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Abstract. In this article we characterize the classification of unimodal maps
from the plane to the plane with respect to A-equivalence given by Rieger in

terms of invariants. We recall the classification over an algebraically closed

field of characteristic 0. On the basis of this characterization we present an
algorithm to compute the type of the unimodal maps from the plane to the

plane without computing the normal form and also give its implementation in

the computer algebra system Singular.

1. Introduction

Let K be an algebraically closed field of characteristic 0 and M =< x, y >
K[[x, y]]. Let A =AutK(K[[x, y]]) × AutK(K[[x, y]]) acting on M by

A×M→M
such that

((ϕ,ψ), f) 7→ ϕ−1 ◦ f ◦ ψ.
This is equivalent to consider the set of map germs (K2, 0) → (K2, 0) under the
action of the group A =AutK(K2, 0) × AutK(K2, 0).
The map germs f, g ∈ M are called A-equivalent (f ∼A g) if they are in the same
orbit under the action of A. In the classification of map germs with respect to the
action of the group A the tangent spaces to the orbit under the action of this group
and their codimension play an important role (cf. [1]). Given f ∈M the orbit map
θf : A→M is defined by θf (ϕ,ψ) = ϕ−1 ◦ f ◦ ψ. The corresponding tangent map
has as image the tangent space to the orbit at f = (f1, f2) :

Tθf ,id =< x, y ><
∂f

∂x
,
∂f

∂y
>K[[x,y]] + < f1, f2 > K[[f1, f2]]2.

In this article we characterize the classification of unimodal maps from the plane
to the plane given by Rieger, in terms of invariants 1 and on the basis of this
characterization we give the implementation of this classification in the computer
algebra system Singular [4], [5]. Rieger achieved the classification of all simple
and unimodal map germs from the plane to the plane of corank at most 1 with
respect to A-equivalence in [8], [9]. A characterization of Rieger’s classification of
simple map germs from the plane to the plane in terms of invariants is given in [3].
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1Rieger gave the classification over R which can be easily extended to a classification over an

algebraically closed field of characteristic 0.
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Rieger’s classification is based on explicit coordinate changes, Mather’s Lemma
(cf. Lemma 3.1 in [7]) and complete transversals (Theorem 2.9 in [2]). A crucial
step is the calculation of the determinacy degree. Rieger computed the extended
codimension of the tangent space to the orbit, the cusp number and the double fold
number of the map germ as invariants.
In his paper [6], Kabata gave a characterization of Rieger’s classification in terms

of λ = ∂(f1,f2)
∂(x,y) and η = η1

∂
∂x + η2

∂
∂y spanning ker(df).

We use the following invariants for our characterization:
A map germ f ∈ M of corank at most 1 is always A-equivalent to (x, g(x, y)),
for suitable g with g(x, 0) = 0. Let f(x, y) = (x, g(x, y)) then the codimension

of the tangent space, codim(f) =dimK
<x,y>K[[x,y]]

Tθf ,id
, is one of the invariants used

in the classification. Algorithms to compute the codimension are implemented in
Singular (cf. [1]). The other invariants are the Milnor number µ(Σ) = µ(∂g∂y ) of

the critical set Σ of the map germ f , the multiplicity m(f) =dimK
K[[x,y]]
<x,g> and the

double fold numbers 2 d(f) = 1
2dimK

K[[x,y,t]]
I , where

I =< gy(x, y), h = t−2(g(x, y + t)− g(x, y)− tgy(x, y)),
∂h

∂t
> .

Let us recall the definition of modality: The modality of f ∈ M is the smallest
integer m such that a sufficiently small neighborhood of f can be covered by a finite
number of m−parameter families of orbits under the action of A on M. Maps of
modality 0 (resp. 1) are called simple (resp. unimodal).

Table-1 contains all unimodal map germs from the K-plane to the K-plane ob-
tained from Rieger’s classification over the real numbers (cf. [8]).

Table 1

Normal form codim(f) m(f) µ(Σ) d(f)
(x, xy + y6) 8 6 0 6

(x, xy + y6 + y14) 7 6 0 6
(x, xy + y6 + y9) 6 6 0 6

(x, xy + y6 + y8 + αy9) 6 6 0 6
(x, xy2 + y6 + y7 + αy9) 7 6 1 8

(x, y4 + x3y2 + xly), l ≥ 5 l + 4 4 7 l
(x, y4 + xky + xly2), k = 4, 5, k − 1 ≤ l ≤ 2k − 1 k + l + 1 4 2k − 2 k

(x, y4 + x2y2 + xky), k ≥ 4 k + 3 4 4 k
(x, y4 + x3y − 3

2x
2y2 + xky), k ≥ 6 k + 3 4 k + 1 3

(x, y4 + x3y + αx2y2), α 6= −3
2 9 4 4 3

(x, y4 + x3y − 3
2x

2y2 + x4y2) 8 4 6 3
(x, y4 + x3y + αx2y2 + x4y2), α 6= −3

2 8 4 4 3
(x, y4 + x3y − 3

2x
2y2 + x3y2) 7 4 5 3

(x, y4 + x3y + αx2y2 + x3y2), α 6= −3
2 7 4 4 3

2The double fold number of f is the number of double folds in a versal deformation of f .
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2. Characterization of Uni-Modal Map Germs From the Plane to
the Plane

In this section we give the characterization of unimodal map germs from the
plane to the plane in terms of invariants.

Proposition 2.1. Let f(x, y) be a map germ from (K2, 0) → (K2, 0). Suppose
µ(
∑

) = 0 and m(f) = 6 then f ∼A (x, xy + y6 +
∑
i>6 a0,iy

i) and 14-determined.
The possible values of codim(f) are 6, 7, 8. This implies especially that f is uni-
modal.

Proof. We may assume that f = (x, g(x, y)) then
∑

= V (∂g∂y ). If µ(
∑

) = 0 and

m(f) = 6 then we have g = a1,1xy + a0,2y
2+ h.o.t. such that a1,1 6= 0, the

coefficients of y2, y3, y4 and y5 must be zero and the coefficient of y6 is not equal
to zero. We can take a1,1 = 1. Then the transformation

y → y − (ak,0x
k−1 + ak−1,1x

k−2y + · · ·+ a2,k−2xy
k−2 + a1,k−1y

k−1)

removes all the terms of degree k which are divisible by x at the level of the k−jet,
where k > 2, and it transforms g into xy+ y6 +

∑
i>6 a0,iy

i. It is proved in [9] that
f is 14-determined. Using the computer algebra system Singular and the library
classifyMapGerms.lib 3 one can show that codim(f) = 6 iff a0,7, a0,8, a0,9 do not
vanish simultaneously. codim(f) = 7 iff a0,7 = a0,8 = a0,9 = 0 and a0,10, . . . , a0,14

do not vanish simultaneously. codim(f) = 8 iff a0,i = 0 for i = 7, . . . , 14. �

Corollary 2.2. (1) If codim(f) = 6 then f ∼A (x, xy + y6 + αy8 + βy9).

If a0,7 6= 0 then α =
5a0,8−3a20,7

5a20,7
and β =

25a0,9+14a30,7−35a0,7a0,8

25a30,7
. If a0,7 = 0

then α = a0,8 and β = a0,9. If α = 0 then β is the modulus and if α 6= 0,
define η by η2 = 1

α then η3β is the modulus.

(2) If codim(f) = 7 then f ∼A (x, xy + y6 + y14).
(3) If codim(f) = 8 then f ∼A (x, xy + y6).

Proof. (2) and (3) are immediate consequences of Proposition-2.1 and Rieger’s clas-
sification. To prove (1) we give explicitly the A-equivalence. If a0,7 6= 0 then it is
easy to see that f ∼A (x, xy + y6 + y7 +

a0,8
a20,7

y8 +
a0,9
a30,7

y9 + . . . ) = (x, g). Using the

morphisms ϕ respectively ψ defined by ϕ−1(x) = x− 1
5g and ϕ−1(y) = 5

∑8
v=1( 1

5y)v

respectively ψ(x) = x+ 1
5y and ψ(y) = y, we obtain f ∼A (x, xy+ y6 +αy8 +βy9),

α = a − 3
5 , β = b − 7a

5 + 14
25 , since ϕ−1(xy + y6 + αy8 + βy9) = g. This can be

checked with Singular as follows:

ring R=(0,a,b),(x,y),ds;

poly g=xy+y6+y7+a*y8+b*y9;

poly h=xy+y6+(a-3/5)*y8+(b-7/5*a+14/25)*y9;

map phi_invers=R,x-1/5*g,y+1/5*y2+1/25*y3+1/125*y4+1/625*y5+1/3125*y6

+1/15625*y7+1/78125*y8;

jet(phi_invers(h),9);

xy+y6+y7+(a)*y8+(b)*y9.

3In the library classifyMapGerms.lib the computation of the codimension is based on the

computation of a special standard basis (vStd). We consider a ring with parameters a0,7,. . . ,a0,14
and variables x, y and compute the standard basis of Tθf ,id depending on the parameters. In this

way, we obtain the conditions for codim(f) to be 6, 7 respectively 8.
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Proposition 2.3. Let f(x, y) be a map germ from (K2, 0) → (K2, 0). Suppose
µ(
∑

) = 1 and m(f) = 6 then f ∼A (x, xy2+y6+
∑
i>6 a0,iy

i) and codim(f) = k+7
if 2k + 7 is minimal with a0,2k+7 6= 0. If a0,7 6= 0 then f is 9-determined and
unimodal. For k ≥ 1, f is not unimodal.

Proof. We may assume that f = (x, g(x, y)) then
∑

= V (∂g∂y ). If µ(
∑

) = 1 then we

have g = b2,1x
2y + b1,2xy

2 + b0,3y
3+ h.o.t. such that 3b2,1b0,3 − b21,2 6= 0 otherwise

µ(∂g∂y ) 6= 1 and since m(f) = 6 this implies the coefficients of y3, y4 and y5 must be

zero but the coefficient of y6 is not equal to zero. Also b1,2 6= 0 otherwise µ(∂g∂y ) 6= 1.

Then by using the transformation

y → y − b2,1
2b1,2

x

we can transform g into xy2+ h.o.t. Now the transformation

y → y − 1

2
(ak+1,1x

k + ak,2x
k−1y + · · ·+ a2,kxy

k−1 + a1,k+1y
k)

removes all the terms of degree k + 1 which are divisible by x at the level of the
(k + 1)−jet, k ≥ 2 and it transforms g into xy2 + y6 +

∑
j>6 a0,jy

j . A monomial

basis of <x,y>K[[x,y]]2

Tθf ,id
is(

0
xy

)
,

(
0
y

)
, . . . ,

(
0
y5

)
,

(
0
y7

)
,

(
0
y9

)
, . . . ,

(
0

y2k+5

)
,

(
0

y2k+9

)
.

It is proved in [9] that f is 9-determined if a0,7 6= 0 and as a consequence that
f is unimodal. It follows from Rieger’s classification that for k ≥ 1, f is not
unimodal. �

Corollary 2.4. If codim(f) = 7 then f ∼A (x, xy2 + y6 + y7 + αy9) with α =
a0,9
a30,7
− 5a0,8

4a20,7
.

Proof. This is an immediate consequence of Proposition-2.3 that

(x, g) = (x, xy2 + y6 + y7 + ay8 + by9) ∼A (x, xy2 + y6 + y7 + (b− 5

4
a)y9) = (x, h),

since ϕ−1(h) = g mod < x, y >9 with ϕ−1(x) = x− 1
2ag and ϕ−1(y) = y + 1

4ay
3 +

3
2 (a4 )2y5 + 5

2 (a4 )3y7 and ψ(x) = x + 1
2ay, ψ(y) = g. This can be checked with

Singular as follows:

ring R=(0,a,b),(x,y),ds;

poly g=xy2+y6+y7+a*y8+b*y9;

poly h=xy2+y6+y7+(b-5/4*a)*y9;

map phi_invers=R,x-1/2*a*g,y+1/4*a*y3+3/32*a2*y5+5/128*a3*y7;

jet(phi_invers(h),9);

xy2+y6+y7+(a)*y8+(b)*y9.

�

Proposition 2.5. Let f(x, y) be a map germ from (K2, 0) → (K2, 0). Suppose
µ(
∑

) ≥ 4 and m(f) = 4 then f ∼A (x, g) with g = y4 + βx2y2 + γx3y + h.o.t.
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Proof. We may assume that f = (x, g(x, y)) then
∑

= V (∂g∂y ). It is not difficult to

see that µ(
∑

) ≥ 4 and m(f) = 4 implies j3(f) = (x, 0). If j3(f) = (x, 0), µ(
∑

) ≥ 4
then g = a0,4y

4 + a1,3xy
3 + a2,2x

2y2 + a3,1x
3y+ h.o.t and m(f) = 4 gives a0,4 6= 0,

so we can take a0,4 = 1. Then the transformation

y → y − a1,3

4
x

transform g into y4 + βx2y2 + γx3y + h.o.t. �

Corollary 2.6. Let f ∼A (x, g) with g = y4 + βx2y2 + γx3y+ h.o.t and µ(
∑

) = 4
then

(1) if codim(f) = 7 and d(f) = 3 then f ∼A (x, y4 + x3y + αx2y2 + x3y2),
α 6= − 3

2 ;

(2) if codim(f) = 8 and d(f) = 3 then f ∼A (x, y4 + x3y + αx2y2 + x4y2),
α 6= − 3

2 ;

(3) if codim(f) = 9 and d(f) = 3 then f ∼A (x, y4 + x3y + αx2y2), α 6= − 3
2 ;

(4) if codim(f) = d(f) + 3 and d(f) ≥ 4 then f ∼A (x, y4 + x2y2 + xd(f)y).

Proof. µ(
∑

) = 4 implies 8β3 + 27γ2 6= 0.

If γ 6= 0, we obtain for α = β
ξ2 with ξ3 = γ

f ∼A (x, y4 + x3y + αx2y2 + h.o.t.)

with α 6= − 3
2 . In this case y4 + x3y + αx2y2 + h.o.t. is 6-determined (see [9]). It is

not difficult to see that

(x, y4 + x3y + αx2y2 + h.o.t.) ∼A (x, y4 + x3y + αx2y2 + λx3y2 + h.o.t).

λ 6= 0 iff codim(f) = 7. If λ = 0, we obtain that

f ∼A (x, y4 + x3y + αx2y2 + δx4y2 + h.o.t).

δ 6= 0 iff codim(f) = 8, in this case f ∼A (x, y4 + x3y + αx2y2 + x4y2), since f is
6-determined. If δ = 0 then f ∼A (x, y4 + x3y + αx2y2), since f is 6-determined.
In this case codim(f) = 9. If γ 6= 0 then d(f) = 3.
If γ = 0 then d(f) = k, if codim(f) = k+ 3, k ≥ 4 then f ∼A (x, y4 + x2y2 + xky),
since f is (k + 1)-determined (see [9]). �

Corollary 2.7. Let f ∼A (x, g) with g = y4 + βx2y2 + γx3y+ h.o.t and µ(
∑

) = 5
then if codim(f) = 7 and d(f) = 3 then f ∼A (x, y4 + x3y − 3

2x
2y2 + x3y2).

Corollary 2.8. Let f ∼A (x, g) with g = y4 + βx2y2 + γx3y+ h.o.t and µ(
∑

) = 6
then if codim(f) = 8 and d(f) = 3 then f ∼A (x, y4 + x3y − 3

2x
2y2 + x4y2).

Corollary 2.9. Let f ∼A (x, g) with g = y4 + βx2y2 + γx3y + h.o.t and µ(
∑

) =
2k−2, where k = 4, 5 then if codim(f) = k+ l+1 and d(f) = k, k−1 ≤ l ≤ 2k−1,
then 4 f ∼A (x, y4 + xky + xly2).

Corollary 2.10. Let f ∼A (x, g) with g = y4 +βx2y2 +γx3y+h.o.t and µ(
∑

) = 7
then if codim(f) = l+ 4 and d(f) = l then f ∼A (x, y4 + x3y2 + xly), where l ≥ 5.

Corollary 2.11. Let f ∼A (x, g) with g = y4 + βx2y2 + γx3y + h.o.t and µ(
∑

) =
k+1 then if codim(f) = k+3 and d(f) = 3 then f ∼A (x, y4 +x3y− 3

2x
2y2 +xky).

4if l = 2k − 1 we can even obtain f ∼A (x, y4 + xky).
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Corollary 2.12. Let f : (K2, 0) → (K2, 0) be a map germ. Suppose µ(
∑

) ≥ 4,
m(f) = 4 and (codim(f), 4, µ(

∑
), d(f)) are entries in Table 1 then f is unimodal.

Proof of Corollaries 2.7 to 2.11. Corollaries 2.7 to 2.11 are an immediate conse-
quence of Proposition-2.5 and similar to the proof of Corollary 2.6. Corollary 2.12
follows from Corollaries 2.7 to 2.11 and Rieger’s classification. �

3. The Algorithm for the Classifier

The following algorithm is used for computing the type of the unimodal map
germs from the plane to the plane.

Algorithm 1 ModulusA

Input: g(x, y) =
∑
i+j≥2 aijx

iyj with non-degenerate 2−jet, ord(g(0, y)) = 6 and

codim((x, g)) = 6.
Output: (α, β) such that (x, g) ∼A (x, xy + y6 + αy8 + βy9).

1: Choose ϕ : K[[x, y]] → K[[x, y]] an automorphism with ϕ(x) = x such that
ϕ(g) = xy + y6 +

∑
7≤i≤9 a0iy

i mod < x, y >10;
2: if a07 6= 0 then

3: α =
5a08−3a207

5a207
and β =

25a09+14a307−35a07a08
25a307

;

4: if a07 = 0 then
5: α = a08 and β = a09;
6: if α = 0 then
7: return (0, 1).
8: Choose η such that η2 = 1

α ;

9: return (1, η3β).

Algorithm 2 ModulusB

Input: g(x, y) =
∑
i+j≥3 aijx

iyj , ord(g(0, y)) = 6, µ(
∑

) = 1 and codim((x, g)) =
7.

Output: α such that (x, g) ∼A (x, xy2 + y6 + y7 + αy9).

1: Choose ϕ : K[[x, y]] → K[[x, y]] an automorphism with ϕ(x) = x such that
ϕ(g) = xy2 + y6 +

∑
7≤i≤9 a0iy

i mod < x, y >10;

2: return (a09a07
− 5a08

4a07
).

Algorithm 3 ModulusC

Input: g(x, y) =
∑
i+j≥4 aijx

iyj , µ(
∑

) = 4 and codim((x, g)) ≥ 7.

Output: α such that (x, g) ∼A (x, y4 + x3y + αx2y2 + h.o.t.).

1: Choose a linear automorphism ϕ : K[[x, y]]→ K[[x, y]] with ϕ(x) = x such that
the 4−th jet of ϕ(g) is y4 + βx2y2 + γx3y;

2: Choose ξ with ξ3 = γ;
3: return ( βξ2 ).
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Algorithm 4 UnimodalMaps

Input: A germ f(x, y) = (f1(x, y), f2(x, y)) from the plane to the plane .
Output: (x, g(x, y)), the type or 0 if f is not unimodal.

1: if ord(f1) > 1 and ord(f2) > 1 then
2: return 0;
3: Compute c = codim(f), the codimension of f .
4: Transform f into (x, g(x, y)) mod < x, y >c+8.
5: Compute m(f), the multiplicity of f , µ(Σ), the Milnor number of critical set

and d(f), the double fold number.
6: if µ(Σ) = 0 and m(f) = 6 then
7: if codim(f) = 6 then
8: Compute (α, β) = modulusA(g);
9: return (x, xy + y6 + αy8 + βy9);

10: if codim(f) = 7 then
11: return (x, xy + y6 + y14);
12: if codim(f) = 8 then
13: return (x, xy + y6);
14: if µ(Σ) = 1 and m(f) = 6 then
15: if codim(f) = 7 then
16: Compute α = modulusB(g);
17: return (x, xy2 + y6 + y7 + αy9);
18: if µ(Σ) = 4 and m(f) = 4 then
19: if codim(f) = 7 and d(f) = 3 then
20: Compute α = modulusC(g);
21: return (x, y4 + x3y + αx2y2 + x3y2);
22: if codim(f) = 8 and d(f) = 3 then
23: Compute α = modulusC(g);
24: return (x, y4 + x3y + αx2y2 + x4y2);
25: if codim(f) = 9 and d(f) = 3 then
26: Compute α = modulusC(g);
27: return (x, y4 + x3y + αx2y2);
28: if codim(f) = k + 3, d(f) = k and k ≥ 4 then
29: return (x, y4 + x2y2 + xky);
30: if µ(Σ) = 5, m(f) = 4, codim(f) = 7 and d(f) = 3 then
31: return (x, y4 + x3y − 3

2x
2y2 + x3y2);

32: if µ(Σ) = 6, m(f) = 4, codim(f) = 8 and d(f) = 3 then
33: return (x, y4 + x3y − 3

2x
2y2 + x4y2);

34: if µ(Σ) = 7, m(f) = 4, d(f) ≥ 5, codim(f) = d(f) + 4 then
35: return (x, y4 + x3y2 + xd(f)y);
36: if µ(Σ) ≥ 7, m(f) = 4, codim(f) = µ(Σ) + 2, d(f) = 3 then
37: return (x, y4 + x3y − 3

2x
2y2 + xµ(Σ)−1y);

38: if µ(Σ) = 2d(f)− 2, m(f) = 4, codim(f) = d(f) + l − 1, d(f) = 4 or 5 then
39: return (x, y4 + xd(f)y + xly2);
40: return 0.
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4. Singular Examples

The algorithms described in Section 3 are implemented in Singular in the
library classifyMapGerms.lib. We give some examples.

LIB"classifyMapGerms.lib";

ring R=0,(x,y),(c,ds);

ideal I=x+y+x2y+2xy2+y3+x2y2+2xy3+y4+xy6+y7+6xy7+6y8+15xy8

+15y9+21xy9+21y10+24xy10+24y11+42xy11+42y12+85xy12+85y13

+126xy13+126y14+126xy14+126y15+84xy15+84y16+36xy16+36y17

+9xy17+9y18+xy18+y19,

x2+3xy+2y2+xy2+y3+y6+6y7+15y8+21y9+24y10+42y11+85y12+126y13

+126y14+84y15+36y16+9y17+y18;

classifyUnimodalMaps(I);

_[1]=x

_[2]=xy+y6+y9

I=x+y, xy2+y3+2xy3+2y4+xy4+y5+y6+7y7+22y8+118y9+743y10+2813y11+6490y12

+9709y13+9703y14+6468y15+2772y16+693y17+77y18

classifyUnimodalMaps(I);

_[1]=x

_[2]=xy2+y6+y7+77y9
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