <∞, g ∈< x, y, z >a+1, h ∈< x, y, z >b+1.

(1) If a = b = 3 and α = γ = 0 then µ(C[[x, y, z]]/I) ≥ 11.
(2) If b ≥ 4 then µ(C[[x, y, z]]/I) ≥ 11.

Proof. Assmue that ord(g) = a and g = xg1 + g2, g2 ∈ C[[y, z]]. Using the
transformation x → x − 1

2
g1 and reducing with y2 + h we may assume that

I =< x2 + αza + βyza−1 + g, y2 + h >, g ∈< x, y, z >a+1. Similarly we can
adjust h. It remains to prove the estimation of the Milnor number. It is enough
to prove this for the case a = b = 3 and α = γ = 0, β 6= 0, δ 6= 0, since we can
always find a deformation to this case. We have I =< x2 + yz2+ g, y2+ xz2+ h >,
g, h ∈< x, y, z >4. The Milnor number of µ(C[[x, y, z]]/I) is given by the following
formula

µ(C[[x, y, z]]/I) =

dimC(C[[x, y, z]]/ < f,M >)− dimC(C[[x, y, z]]/ < ∂f/∂x, ∂f/∂y, ∂f/∂z >)

with f = x2 + yz2 + y2 + xz2 + g + h and M the ideal of the 2 − minors of
∂(x2 + yz2 + g, y2 + xz2 + h)/∂(x, y, z) .

Analyzing the standard basis computations to compute the corresponding di-
mensions we see that their leading terms do not depend on g and h. We obtain 16
resp. 3 and therefore the Milnor number is 13. �
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Proof of proposition 3.1 (1) and (2) are direct consequences of the proof of
Guisti’s classification.

Using lemma 3.2 we obtain (3) as follows. According to Guisti’s classification a
simple singularity of type T must have Milnor number 7, 8 or 9. We obtain 7 in
case a = b = 3, 8 in case a = 3, b = 4 and 9 in case a = 3, b = 5 or a = b = 4. If
a = 3 and b = 5 then we obtain the type T9 according to Guisti’s classification. The
corresponding curve has two irreducible branches. It can be distinguished from the
curve defined by a = b = 4 since the curve has 4 smooth branches. This proves (3).

To prove (4) we may assume that I =< x2+ yz+ g, xy+h >, g, h ∈< x, y, z >3.
Using a suitable automorphism we may assume that I =< x2+yz+g, xy+βz3+h >,
g ∈< x, y, z >3 and h ∈< x, y, z >4. According to the proof of Guisti’s classification
we obtain the type U7 if β 6= 0. In case that β = 0 and z3 is a monomial in g we
obtain U8. If z3 is not a monomial in g and z4 is a monomial in h we obtain
U9. In all other cases the singularity is not simple. It remains to prove that
µ(C[[x, y, z]]/I) ≥ 10, in case that β = 0 and z3 is not a monomial of g, z4 is not
a monomial of h. Using a suitable deformation of I we may assume that z4 is a
monomial of g. In this case the singularity is semi-quasihomogeneous with weights
(1
2
, 3
4
, 1
4
) of degree (1, 5

4
) as one can easily check. The corresponding Milnor number

is 11. This implies µ(C[[x, y, z]]/I) ≥ 11.

To prove (5) we may assume that I =< x2 + g, y2+xz+h >, h, g ∈< x, y, z >3.
Using a suitable automorphism we may assume that I =< x2+αz3+βyz2+g, y2+
xz + h >, h ∈< x, y, z >3, g ∈< x, y, z >4. According to the proof of Guisti’s
classfication we obtain the typeW8 if α 6= 0 andW9. if α = 0 and β 6= 0. It remains
to prove that µ(C[[x, y, z]]/I) ≥ 10, if α = β = 0. Using a suitable defromation
we may assume that z4 is a monomial in g. Then < x2 + g, y2 + xz + h > is
semi-quasihomogeneous with weights (1

2
, 3
8
, 1
4
) and degree (1, 3

4
) as one can easily

check the coressponding Milnor number is 11. This implies µ(C[[x, y, z]]/I) ≥ 11.

To prove (6) we may assume that I =< x2 + g, yz + h >, g, h ∈< x, y, z >3.
Using Lemma 3.3 we obtain I = 〈x2+αza+βyza−1+g, y2+γzb+δxzb−1+h〉, 3 ≤
a ≤ b, g ∈ 〈x, y, z〉a+1, h ∈ 〈x, y, z〉b+1.
According to the proof in Guisti’s classification we obtain for a = b = 3 and αγ 6= 0
the type Z9 and αγ = 0, α + γ 6= 0 the type Z10. If α = γ = 0 or b ≥ 4 then
because of the lemma 3.3 the Milnor number is greater than 10. This proves (6).
We summarize this case in Algorithm 2.2

2The corresponding procedures are implemented in Singular in the library classifyci.lib.
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Algorithm 2 1–dimensional complete intersections

Input: I =< f, g >⊆< x, y, z >2 C[[x, y, z]] isolated complete intersection curve
singularity.

Output: The type of the singularity (V (I), 0).

1: compute I2 the 2− jet of I;
2: compute I2 =

⋂s

i=1
Qi the irreduntant primary decomposition over C;

3: copmute µ the Milnor number of (C[[x, y, z]]/I));
4: if s = 4 then

5: return (S5);
6: if s = 3 then

7: return (Sµ);
8: if s = 2 then

9: compute m1 = mult(Q1), m2 = mult(Q2)
10: if m1 = m2 then

11: if 7 ≤ µ ≤ 8 then

12: return (Tµ);
13: if µ = 9 then

14: compute the number b of branches of the curve using a resolution of the
singularity

15: if b = 2 then

16: return (T9);
16: else

17: return (not simple);
17: else

18: if 7 ≤ µ ≤ 9 then

19: return (Uµ);
20: if s = 1 then

21: compute R the radical of I2
22: if R3 * I2 then

23: if 8 ≤ µ ≤ 9 then

24: return (Wµ);
24: else

25: return not simple;
26: else

27: if 8 ≤ µ ≤ 9 then

28: return (Zµ);
29: else

30: return (not simple);
31: return (not simple);
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