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1 Introduction

1971 K. Saito gave a characterization of hypersurface singularities admitting
a good C"-action (cf. [S]):

Let (X, 0) = (C", 0) be the germ of an isolated hypersurface singularity defined
by f € €{x,, ..., x,}. The following conditions are equivalent:

(1) (X, 0) admits a good €’- action’
of ﬂ)

@ se(E s
X1 Xy
(3) (X, 0) admits a non-nilpotent vectorfield.

We will generalize this characterization for hypersurface singularities
defined over an algebraically closed field K of characteristic p > 0.

The following example shows that the theorem of Saito is wrong in the
characteristic p > 0:

Let f = x> +y!"+x3y? and K be a field of characteristic 23. Then
singularity defined by f = 0 is not quasihomogeneous, but 55f = llx%])—; + SyZ—{}.
This fact requires to weaken the notion “quasihomogeneous” to obtain a similar
characterization in the characteristic p > 0.

Let K be an algebraically closed field of the characteristic p > 0 and IF, its
prime field. If there is no possibility of confusion, we will denote for an integer
a its residue class amod p in IF, also by a and conversely for an element a € IF,

the representative @, 0 < a < p, also by a.

Let x = (xq, ..., Xp)-
' (X, 0) admits a good C*-action (also called quasihomogeneous) if 6X,0 ~ Cl[xy, ..., x,11/1,
I=(p, ..., p,) an ideal generated by quasihomogeneous polynomials p; of positive degree 4,

with respect to the positive weights wy, ..., w, (w,, d; € Z), ie. p;(A"ix, ..., Mnx,) = 2di pi
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Definition 1.1 f € K[[x]] is weakly quasihomogeneous with respect to the
weight (w, 1w, 1 ... 1w,) € ]P]',';p if one of the following equivalent conditions
is satisfied:
) Iff=Xa, ,,x' . xpmanda, , #0, thenwv, + - +wp, =w,
(in TF)).
of
2 wf= Zwixia—xi

B =3 Fo +op> fw°+vp is a quasihomogeneous polynomial of degree
v=0
W, + vp with respect to the weights wy, ..., w,.

Definition 1.2 The local ring 4 = K[[x]]/f is weakly quasihomogeneous if
there is an isomorphism A ~ K[[x]]/g and if g is weakly quasihomogeneous
with respect to the weight (w, : wypl..ow,) € ]P]',’zp.

(W, : ... w,) is called a weight of 4. If A has a weight (w_ :1: ... : 1), then it
is called weakly homogeneous.

Theorem 1.3 Let A = K[[x]]/f be the complete local ring of an isolated
singularity and m its maximal ideal. The following conditions are equivalent :

(1) A is weakly quasihomogeneous
(2)  there is a derivation & € Derg m which is not nilpotent?

If, furthermore, the multiplicity of A is at least 3 and f € (x) ( ;Tf’ e, ;Tf)

1 n
then the weight (w, : w; : ... w,) is uniquely determined (modulo permutation
of wi, ..., w,) and w, # 0.

0 0
Iff ¢ (x)(g){—l, ey %—

and A may have more than one weight.

) and (W, :w : ... w,) is a weight for A, then w, = 0

The following examples show that the weight of 4 is not uniquely
determined in general:

(1)  For instance, K[[x;, x,]]/x,x, has weights (1 :a : 1— a),0:a:p—a
for a € I,

() Kllxq, x35 x3]1/%; %53 + (x; + x; + x3)P has the weights (0 : 1 :p—1:
0,0:1:0:p—1),(0:1:1:p—2) for instance.

Remark 1.4 In characteristic p > 0 it is possible that there is a 6 Derg A and
0
o(m)Em: f=x{+x5 and5=a—x—.
1
This is not possible in characteristic 0 (cf. [S]). Such singularities are always
weakly quasihomogeneous: If §(x;) & m, then x;6 € Der m and not nilpotent.

2 § € Derg m is nilpotent (resp. semi-simple) if for all i the endomorphism of m/m' *! defined
by ¢ is nilpotent (resp. semi-simple). In characteristic O the existence of such a derivation is

equivalent to f € (f’)— s eees %). This is not true in characteristic p > 0, cf. Remark 1.4
X1
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Definition 1.5 The local ring A is exceptional if A4 is not smooth and there is a
0 € Derg A and 6(m) & m.

In Chapter 3 we apply Theorem 1.3. to characterize the characteristic
exponents of an irreducible plane curve sincularity (for definition and properties
cf. [C]).

Theorem 1.6 Let B, ..., B, be the characteristic exponents of an irreducible

weakly quasihomogeneous plane curve singularity. Let t = 1 be minimal such
that gcd(B,, ..., B;) #O0modp, then B; = p;,  modp fori=t

This theorem corresponds to the fact that for characteristic O there are only
two characteristic exponents if the singularity is quasihomogeneous. In case of
exceptional singularities this theorem was already proved by A. Campillo (cf.
[C1]). Exceptional curves are called strange branches in Campillo’s paper.

In Chapter 4 we compute the Tjurina number 7(4) of a weakly quasihomo-
geneous plane curve singularity with local ring 4 in terms of the multiplicity
sequence.

Definition 1.7 Let 4 be the local ring of a plane curve singularity with r
branches, let 6 be the length of A in its normalization and m the multiplicity.
The Milnor number u(A) is defined by u(A) = 26 + 1 — r if A is not exceptional,
and by u(A4) =26 + m —r if A is exceptional.

In characteristic 0 one has u(A4) = t(4) iff A is quasihomogeneous (cf.
[G-M-P)).

Theorem 1.8 Let A be the local ring of a weakly quasihomogeneous irreducible
plane curve singularity, then t(A) = u(A). If the multiplicity of A is smaller than
p, then ©(A) = u(A). ©(4A) — u(A) can be expressed in terms of the multiplicity
sequence of the resolution of A.

The proof is based on the following lemma:

Lemma 1.9 Let A be as in Theorem 1.8, A be the blowing up of A, m (resp. i)
the multiplicity of A (resp. A) then

m—m if A is weakly homogeneous
if A is exceptional and A

is not weakly homogeneous
0 else

(1) ©(4) = p(A4) + t(4) — u(4) +

S
N
v
[\

m = Omod p

B f(4) = p(A) + {(1)

else
if m=1.

Corollary 1.10 Let A be as in Theorem 1.8. If p = ©(A) — B, — B;, then A is
quasihomogeneous.

The case of a reducible singularity can be reduced to Theorem 1.8:
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Theorem 1.11 Let A be the local ring of a weakly quasihomogeneous plane curve
singularity and A, ..., A, the local rings of the branches of A, then

0w+ 3 () = () 2 04) 2 i)
(2) If the branches of A are not exceptional or if A is exceptional, then

f(A) = pld) + ¥ (r(A» - u(A,))
G)  1f p>m(A), then 2(4) = u(A).

2 Characterization of weakly quasihomogeneous singularities

In this chapter we will prove Theorem 1.3.:
The proof is based on the following lemma (cf. [S-W]):

Lemma 2.1 Let A = K[[x]] and m be the maximal ideal.
(1)  For 6 € Derg m there are dg, 9,, € Derg m with the following properties:

(1.1) 6, is semi-simple o, is Snilpr(r;lent
(1.2) 6 = 9,49, and [dg,,] =0.

(2) 6 € Derg (m) is semi-simple iff there is a coordinate system y = (y,, ..., y,)
of A such that 6(y;) = o;y;, oy, ..., o, the eigenvalues of the endomorphism

of m/m? defined by §.
(3) If 6(f) = uf for u, f € K|[[x]], then there is a u; € K[[x]] such that
O,(f) = u f. uy is a unit iff u is a unit.
Remark 2.2 This lemma is essentially the same as Lemma 1.5 in [S-W]. In
[S-W] the characteristic of the field K is supposed to be 0. But Lemma 1.5 and
its proof hold also in characteristic p > 0.
Proof of Theorem 1.3 (1) implies (2) is obvious by definition. To prove (2)
implies (1) we consider 6 € Derg K[[x]],d not nilpotent and &(f) = uf,
u € K[[x]]. We may assume that é(m) = m. Namely, if d(x;) ¢ m for some
i, then x;0 is again not nilpotent. If # is a unit, we may assume furthermore
u = 1. Now we can apply 2.1. to restrict our situation to the following two
cases:

Let § = Zwixig, w; € K, and 6(f) = uf.

Case l u=1

Case 2 uem.

The second case is only possible in characteristic p > 0. We have to prove
. 0

in the first case that there are wy, ..., w, € [F, such that Zwixié‘_){i = f,
with uniquely determined w,, ..., w, if the multiplicity is at least 3 and

0(vf(9)

3 WX — = 0 for a suitable unit v € K[[x]] and a suitable automorphism

]
@ in the second case.



Weakly quasihomogeneous hypersurface singularities in positive characteristic 649

0
, then 3 W.x; af
for all vy, ..., v, with a, , # 0. This system of linear equations, which has
the solution (w;, ..., w,) € K", has also a solution (w;, ..., w,) € ]F;, ie.

Case 1 Let f =) a = f implies > y;w; = 1

V. Ln

0
Y, wixi% = f, which means that f is weakly quasihomogeneous.

Now assume that f € (x)? and let § € Dery m be semi-simple and 6(f) = uf.
We have to show that @ is a unit and that the endomorphism of m/m? defined

- 0
by & has @(0)w,, ..., u(0)w, as eigenvalues. Because f € (ﬂ —f>
0x; 0x,
ﬁf of .
and f defines an isolated singularity, — E A is a regular sequence.
1 n
6f C =

Now we have > (Wx;ui—9 3 (x; )) = 0. This implies W;x;i —d(x,) €

(gxi’ , %) Because of f € (x)3 we get Wixiu_é(x,‘) e (x)Z’ ie. the
i n
endomorphism of m/m? defined by § has the eigenvalues u(O)w,, ..., #(0)w,.

This proves the theorem in the first case.

Case 2 Without restriction of generality we may assume that w; = 1. Suppose
Wi, oo W, € ]Fp for some r 2 1 and W, |, ..., W, ¢ le. If r < n we
conclude

G- =Y - i’3=qu

i=r+1

for a suitable u; € m.

Using this procedure one can deduce by induction that there are
0
5f =uf. Let § := Zw,xl(3
We will prove now that there is a unit v € K [[x]] and an automorphism ¢ of
K[[x]] such that for g = vf(¢p) we have

wi, ..., w, € F, and u € m such that 3 w;x;

o(g) =0.

Letu= Y u® and f = ¥ f® such that §(u™) =v-u® and 5(f*)) = vf™

v>r Vs
Because of u € m it follows from §(f) = uf that r > 0 and r % Omod p. Let
e=1+ }u(’) and f; = e~ 'f and u; = u—e~15(e) then &(f;) = u;f, and
w= Y ul", 5w!) = oul. Let k be the index of determinancy of f, then
v2r+1

we may assume, using the argument above, that Y f%) < mk.
v2s+r
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Now 6(f) = u - f implies

(s + r)f13+r) = u(r)f(s)

of =0 sSv<s+r—1.

s+r—1 _
This implies that for g = Y f® we have §(g) = 0 and g is contact
=g

equivalent to f, i.e. K[[x]]/f =~ K[[x]]/g. This proves the second step of the
theorem.

3 Behaviour of the characteristic exponents

The aim of this chapter is to prove Theorem 1.6.
To begin with we study the blowing up of a weakly quasihomogeneous

singularity. Let 4 = K[[x, y]]/f be the blowing up of A and m(A) (resp. m(4))
the multiplicity of A4 (resp. ,71). Let us assume that the multiplicity of A4 is at
least 2. Because f is irreducible we may assume f = (x+ fy)" + Y. a;x'y’
i+j>m
of of

~ 1
and w,_f =wpxz- +w2y5§, (w, :w, 1w,y) € ]P]2Fp and f = y—mf(xy—ﬁy,y).

Lemma 3.1 A4 is weakly quasihomogeneous. Moreover, the following holds:

(1) A is exceptional iff wywy, =0;

2 ifw, =wyorw,=00rf =0, then ? is weakly quasihomogeneous with
weight (W, —mw, 1 Wy —wy I Wy);

3 ifw # wyand w, = 0 and § # O, then ?(x, (x—p)"y) is weakly
quasihomogeneous with weight (0 : 1 : 0) for a suitable integer r with
(r+Dwy =rw;

@) if w, =w,, ie A is weakly homogeneous, then A is exceptional;

(5) ifwy, =0, then A is exceptional or smooth and m = Omod p;

6 ifw, =0and =0, then A is not exceptional.

Proof. Because A is irreducible, w,w, = 0 implies that 4 is exceptional. Let 4

be exceptional and 6 € Derg K([[x, y]], u € K[[x, y]] such that 6(f) = uf and

0((x, y)) & (x, y).

We may assume d(x) = 1. If w;w, # 0, then we have

0
(Wo — Wy xt)f = (Wpy — wlxé(y»gyf .

Because f is irreducible, m(4) = 2, and w;w, # 0, this implies w, = 0 and
. 0
s(wy,y —w;x0(y)) = u for a suitable s € K[[x, y]] i.e. —wxsf = 9 On the

dy’
aof of L. of .
other hand, we have wixo=" = —wzyé;. This implies w,ysf = A which
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contradicts the fact that f defines an isolated singularity and proves (1). Now

f=x"+ ¥ a; j(x — B)'y" /™ implies
i+ j>m
- of
O, = wm)] = 00y — W)~ )2
y
This implies (2) and because of (1) also (4), (5), (6). Let w; # w,, w, # 0,
B # 0 and choose a positive integer r such that (r 4+ 1)w, = rw; mod p. Then
fo, x=B)yy)=x"+ Y a;(x—p)rtVitrizmyi+i=m Now w; # w, and
i+ j>m

p # O implies m = Omodp, and a;; # 0 implies wji+w,j = Omodp, ie.
because of w, # 0 and the choice of r, (r 4+ 1)i +rj = Omod p. This implies

%7(}@ (x— B)"y) = 0 and proves (3).

For the proof of Theorem 1.6. we also need some information about the
behaviour of the characteristic exponents in the blowing up and their relations
to the multiplicity sequence, which is studied in [C].

Let (m(,r), ..., (m;, r;) be the multiplicity sequence of the resolution of
A, ie. in the sequence of blowing ups in the resolution of A, the multiplicity
m; occurs r; times. Let B, ..., B, be the characteristic exponents of A and

Bo, cees ﬁg be the characteristic exponents of A. Then the following holds (cf.
[CD:
Lemma 32 (1) f, =m, p; =rim +my.

(2 Letiy, ..., ig+1,gbe inductively defined by i; = l,gcd(mikﬂ] N )=
m; and i, =1, then By —PBr_y = rym, +m —my g, k =

2, ..., g Furthermore, rym, +m, | —m, ;=0 forv¢{ij, ..., i},

() Ifg=g then p;—Pi_y = f;—f;_y for i = 2; and ged(B,, ..., B) =

gcd(By, ..., B) for t Z 2. If g =§+ 1, then B;— iy = Biyy — B; for
i=2;and gcd(B,, ..., B;) =gcd(Eo, . Etwl)fortgl

Proof of Theorem 1.6 We prove the theorem using induction on }_ r;.

We may assume the theorem to be true for the blowing up A of A. We may
further assume that A is not smooth, otherwise the theorem is clear. If t > 1
ort = 1and g = g, the theorem is a consequence of (3) of Lemma 3.2. If t = 1
and g = g + 1, then (3) of Lemma 3.2. implies ; = f;, ymodp for i = 2. It
remains to prove that f, = ff; mod p, i.e. rym, +m; —m; = ﬁ, —my =0modp
because of (2) of Lemma 3.2.

We may assume now that A = K[[x, y]I/f, f = (x+B»)™ + X a;x'y'

i+ j>my

of of

and w,f = WX~ + Wz)’g}j-
(Lemma 3.2.(2)). Because of t = 1 this implies that m, ¥ Omod p. If § # 0 and
w; # w,, then m; = Omod p. On the other hand, using Lemma 3.1. and the

Because of g = g + 1 we know that m, divides m;
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fact that m, # Omod p and g = g + 1 we may assume that A = K[[x, y]]/h,

h=y™+ 3 hx'y and h_y.

.~ 0x
i+ j>my

This implies m; = ord, h(x, 0) mod p in particular. If W = w,, We may assume
~ 1 - - _
f=0.Iff=0and f = Wf(xy, ¥), A= Kl[[x, y]]/f, then m| = ord, f(x, 0).

It remains to prove the following lemma and to apply it to )7:

Lemma 33 Let f = y™ + 3 a;x'y" be irreducible and weakly quasi-
i+ j>my

homogeneous with characteristic exponents f, ..., By, & = 1. Suppose that

my % O0mod p, then ; = ord, f(x, 0) mod p.

Proof. Let (my, ), ..., (m;,r)) be the corresponding multiplicity sequence.
We prove the lemma using induction on r;. If r; = 1, then B, = m, + m, =

~ 1
ord, f(x, 0). If r; > 1, we consider f = — f(x, xy) the blowing up of f. The
X 1 X

mi
homogeneous part of degree m; of 7 18 (ax + y)™ because 7 is irreducible. If

o = 0, then ord, f(x, 0) +m; = ord, f(x,0) and the lemma is proved by the
induction hypothesis

Bl = (ry — 1)m; +m, = ord, )N‘(x, 0)modp.

If o % 0, we use the fact the 7 is weakly quasihomogeneous (Lemma 3.1.).
Because of o # 0 and m; # Omod p we know that f is weakly homogeneous,

. . ~ 0 0
ie. there is a w € IF, such that f = wx% + wy%,

~ ) 0 0 .
Then g = f(x,y—oax) also satisfies g = wx—g+wy—g. Using the

0x dy
induction hypothesis we obtain

(ry —1)m; +m, = ord, g(x,0)mod p.
Because g is weakly homogeneous we have

m; = ord, (g(x, 0)mod p.

Now let m, = ord, f(x, 0), then x™ ~™ occurs in f as a monomial with a

nonzero coefficient, i.e. m, —m; = m; mod p because 7 is weakly homogeneous.
This implies ord, f(x, 0) = ord, g(x, 0) - m; mod p and proves the lemma.
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4 The Tjurina number of weakly quasihomogeneous plane curve singularities

In the first part of this chapter we will consider irreducible plane curve
singularities and prove Theorem 1.8.

Let A = K[[x, y]]/f be the local ring of an irreducible weakly quasi-
homogeneous plane curve singularity with multiplicity m(4). Let 4 —
A = K][[t]] be the normalization. Then, for the Tjurina number of A

1(4) = dimg K[[x, y]]/(f ?{c 5f> the following holds:

Lemma 4.1

1(A4) = ord, (6f 5f) {0( - if A is exceptional

dx’ dy else.

Proof. Using Theorem 1.3. we may assume that

of of

of—w1x6 +w2y6 for (w

o

. Cw 2
twyp iwy) € P

We may also assume that m(A4) = 2 otherwise the lemma is trivial. Furthermore,
we know that A is exceptional iff wyw, = 0 (Lemma 3.1.(1)). Changing

coordinates, if necessary, we may assume that f 7é 0 and ord, gf < ord, 2f
6f of
By the definition of t(4) we have t(4) = dimg A4/ ay . Now let us
consider of o
e f
4> 54 (6x d )A
and
Ao 4o (5f o )A
dy
We obtain
_ of 0f 4,( 91 of
7(A) + 0(A4) = ord, PP + dim K@ /<6x 8y
of of of Jof
=ord, (.57 ) + ami/ (1. ax)
with 6(4) = dimg A/A.
. of of . of
Now, in 4 we have wpxos = —wzya— and by assumption Ep #* 0.
aof of—,(of éf :
f 3y = 0, i.e. 4 is exceptional, we have dimg I A/( 3%’ 3y = (4), ie.

of o\ o T wx
7(A4) = ord, (6 6y> 6y # 0,1.e. A is not exceptional, then i = " =
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ie.
dim 2(1, %/%)A = dimy Z/<1, %)A
=dimg yA/(x, y)A
=0(A)+1— ord, y
=4(4) + 1 —m(4)
because ord, y < ord, x, since by assumption ord, —2% < ord, ? The lemma is
proved. g

Now we want to study the behaviour of the Tjurina number under blowing
up.

Definition 4.2
1 if A is exceptional

0 else.

F(A4) = 1(A) + {

Let 4 be the blowing up to A and assume m(A4) > 2.

Lemma 4.3 (1)

m(A) if A is exceptional
T(A) = T(A) — m(A)(m(4) — 1) — { — m(A) if A is weakly homogeneous
0 else.

if m(d) = 2
(2) If m(A) = 1, then

m(A4) +1, A exceptional, m(A) = Omod p

~ m(A), A exceptional, m(A4) # mod p
) = m(Am(4) — 1) + 1, A not exceptional, m = Omod p
0, else

Proof. Let A= K[[x, yII/f,f = (x+py)"+ Y a;;x'y" and m=ord,y <

i+j>m
ord, x. Let wlx@: -I—wzygi =w,f for (w, :w; 1wy) € ]P% . Then we know
ox oy P

~ af of 0 if A is exceptional
(1) ©4) =ord, (5)?’ 5y) + {m(A) else

0 of @?) {O if A is exceptional
2 A)=ord, [ ==, )+1— ~
@ w4 =or t(@x 0x m(4)  else
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x() + y()

here the embedding of 4 — K[[t]] is given by X(t) = 0

, ¥(@0) = y(@©

if A= K[[x, y]}/f and T = yimf(xy By, ).

of 1 @
O E ==y

0 1 0 ~ . .
v Ly — 2L oy — By )+ 5L sy — By 30) — mF which implics
y 0x y

odgf ord, Z—f——m( —1)

of _ xof | of 2
ord[@—ord (;8_+6y> me.

Now for the proof of the lemma we distinguish between three cases:

Case 1 w; = w,. In this case 4 is weakly homogeneous and A is exceptional

(cf. Lemma 3.1). Because of xﬂ + ya—f
ox dy

of of\ _ . ef . éf
ord, (6x’ 5;) = ord, Fi ord, o m(m—1)

= ord, (%, —Z—g) —m(m—1).

Using (1) and (2) we obtain the required result. Notice that in this case
m(A) = 2.
Case 2 w, = 0 or wyw, # 0 and w; # w, and B # 0. This implies

m(4) = Omod p. Using Lemma 3.1. we conclude that A is exceptional or
smooth. If w, = 0, then A is exceptional. If w;w, # 0, then A4 is not exceptional.

= 0 and (3), we obtain

Now w, = 0 implies g—i = 0 and this implies % =0, i.e.
F O\ _ o (¥ N2 (usi
ord, (ﬁx’ 8y) = ord, (6x r m*  (using (3)).

If w,w, # 0 and w; # w,, then w, (xg—{c +yg—£> = (w; — w2)y of holds in 4,
ie. ord, gf = ord, g — m?. Because of f # 0 we have Z_f € <Zf> (cf. proof
of 3.1.) and ord, gf— = ord, gf This implies

ot () o (L 2)
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Consequently, in the second case we have

of of\ _ of of\ _
ord, (a,a) = ord, < Oy) me.

Using (1) and (2) we obtain the lemma in the second case.

Case 3 B =0 and w; = 0 or wyw, # 0 and w; # w,. Using Lemma 3.1.1
we have that A is not exceptional. If 4 is smooth then m(A4) % Omodp. If

0 0
wiw, # 0 and w; # w,, then w, (x% +y%> = (W, — wl)x2—£ holds in 4, ie.

of x 0 ,
ord, 5% = ord, ;% (using (3))
= ord, Z—f —m? + ordrg

= ord, g—f—m(m—l)Jr ord, X —m

If w, =0, then g{; = 0 and we deduce also, using (3),

of xof _ 40

‘ 3y Ortyax ord, 2% —m(m—1)+ ord, X —m.

ord,

If ord, X = ord,y = m, then m(4) = m(A) = m and Ord[(

of of T
ord, (E’ E) — m(m — 1), because ord, 6 2 ord, 7y

If ord, X < ord, J = m, then ord, ¥ = m(A4) and

oy _
o (G 75) -

because ord, Z_f < ord, gf Finally we have

of of\ _
o (o 23) =

in both cases. Again, using (1) and (2) we can prove the lemma in the third
case.

Using the definition of the Milnor number (Definition 1.7.) and Lemma
4.3. we obtain the following corollary (Lemma 1.9.):

of éf
0x Oy) N

i, <6f of

Ee 5};) —m(m —1) +m(A4) —

rd, (Qf 5—f) — m(A)(m(A) — 1) + m(A) — m(A)
ox’ Oy
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Corollary 4.4

(D) o) = p(d) + (A — p(d)
m(A) — m(A) if A is weakly homogeneous
m(A) if A is not weakly homogeneous

+ -
and A exceptional
0 else

if m(A) 2 2.

1 m(A) = 0mod
Q) o) = ad) + “ p

0 else

if m(A) = 1.

Proof. By definition we have

m(A) — 1 if A is exceptional
0 else

uw=mw+{

On the other hand

1 if A is exceptional

T(4) = 1(A) + {

0 else

Now 28(4) = 25(A) — m(A)(m(4) — 1) describes the behaviour of § under
blowing up (cf. [C]). Using Lemma 4.3. one gets the formulae required in the
corollary.

To prove Theorem 1.8 we need to study the exceptional local rings occurring
in the resolution process of A.

Lemma 4.5 (1) Let m(4) = m(A). If A is weakly homogeneous, then A is
exceptional and the blowing up of A is not exceptional. If A is not weakly
homogeneous and A is exceptional, then the blowing up of A is exceptional or
smooth.

(2) Let m(A4) > m( ). If' A is weakly homogeneous, then A is exceptional and the
blowmg up of A is exceptional or smooth. If A is not weakly homogeneous and

A is exceptional, then the blowing up ofA is not exceptional.

Proof. The proof is a consequence of Lemma 3.1. We use the notations of
Lemma 3.1. _

Let m(4) = m(A). If A is weakly homogeneous, we use (2) and (6) of Lemma
3.1. to obtain the required result. If 4 is not weakly homogeneous and A is
exceptional, then either w, = 0 or w; # w, and w, # 0 and B # 0, and we can
use (2) resp. (3) and (5) to get the required result.

Let m(A) > m(A). If A is weakly homogeneous we use (2) and (5), if 4 is
not weakly homogeneous we use (2) resp. (3) and (6), as before, to get the
required result. Notice that if the multiplicity changes and (0 : w; : W,) is a
weight of A obtained by (2) or (3) of Lemma 3.1., we have to exchange x and

y to apply Lemma 3.1. to 4.
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Definition 4.6 Let A = A", .., Alll, .., 4f=D,AD, . A0 AV 40
be the local rings occurring in the resolution process of A, m(A}i)) = m;. Let

I, < {1, ..., 1 —1} be defined by the following property:

() I—-1€l,iff m_; =0modp.

() If for i < 1-2,4% is not is not weakly homogenous and A;:L)I is
exceptional, then i € I,. For i € I, let d (i) = m; o if Aﬁ"i) is not
exceptional. If AY) is exceptional, then let s; be minimal such that
Agi,,), e Aﬁ’? are exceptional and

Fimy g, —my if ;=1 and i>1

r; —s; + Dm; +m; if 5;>1
dA(l)z{
(rl_l)m1+m2 ifSl-=i=1

Lemma 4.7 For k € I, we have d (k) = 0. Moreover, if s, = 1 and
k ¢ {i, ..., ig}, then dy(k) = 0. If k € {i,, ..., ig}, k =i, then d, (k) =

ﬁv - ﬁv -1 3
Proof. Lemma 3.2.(2) implies d,(i,) = B, — B,_i resp. dy(k) = 0 if k ¢
{i, ..., iy}. We obtain d 4(k) = 0.

Now we are prepared to prove a stronger version of theorem 1.8:
Theorem 4.8 (1) 7(4) = w(A) + Y. d,().

lElA

(2) If p > m(A), then t(A) = u(A).

Proof. (2) is a consequence of (1) because i € I, implies m; = Omod p (Lemma
3.1. and Definition 4.6.).
To prove (1) we use induction on the length of the multiplicity sequence.

As before, let A be the blowing up of A. If 4 is smooth, then the theorem is a
consequence of Corollary 4.4.(2). Assume now that m(A4) = 2.

Case 1 r > 1 In this case we have [, = I3, d4 () = dy() fori>landif 1 € I,
then

m(A) if A is not weakly homogeneous and
dg(l) =dy(1) + A is exceptional
0 else

(Lemma 4.5.(1) and Definition 4.6).
By the induction hypothesis we have

() = p( @+ Y d50).

iEIA

3 For the definition of i, ..., iy cf. Lemma 3.2
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Using Corollary 4.4.(1):

N B m(;l) if A is not weakly homogeneous and
t(A) = w(A4) + (4) — u(A4) + A exceptional
0 else

(because of m(4) = m(A4) we obtain

= A + Y dy)

icly

Case 2 r, = 1. If A is not exceptional, then I, = {i+1,i € I;} and
dyi+1) = dz(i). Because of Lemma 3.1. 4 cannot be weakly homogeneous,

Le. 1(A) — u(A) = t(A) —u(;i) (Corollary 4.4.). If 4 is weakly homogeneous,
then A is exceptional and

Li={i+1l,iely}, dui+1)=dy(), i>1,
dy() =(r, —)my+my and d,Q2) =rymy+my—my =dz(1) +my —m;.
Corollary 4.4. yields
T(4) — p(A) = t(A) — p(A) + m(A) —m(4).

If A4 is not weakly homogeneous and Ais exceptional, then 1 € I, (Definition
4.6.) and d (1) = m,.

I,={1}uf{i+1,iel;; and d,(i+1)=dy(), i>1.
Corollary 4.4. yields
t(A) — p(A) = ©(A) — w(A) +m(4).

Using the induction hypothesis, we obtain the required result.

Proof of Corollary 1.10 Let B, ..., B, be the characteristic exponents of A.

We prove that g = 1. Assume that g = 2, i.e. ged(B,, f;) > L.
Using Theorem 1.6. we know that either gcd(f,, ;) = Omodp or
f, = B, mod p. On the other hand,

T(4) 2 j(A) = 25(4) = D rym;(m; — 1) (Theorem 1.8.).

This implies by assumption

IIV

!
z im—1) —m —rim —m,.
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If g 2 2, then m; = 4, which implies Y r;m;(m; — 1) = (r, +2)m; +m, and
equality holds iff m| =4, m, =2,r, =r, =1, ie. f, =4, B, = 6. Similarly we
obtain

zrimi(mi_ D> (ry+Dmy+my +r,m +my, —m,

if ged(my, my) =m,, > 1.
Using the fact that , = m|, §; =r;m; +m, and f, — B, = TiyMi, +m, oy
—m;, _; (cf. Lemma 3.2.) we have

p2t(d)—B,— B >p,, ie p>p,,

and
p2t(A) =B, — By > PP .

This gives a contradiction to the fact either ged(B,, ;) = Omodp or

By — B, = Omod p.

We have proved hat g = 1. In this case we have (cf. [C]) 25(4) =

(B, — D(By — 1). Because of p = 7(4) — B, — f; we obtain p > BB — 2B, —2p;.
Now A is weakly quasihomogeneous and m(A4) % 0 mod p. We may assume

that A = K[[x, y]]/f and

f=xl4yb 4 Z al-jxiyj
i+j>ﬁo

and a;; # 0 implies if; + jB, = B,f, mod p and iB, + jB, > B.p. This implies

B +JiBs = BBy = p > BBy — 2, — 2B, e
iBy + B > 2B, By — 2B, — 2, .

Then there exists an automorphism ¢ of K[[x, y]] such that f(@) = xPo + yP1,
ie. A is quasihomogeneous.

Example 4.9 (1) Let A = K[[x, y]1/f. f = (x + y*)P + xpP =L If p=73r+1,
then (p, 5), (3,7), (1, 3) is the multiplicity sequence. If p = 3r + 2, then (»,9),
(3,7), (2, 1), (1, 2) is the multiplicity sequence.

w(4) = 5p> —2p+ 1, p(A) = 25(A) = 5p> —3p—2, I, = {1}, d,(1) = p+3
because A(Sl) and A(lz) are exceptional.
(2) Let A=KI[[x, y]I/f. f =X+ y" +x3)° p=23. 4 is weakly quasihomo-
geneous but not quasihomogeneous. © = 40, f, = 5, p; =11

In the second part of this chapter we will consider reducible curve
singularities and prove Theorem 1.11. Let 4 = K[[x, y11/f be the local
ring of a reducible weakly quasihomogeneous plane curve singularity with
multiplicity m(4), and A, ..., A, the local rings of its irreducible components
corresponding to the decomposition f =f, ... f,.
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To prove Theorem 1.11. we have to distinguish between the following
situations:

(1) A is not exceptional and all branches are not exceptional.
(2) A is not exceptional, but some of the branches are exceptional.
(3) A is exceptional

Definition 4.10 A is almost exceptional if A is not exceptional, but the union of
some of the branches is exceptional.

Lemma 4.11 If A is almost exceptional, then all branches are either exceptional
or smooth. Moreover, the curve defined by A is a union of a uniquely determined
exceptional component and a smooth component.

The proof of the lemma is an immediate consequence of the following
technical lemma.

Lemma 4.12 Let A = K[[x, y]]/f be the local ring of an isolated singularity. Let
Zf + wyy 6f for suitable (w, : w; 1 w,) € ]P]%:p and f =gh, g, h €
(x,y). Let A] = K[[x, y]]/g and A, = K[[x, y]]/h. The following holds:

(1) A, and A, are weakly quasihomogeneous.

(2) A is exceptional iff w, = w;w, =0.

(3) If A is exceptional, then A, and A, are exceptional or smooth.
@ If ww, #0, then A; and A, are not exceptional.

w.f = wyx

: of o’ f )
(3) Ifw, + 0and wy =0, then f = ya an el = 0. Furthermore, if
% = h, - hy, then the singularity defined by yh, is not exceptional.

(6) A is almost exceptional iff w, # 0 and wyw, = 0 and m(A4) = 3.

Proof. Let 0 = wle

8h = (w, —u)h for a suitable u € K[[x, y]] because of ged(g, h) = 1. Using
Theorem 1.3. we obtain (1).
If w, = w;w, = 0, then A is exceptional by definition. Let 4 be exceptional. We

may assume that there is a & € Derg K[[x, y]] with 0(x) =1 and 6(f) = uf

+w2yaa , then 6f = w_f implies g = ug and

for a suitable u € K[[x, y]]. This implies g € (f 6_f) On the other hand,
we obtain
— @f

(W, —wixu)f = (wyy — W1X5()’))5; -
If w, # 0, then f € (%), ie. (f g{( 2);) (6f) This is not possible
because f defines an isolated singularity and f € (x, y)?. This implies w, = 0.

of of w

Assume now w,w, # 0, ie. X —wyay w—2 # 0.

We obtain (wy + xé(y))—a—g = xuf.
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wy + yd(y) is irreducible and Z—i ¢ (f) because f defines an isolated singularity

ox
Then

and af (f 65) This implies f = (wy + xd(y)) - | for a suitable | € (x, y).

%) < .. 0l
xul=5; ( +x %>l+(wy+x5(y))5;

and, because of w # 0, wy + x5(y) is a factor of I. This is a contradiction to
the fact that f defines an isolated singularity and implies w;w, = 0.

0
To prove (3) we may assume (using (2)) that % = 0. Then Z—i =u-g and
oh
5; = —u - h for a suitable u € K[[x, y]] because of gcd(g, h) = 1, i.e. A; and

A, are exceptional. To prove (4) we may assume that 4, is not smooth and

0g = ug for a suitable u € K[[x, y]]. If u € (x, y), then 4, ~ K[[x, y]]/g and
6g = 0 (second case of the proof of Theorem 1.3). Because of (2) 4, is not

exceptional. If u ¢ (x, y) and u(0) ! =:4a € K, then § = u~!§ is semisimple
g g
with eigenvalues aw;, aw,, i.e. 4; ~ K[[x, y]]/g and wlaxa + w;,_ayag =z

(first case of the proof of Theorem 1.3.). If a ¢ IF,, then there are W, , W, € F,
and
g

wxag+w =g
X5 2y6y_g

Because of (2) A, is not exceptional.

of of

To prove (5) we differentiate the equation w,f = w,y—~ 3y W, =— y -

of >f

. of . .
W26 —{~w2ya 5. If w, # w,, then y is a factor of %, ie. y? is a factor

of f, which is a contradiction to the fact that f defines an isolated singularity.

2
This yields f = yg—f and jyf 0.
Let % = hy-hy, hy, hy € (x, y) and assume that yh, defines an exceptional
singularity.
2 Oyh
g;{— = 0 implies aaiy = uh, for a suitable u € K[[x, y]] and y ; L =
(1 + yu)yh;. Now 6 = (1 + yu) ! y% is semisimple with eigenvalues 0 and

1 and 6(yh;) = yh,. Consequently K[[x, yll/yh; ~ K[[x, y]]/! and | = yg—)l]

(ﬁrst case of the proof of Theorem 1.3.). Using (2) we obtain that K[[x, y]]/ yhy
is not exceptional. Now (6) is a consequence of (2) and (4).
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Definition 4.13 Let A be almost exceptional and E (resp. L) the local ring
of the maximal exceptional (resp. smooth) component of A. Let d(A4) =
i(E, L) — m(E), where i(E, L) is the intersection multiplicity of E and L and
m(E) the multiplicity of E.

Now we are prepared to give a stronger version of Theorem 1.11.:
Theorem 4.14 (1) If A is not almost exceptional, then

r

o(A) = p(A) + Zr@) HA)) -

(2) If A is almost exceptional, then
©(4) = u(A) + Z —d(A)

and
> (W(Ay) — m(4) Z d(4) -
i=1

(3) If p > m(A), then t(A4) = u(A4).

To prove the theorem we use the following lemmata:

Lemma 4.15 Let A be almost exceptional and E (resp. L) the local ring of the
maximal exceptional (resp. smooth) component of A, then

(1) (A =<(E) +i(E, L)

2) w4 =wE)+i(E, L) +d(A).

(3) If p=m(A), then d(A) =

(4 LetAy, ..., A._ be the branches of E, then d(A) = }—: (i(4;, L) —m(A))

and () — w(A) 2 i(A;, L) — m(4). -

Lemma 4.16 Let A be not almost exceptional and assume that A splits into two
(not necessarily irreducible) components with local rings B and C, then

0 A exceptional

1 else
0 A exceptional

1 else

(1) (A =1(B)+ (C) + 2i(B, C) — {
@ mm=mm+mo+mw¢n—{

We will prove Lemma 4.15 and Lemma 4.16 at the end of this chapter.

Proof of Theorem 4.14 (3) is a consequence of Lemma 4.15(3), Theorem 4.8.
and (1) resp. (2) of the theorem. (2) is a consequence of (1) using Lemma
4.15.(1) and (2). (1) is a consequence of Lemma 4.16. using induction on the
number of branches of 4.
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Proof of Lemma 4.15 Using Lemma 4.12. we may assume that 4 = K[[x, y]]/f,
oh
f =yh and 5; =0, E = K|[[x, y]]/h and L = K[[x, y]]/y. Now

1(4) = dimy K[[x, y]]/(f, gﬁ-, %) = dimg K[[x, y]]/(h, y%>

and

. oh 0Oh . oh
+(E) = dimg K[[x, y]]/(h, i 5;) = dimy K[, yn/(h, a) .

. oh oh
1(4) — 1(E) = dimy (h, 5;)/(11 ya>

= dimg K{[[x, y]1/(y, h)
=i(E, L)

This implies

because of ged (h, Gh
Ox

(2) is a consequence of the fact that

) = 1. This proves (1)

8(A) = 8(E) + 6(L) +i(E, L)

always and the definition of the Milnor number (1.7) u(4) = 26(4) +1—r,
ME) = 26(E) + m(E) — (r — 1), and (L) = 0. If p = m(A4), then p > m(E).

Because of 9 _ 0 we obtain h = ax™® + Y a;;x'y', o € K and a # 0.
dy i+ j>m(E)

This implies i(E, L) = dimg K[[x, y]1/(y, h) = m(E), i.e. d(4) = 0, which

proves (3).

To prove (4) let B be a branch of E,B = K[[x,y]l/g, h = | - g.
Then i(B, L) = ord, g(x,0) and S—i = ug for a suitable u € K[[x, y]]. If
d(4) >0, then g = By"®B) + 3 g, ;x'y’ and because of % _ ug we have

i+ j>m(B) dy
m(B) = Omod p. The blowing up of B is again exceptional or smooth, i.e.
1 € Ip (cf. Definition 4.6. and Lemma 4.5.). Let (m, r,), (m,,1,), ... be the
multiplicity sequence of B, m; = m(B), then Theorem 4.8., Lemma 4.7. and
Definition 4.6 yield

©(B) 2 u(B) + (ry — )m; +m, .

On the other hand, ord, g(x, 0) < r;m; + m,. This implies t(B) — u(B) — i(B, L)
+ m(B) = 1(B) — u(B) — ord, g(x, 0) + m; = 0, which proves (4).
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Proof of Lemma 4.16 (2) is a consequence of the fact that §(4) = 6(B) + 5(C)
+i(B, C) and the definition of the Milnor number (cf. 1.7):

If A is exceptional, then

p(A) = 26(A) + m(4) — r(4), w(B) = 26(B) + m(B) —r(B),

u(C) = 26(C) + m(C) —r(C) and r(A4) =r(B) +r(C),

m(A4) = m(B) + m(C).

If A4 is not exceptional and thus, by assumption, not almost exceptional, then
wA) = 26(A) + 1 —r(A4), u(B) = 25(B) + 1 —r(B), u(C) = 26(C) +1—r(C).
To prove (1) we may assume that A = K[[x, y]l/f, f =g h, g, h € (x,),

B = Kllx, ll/g, € = Kllbx, y}/h and wof = wixZ +wpyal, my : wi

w,) € IPZ,. Furthermore, using Lemma 4.12. we may assume that either
w, = w; = 0 (4 is exceptional) or wyw, # 0.
Now it is not difficult to see that the following sequence is exact:

Ooh 0Oh 0
0~ Kt/ (h 2 5 ) o Kix )/ (2. 25 5F )

oh Oh |0 0
~Kite/ (ghe g5 25 h3E A2 )

|7
K({[x, yll/(g.n) — 0
i(@a,b)=ag +bh, p@=a.

This implies
oh 0h dg 0
7(B) + ©(C) + i(B, C) = dimg K[[x, y]]/(gh 8585 5%”’55‘)'

On the other hand,

r(A)=dimKK[[x,y]1/(g 084 g%8 %8 a—"—).

%),
S PURE S El s

_ dg oh Og oh oh 6h dg ,0g
Let T := (gh Ix —=h+ gax,(,j h+ 5y) then (gh 855 hax hay

h(ji gi) 4T and dimg h(ag ag) +T/T = () —<(B) —T(C) —i(B, C).
We have to prove that

. Jg 0Og 0 ifwy=w =0
dlmKh(&x d )+I“/I“—l(B - {1 if ww, #0.
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To prove this we use the following isomorphisms:

0 ~
¢ :h(—g f')ﬁ) +TUT S (x, pKILx, ¥/ )

ox’ dy
og 08\ _
go(h(aé—; —{—b@)) = w,ya— wxb
if wyw, #£0.
If wy = w;, = 0, then hﬁ_g = oh . % = uh and 8_g = — ug for a suitable

ay = —-ga,l.e. ay ay
u € K{[x, y]]. This implies h% €I and

(98 % ~
v (5 5E) 4T/ S Kilw, /.

Jg
w(‘lhb;) =aq

defines an isomorphism.
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