
A CLASSIFICATION ALGORITHM FOR COMPLEX SINGULARITIES OF
CORANK AND MODALITY UP TO TWO

JANKO BÖHM, MAGDALEEN S. MARAIS, AND GERHARD PFISTER

Abstract. In (Arnold et al., 1985), Arnold has obtained normal forms and has developed
a classifier for, in particular, all isolated hypersurface singularities over the complex numbers
up to modality 2. Building on a series of 105 theorems, this classifier determines the type of
the given singularity. However, for positive modality, this does not fix the right equivalence
class of the singularity, since the values of the moduli parameters are not specified. In this
paper, we present a simple classification algorithm for isolated hypersurface singularities of
corank ≤ 2 and modality ≤ 2. For a singularity given by a polynomial over the rationals, the
algorithm determines its right equivalence class by specifying a polynomial representative in
Arnold’s list of normal forms.

1. Introduction

In his classical paper on singularities (Arnold, 1974), Arnold has classified all isolated hyper-
surface singularities over the complex numbers with modality ≤ 2. He has given normal forms
in the sense of polynomial families with moduli parameters such that every stable equivalence
class of function germs contains at least one (but only finitely many) elements of these families.
We refer to such elements as normal form equations. Two germs are stably equivalent if they
are right equivalent after the direct addition of a non-degenerate quadratic form. Two function
germs f, g ∈ m2 ⊂ C[[x1, . . . , xn]], where m = 〈x1, . . . , xn〉, are right equivalent, written f ∼ g, if
there is a C-algebra automorphism φ of C[[x1, . . . , xn]] such that φ(f) = g. Using the Splitting
Lemma, any germ with an isolated singularity at the origin can be written, after choosing a
suitable coordinate system, as the sum of two functions of which the variables are disjoint. One
function that is called the non-degenerate part, is a non-degenerate quadratic form, and the
other part, called the residual part is in m3. The Splitting Lemma is implemented in Singular
as part of the library classify.lib (Krüger, 1997).

In (Arnold et al., 1985), Arnold has made this classification explicit by describing an algorith-
mic classifier, which is based on a series of 105 theorems. This approach determines the type of
the singularity in the sense of its normal form. However, the values of the moduli parameters
are not determined, that is, no normal form equation is given. Arnold’s classifier is implemented
in classify.lib.

Classification of complex singularities has a multitude of practical and theoretical applications.
The classification of real singularities in (Marais and Steenpaß, 2015a, 2016; Böhm, Marais and
Steenpaß, 2015b) is based on determining the complex type of the singularity.

In this paper, we develop a determinator for complex singularities of modality ≤ 2 and corank
≤ 2, which computes, for a given rational input polynomial, a normal form equation in its
equivalence class. For germs with non-degenerate Newton boundary, our determinator is based
on a simple and uniform approach, which does not require a case-by-case analysis (except for
some trivial final steps to read off the values of the moduli parameters according to Arnold’s
choice of the normal form). Two series of cases with degenerate Newton boundary are handled
with more specific methods. Here, we use results of (Luengo and Pfister, 1990) to compute a
normal form. In this way, we obtain an approach which does not only determine the moduli

2010 Mathematics Subject Classification. Primary 14B05; Secondary 32S25, 14Q05.
Key words and phrases. Hypersurface singularities, algorithmic classification.
This research was supported by the Staff Exchange Bursary Programme of the University of Pretoria.

1



A CLASSIFICATION ALGORITHM FOR COMPLEX SINGULARITIES 2

parameters, but also allows for an elegant implementation. We have implemented our algorithm
in the Singular-library classify2.lib (Böhm, Marais and Pfister, 2016).

It is important to note that two different normal form equations do not necessarily represent
two different right equivalence classes. In (Marais and Steenpaß, 2016) the complete structure
of the equivalence classes for, in particular, complex singularities of modality 1 and corank 2 is
determined, in the sense that all equivalences between normal form equations are described. All
normal form equations in the right equivalence class of a given unimodal corank 2 singularity
can, hence, be determined by combining our classifier with the results in (Marais and Steenpaß,
2016). There is not yet a similar complete description of the structure of the equivalence classes
of bimodal singularities.

This paper is structured as follows: In Section 2, we give the fundamental definitions and
provide the prerequisites on singularities and their classification. In Section 3, we develop a
general algorithm for the classification of complex singularities of modality ≤ 2 and corank ≤ 2.
Essentially, the algorithm is structured into a subalgorithm for elimination below the Newton
polygon, and a subalgorithm for elimination on and above the Newton polygon, which also
determines the values of the moduli parameters. The algorithm for the two series of germs of
modality 2 with degenerate Newton boundary is discussed in Section 4.

2. Definitions and Preliminary Results

In this section we give some basic definitions and results, as well as some notation that will
be used throughout the paper.

Definition 1. Let K ⊂ C[[x1, . . . , xn]] be a union of equivalence classes with respect to the
relation ∼. A normal form for K is given by a smooth map

Φ : B −→ C[x1, . . . , xn] ⊂ C[[x1, . . . , xn]]

of a finite-dimensional C-linear space B into the space of polynomials for which the following
three conditions hold:
(1) Φ(B) intersects all equivalence classes of K,
(2) the inverse image in B of each equivalence class is finite,
(3) Φ−1(Φ(B) \K) is contained in a proper hypersurface in B.

The elements of the image of Φ are called normal form equations.

Remark 2. Arnold has chosen a normal form for each of the corank 2 singularities of modality
≤ 2. He has also associated a type to each normal form, see Table 1. We denote the normal
form corresponding to the type T by NF(T ). For b ∈ par(NF(T )) := Φ−1(K) with K as in
Definition 1, we write NF(T )(b) := Φ(b) for the corresponding normal form equation.

In the following, we give a short account on weighted jets, filtrations, and Newton polygons.
See (Arnold, 1974) and (de Jong and Pfister, 2000) for more details.

Remark 3. Let w = (c1, . . . , cn) ∈ Nn be a weight on the variables (x1, . . . , xn). The weighted
degree on Mon(x1, . . . , xn) is given by w - deg(

∏n
i=1 x

si
i ) :=

∑n
i=1 cisi. If the weight of all vari-

ables is equal to 1, we refer to the weighted degree of a monomial m as the standard degree of
m and write deg(m) for w - deg(m).

Definition 4. Let w = (w1, . . . , ws) ∈ (Nn)s be a finite family of weights on the variables
(x1, . . . , xn). For any monomial (or term) m ∈ C[x1, . . . , xn], we define the piecewise weight
with respect to w as

w - deg(m) := min
i=1,...,s

wi - deg(m).

A polynomial f is called piecewise homogeneous of degree d with respect to w if w - deg(t) = d
for any term t of f .



A CLASSIFICATION ALGORITHM FOR COMPLEX SINGULARITIES 3

Table 1. Normal forms of singularities of modality ≤ 2 and corank ≤ 2 as
given in Arnold et al. (1985)

Complex
Restrictions

Complex
Restrictions

normal form normal form

Si
m
pl
e

Ak xk+1 k ≥ 1

B
im

od
al

J3,0 x3 + bx2y3 + y9 + cxy7 4b3 + 27 6= 0

Dk x2y + yk−1 k ≥ 4 J3,p x3 + x2y3 + ay9+p p > 0, a0 6= 0

E6 x3 + y4 - Z1,0 x3y + dx2y3 + cxy6 + y7 4d3 + 27 6= 0

E7 x3 + xy3 - Z1,p x3y + x2y3 + ay7+p p > 0, a0 6= 0

E8 x3 + y5 - W1,0 x4 + ax2y3 + y6 a20 6= 4

X9 x4 + ax2y2 + y4 a2 6= 4 W1,p x4 + x2y3 + ay6+p p > 0, a0 6= 0

J10 x3 + ax2y2 + y6 4a3 + 27 6= 0 W ]
1,2q−1 (x2 + y3)2 + axy4+q q > 0, a0 6= 0

U
ni
m
od

al

J10+k x3 + x2y2 + ay6+k a 6= 0, k > 0 W ]
1,2q (x2 + y3)2 + ax2y3+q q > 0, a0 6= 0

X9+k x4 + x2y2 + ay4+k a 6= 0, k > 0 E18 x3 + y10 + axy7 -
Yr,s xr + ax2y2 + ys a 6= 0, r, s > 4 E19 x3 + xy7 + ay11 -
E12 x3 + y7 + axy5 - E20 x3 + y11 + axy8 -
E13 x3 + xy5 + ay8 - Z17 x3y + y8 + axy6 -
E14 x3 + y8 + axy6 - Z18 x3y + xy6 + ay9 -
Z11 x3y + y5 + axy4 - Z19 x3y + y9 + axy7 -
Z12 x3y + xy4 + ax2y3 - W17 x4 + xy5 + ay7 -
Z13 x3y + y6 + axy5 - W18 x4 + y7 + ax2y4 -
W12 x4 + y5 + ax2y3 -
W13 x4 + xy4 + ay6 - where a = a0 + a1y

Definition 5. Let w be a (piecewise) weight on Mon(x1, . . . , xn).
(1) Let f =

∑∞
i=0 fi be the decomposition of f ∈ C[[x1, . . . , xn]] into weighted homogeneous

summands fi of w-degree i. The weighted j-jet of f is

w - jet(f, j) :=

j∑
i=0

fi .

(2) A power series in C[[x1, . . . , xn]] has filtration d ∈ N if all its monomials are of weighted
degree d or higher. The power series of filtration d form a sub-vector space

Ewd ⊂ C[[x1, . . . , xn]] .

(3) A power series f ∈ C[[x1, . . . , xn]] is a germ with non-degenerate Newton boundary
if f has filtration d ∈ N with respect to w and if the piecewise homogeneous function
w - jet(f, d), called the principal part of f , is non-degenerate, that is, if its Milnor number
is finite. If w consists out of a single weight, we call f semi-quasihomogeneous and
w - jet(f, d) the quasihomogeneous part of f .

(4) A power series f ∈ C[[x1, . . . , xn]] is weighted k-determined with respect to the weight
w if

f ∼ w - jet(f, k) + g for all g ∈ Ewk+1.

We define the weighted determinacy of f as the minimum number k such that f is
k-determined.

Remark 6. (1) If for a given type T , w - jet(NF(T )(b), j) is independent of b ∈ par(NF(T )),
we denote it by w - jet(T, j).

(2) If the weight of each variable is 1, we write Ed and jet(f, j) instead of Ewd and w - jet(f, j),
respectively.

There is also a similar concept for jets and filtrations of coordinate transformations:



A CLASSIFICATION ALGORITHM FOR COMPLEX SINGULARITIES 4

Definition 7. Let φ be a C-algebra automorphism of C[[x1, . . . , xn]] and let w be a weight on
Mon(x1, . . . , xn).
(1) For j > 0 we define w - jet(φ, j) := φwj as the automorphism given by

φwj (xi) := w - jet(φ(xi), w - deg(xi) + j) for all i = 1, . . . , n .

If the weight of each variable is equal to 1, that is, w = (1, . . . , 1), we write φj for φwj .
(2) φ has filtration d if, for all λ ∈ N,

(φ− id)Ewλ ⊂ Ewλ+d .
Remark 8. Note that φ0(xi) = jet(φ(xi), 1) for all i = 1, . . . , n. Furthermore note that φw0 has
filtration ≤ 0, and that, for j > 0, φwj has filtration j if φwj−1 = id.

The following definition gives an infinitesimal analogue of the above definition.

Definition 9. A formal vector field v =
∑
i vi

∂
∂xi

has filtration d with respect to a weight w, if
the directional derivative of v raises the filtration by not less than d, that is,

for all g ∈ Ewδ , Lv(g) :=
∑
i

vi
∂g

∂xi
∈ Ewδ+d.

In a similar way as (Marais and Steenpaß, 2015a, Proposition 8), one can prove:

Proposition 10. Let f, g ∈ C[[x1, . . . , xn]] be two power series with f ∼ g. Let w ∈ Nn and
suppose that the maximal weighted filtration of f with respect to w is k. Furthermore, let φ be a
C-algebra automorphism of C[[x1, . . . , xn]] such that φ(f) = g. If jet(f, k) factorizes as

w - jet(f, k) = fs11 · · · f
st
t

in C[x1, . . . , xn], then w - jet(g, k) factorizes as

w - jet(g, k) = φw0 (f1)s1 · · ·φw0 (ft)
st .

Definition 11. Let f =
∑
i,j ai,jx

iyj ∈ C[[x, y]], let T be a corank 2 singularity type. We call

supp(f) := {xiyj | ai,j 6= 0}
supp(T ) := supp(NF(T )(b))

where b ∈ par(NF(T )) is generic, the support of f and of T , respectively. Let

Γ+(f) :=
⋃

xiyj∈supp(f)

((i, j) + R2
+)

Γ+(T ) :=
⋃

xiyj∈supp(T )

((i, j) + R2
+)

and let Γ(f) and Γ(T ) be the boundaries in R2 of the convex hulls of Γ+(f) and Γ+(T ), respec-
tively. Then:
(1) Γ(f) and Γ(T ) are called the Newton polygons of f and T , respectively.
(2) The compact segments of Γ(f) or Γ(T ) are called faces. If ∆ is a face, then the set of

monomials of f lying on ∆ is denoted by supp(f,∆) and the sum of the terms lying on ∆
by jet(f,∆). Moreover, we write supp(∆) for the set of monomials corresponding to the
lattice points of ∆, and set supp(T,∆) := supp(T ) ∩ supp(∆). We use the same notation
for a set of faces, considering the monomials lying on the union of the faces.

(3) Any face ∆ induces a weight w(∆) on Mon(x, y) in the following way: If ∆ has slope −wxwy ,
in lowest terms, and wx, wy > 0, we set w(∆) - deg(x) = wx and w(∆) - deg(y) = wy.

(4) If w1, . . . , ws are the weights associated to the faces of Γ(f), respectively Γ(T ), ordered
by increasing slope, there are unique minimal integers λ1, . . . , λs ≥ 1 such that the piece-
wise weight associated to w(f) = (λ1w1, . . . , λsws) by Definition 4 is constant on Γ(f),
respectively Γ(T ). We denote this constant by d(f), respectively d(T ).

(5) Let ∆i and ∆j be faces with weights w1 and w2, respectively, and let w be the piecewise
weight defined by w1 and w2. Let d be the w-degree of the monomials on ∆1 and ∆2. Then
span(∆1,∆2) is the Newton polygon associated to the sum of all monomials of w-degree d.



A CLASSIFICATION ALGORITHM FOR COMPLEX SINGULARITIES 5

(6) A monomial m lies strictly underneath, on or above Γ(f), if the w(f)-degree of m is less
than, equal to or greater than d(f), respectively. We use this notation also with respect to
Γ(T ), w(T ), and d(T ).

Notation 12. Given f ∈ C[[x, y]] and m ∈ Mon(x, y), we write coeff(f,m) for the coefficient of
m in f .

Definition 13. The Jacobian ideal Jac(f) ⊂ C[[x, y]] of f is generated by the partial derivatives
of f . The local algebra of f is the residue class ring of the Jacobian ideal of f .

Definition 14. Suppose f is a germ, e1, . . . , eµ are monomials representing a basis of the local
algebra of f , and e1, . . . , es are the monomials in this basis above or on Γ(f). We then call
e1, . . . , es a system of the local algebra of f .

Lemma 15 (Arnold (1974), Corollary 3.3). Let f be a semi-quasihomogeneous function with
quasihomogeneous part f0, and let e1, . . . , eµ be monomials representing a basis of the local algebra
of f0. Then e1, . . . , eµ also represent a basis of the local algebra of f .

Theorem 16 (Arnold (1974), Theorem 7.2). Let f be a semi-quasihomogeneous function with
quasihomogeneous part f0 and let e1, . . . , es be a system of the local algebra of f . Then f is
equivalent to a function of the form f0 +

∑s
k=1 ckek with constants ck.

In Arnold (1974), the following results are used for the classification of singularities of corank 2.

Definition 17. A piecewise homogeneous function f0 of degree d satisfies Condition A, if for
every function g of filtration d + δ > d in the ideal spanned by the derivatives of f0, there is a
decomposition

g =
∑ ∂f0

∂xi
vi + g′,

where the vector field v has filtration δ and g′ has filtration bigger than d+ δ.

Note that quasihomogeneous functions satisfy Condition A. Using (Arnold, 1974, Theorem
9.5), and taking into account that all cases under consideration in the following theorem satisfy
Condition A, we obtain:

Theorem 18. Suppose f is a function of corank 2 with non-degenerate Newton boundary such
that the principal part f0 of f coincides with the principal part of one of Arnold’s normal forms
of modality ≤ 2. Let e1, . . . , es be a system of the local algebra of f . Then f is equivalent to a
function of the form f0 +

∑
ckek with constants ck.

Following Arnold’s proof of Theorem 16, Theorem 18 can be proven by iteratively applying
the following lemma.

Lemma 19. Let f0 ∈ C[[x1, . . . , xn]] be a piecewise homogeneous function of weighted w-degree
dw that satisfies Condition A, and let e1, . . . , er be the monomials of a given w-degree d′ > dw in
a system of the local algebra of f0. Then, for every series of the form f0 +f1, where the filtration
of f1 is greater than dw, we have

f0 + f1 ∼ f0 + f ′1,

where the terms in f ′1 of degree less than d′ are the same as in f1, and the part of degree d′ can
be written as c1e1 + · · ·+ crer with ci ∈ C.

Proof. Let g(x) denote the sum of the terms of degree d′ in f1. There exists a decomposition of
g of the form

g(x) =
∑
i

∂f0
∂xi

vi(x) + c1e1 + · · ·+ crer, vi ∈ C[[x1, . . . , xn]],

since e1, . . . , er form a monomial vector space basis for the local algebra of f0. Let d(xi) be the
w-degree of xi, and let v′i := w - jet(vi, d(xi)). Then

g(x) =
∑
i

∂f0
∂xi

v′i(x) + c1e1 + · · ·+ crer − g′(x),



A CLASSIFICATION ALGORITHM FOR COMPLEX SINGULARITIES 6

where g′(x) has filtration greater than d′. Applying the transformation defined by

xi 7→ xi − v′i(x)

to f , we transform f to

f0(x) + (f1(x) + (c1e1(x) + · · ·+ crer(x)− g(x)) +R(x),

where the filtration of R is greater than d′. �

Remark 20. A system of the local algebra is in general not unique. For his lists of normal forms
of hypersurface singularities with non-degenerate Newton boundary, Arnold has chosen in each
case (in particular) a specific system of the local algebra. In the rest of the paper, we call these
systems the Arnold systems.

Remark 21. Note that it follows from Lemma 19 that all hypersurface singularities of corank
≤ 2 and modality ≤ 2 with non-degenerate Newton boundary are finitely weighted determined.
Moreover, we explicitely obtain the weighted determinacy for every such singularity.

3. A Classification Algorithm for Corank 2 Complex Simple, Unimodal and
Bimodal Singularities

We now describe an algorithm to determine an Arnold normal form equation for a given
input polynomial f ∈ m3, f ∈ Q[x, y] of modality ≤ 2. In this section, we limit our discussion on
functions with a normal form with non-degenerate Newton boundary. In the case of normal forms
with degenerate Newton boundary, our algorithm will resort to special algorithms described in
Section 4. Figures 1 to 4 illustrate the modality 2 types of this kind. The figures show in the
gray shaded area all monomials which can possibly occur in a polynomial f of the given type
T . The faces of the Newton polygon Γ(T ) are shown in blue. The dots with a thick black circle
indicate the moduli monomials in the Arnold system. Red dots indicate monomials which are
not in Jac(f). Monomials occuring in any normal form equation with non-zero coefficients are
shown as blue dots.

The structure of our algorithm consists out of two basic steps, see Algorithm 1. We first
determine the complex type of f by removing all the monomials underneath Γ(T ), in the semi-
quasihomogeneous cases, and all the monomials underneath and on Γ(T ), not in NF(T ), in
the other cases (Algorithm 2). After that, we determine a normal form equation of f (using
Algorithm 5 in the non-simple cases). More generally, we will formulate the algorithm in a way,
that it is applicable to any f ∈ m2, and will recognize if f is of modality > 2, returning an error
in this case.

Algorithm 1 Algorithm to classify singularities of modality ≤ 2 corank ≤ 2

Input: A polynomial germ f ∈ m2 over the rationals.
Output: NF(f) as well as the values of all moduli parameters occuring in a normal form equa-

tions that is equivalent to f , if f is of modality ≤ 2, corank ≤ 2; false otherwise.
1: Apply Algorithm 2 to f .
2: if T as returned by Algorithm 2 is a simple type then
3: return (NF(T ), ())

4: Apply Algorithm 5 to the output of Algorithm 2 and return the result.

We first discuss Algorithm 2. If f is of corank ≤ 1, then f is of type Ak, where k = µ(f).
Suppose now that f is of corank 2. Determining T in the process, we remove all monomials
below Γ(T ) if Γ(T ) has only one face, and all monomials on or below Γ(T ) which are not in
NF(T ), if Γ(T ) has two faces. Let d be the maximal filtration of f . If f is of type X9, nothing
has to be done. Note that f is of type X9 if and only if the d-jet of f has 4 different roots
over the complex numbers. If f is not of type X9, then Algorithm 3 will transform f such that
supp(T, d) = supp(jet(f, d)). Using (Marais and Steenpaß, 2015a, Proposition 8), we find the
corresponding linear transformation by factorizing jet(f, d).



A CLASSIFICATION ALGORITHM FOR COMPLEX SINGULARITIES 7

At this stage we know that supp(jet(f, d)) ⊂ supp(NF(T )). We store the monomials of the
d-jet of f in S0 = supp(jet(f, d)). The remainder of Algorithm 2 will proceed in an iterative way,
changing f and S0 in the process: In each step of the iteration, we can have one of the following
two possibilities for Γ(f):

(1) Note that monomials of the form xn1y or xyn2 cannot be intersection points of (finite) faces
of Γ(T ). If any of the monomials m0 ∈ S0 which is not of this form lies on two faces of Γ(f),
it is clear that Γ(T ) has at least two faces with corner point m0. The algorithm will then
stay in this case. Let ∆i and ∆j be the two different faces of Γ(f) on which m0 lies. The
corner point in all modality 1 and 2 cases with a Newton polygon with two faces is either
x2y2 or x2y3. It follows that if m0 6= x2yt, t = 2 or t = 3, then f is not of modality ≤ 2.
Otherwise, using the shape of Γ0 := span(∆i,∆j) and the fact that m0 = x2yt is a corner
point of Γ0, all monomials in f on Γ0 of the form xyn or xnyt−1 can be removed iteratively,
by increasing degree, each time replacing the corresponding terms of the given degree by
higher w(f)-degree terms using Algorithm 4. After each iteration, f , ∆i, ∆j and Γ0 are
recalculated. In each iteration, there will either be no terms of the considered form on Γ0,
in which case the process stops, or the number of equivalence classes in the local algebra
of f represented by powers of x or y underneath Γ0 strictly increases, except possibly in
the last two steps of the process (where monomials on the final Newton polygon may be
removed). Note that, if xm1 and ym2 are largest powers of x and y underneath Γ0, then
1, x, . . . , xm1−1, y, . . . , ym2−1 represent different equivalence classes. Since µ(f) is finite, the
process must stop after finitely many iterations. No further monomials on Γ0 can be removed
without creating terms underneath Γ0. Hence, in all cases in consideration, this algorithm
will produce the Newton polygon of the normal form. In fact, if supp(f,Γ0) does not coincide
with supp(T,Γ0) for some type T of modality ≤ 2, then the modality of f is bigger than 2.
Otherwise, f is a germ of the corresponding type T , and all monomials in f underneath or
on Γ(T ) not in NF(T ) are removed.

(2) Suppose no monomials in S0, except monomials of the form xn1y or xyn2 , lie on two faces
of Γ(f). Then f is not of type X9+k or Yr,s, since these cases will be recognized to have
two faces in the first iteration of the above step. All the monomials in S0 lie on only one
face of Γ(f). Let ∆ be this face. If f1 := jet(f,∆) is non-degenerate, then f is a semi-
quasihomogeneous germ. Since w - jet(φw0 (f), d(f)) = φw0 (f1) for any automorphism φ of
filtration ≥ 0 with respect to the weight w associated to ∆, span(∆) is an invariant of the
type of f . The corresponding type T can, hence, be identified. The case X9 will already be
recognized as a semi-quasihomogeneous function in the first iteration, and f will be returned
by the algorithm without any change. In all other cases, the weight w associated with ∆
will be such that w - deg(x) > w - deg(y). If f1 is degenerate, then either f has monomials
underneath Γ(T ), or Γ(T ) is degenerate. For all semi-quasihomogeneous cases of modality
≤ 2, except X9, jet(T, d) is divisible by a power of x and x has the highest multiplicity
among all prime factors. Any weighted jet of NF(T ) with respect to a face lying below Γ(T )
and intersecting Γ(T ) in jet(T, d) has the same property. Suppose ∆ is such a face. Then
supp(T,∆) = {xnym} with n > m. Taking into account that the weighted degree of x is
greater than the weighted degree of y, it follows that f1 = gn1 y

m with degx(g1) = 1. The
right equivalence g1 7→ x, y 7→ y transforms f such that supp(f,∆) = supp(T,∆). If the
normal form of f has a non-degenerate Newton boundary, but is not semi-quasihomogeneous,
then we can proceed in the same way: Suppose ∆ lies underneath or on the face of biggest
slope of Γ(T ). If g1 is the factor of highest multiplicity of f1 with degx(g1) = 1, then the
right equivalence g1 7→ x, y 7→ y transforms f such that supp(f,∆) = supp(T,∆). We then
update S0 := supp(f,∆) and pass to the next iteration. If f1 does not have any x-linear
factor, then the normal form of f has a degenerate Newton boundary. In this case, we resort
to the algorithms described in Section 4. Since µ(f) is finite, the same argument as in (1)
shows that the iteration terminates after finitely many steps.

We now discuss Algorithm 5, which determines the values of the moduli parameters. Let
w = w(T ) be the weight associated to Γ(T ). If Γ(T ) has only one face ∆, then supp(f,∆) is not



A CLASSIFICATION ALGORITHM FOR COMPLEX SINGULARITIES 8

Algorithm 2 Determine the complex type of a corank ≤ 2 singularity of modality ≤ 2 with
non-degenerate Newton boundary.

Input: A polynomial germ f ∈ m2 over the rationals.
Output: If f is of modality ≤ 2 and corank ≤ 2, then the complex singularity type T of f , and

a polynomial g right equivalent to f such that the span of the faces of Γ(T ) and the faces of
Γ(f) coincide; false otherwise.

1: f := residual part given by the splitting lemma applied to f , as implemented in
classify.lib.

2: if corank(f) ≤ 1 then
3: return (f,Aµ(f))

4: if corank(f) > 2 then
5: return false
6: if f ∈ E5 then
7: return false (modality > 2)
8: f := output of Algorithm 3 applied to f ∈ Q[x, y]

9: S0 := supp(jet(f, d)), where d := maximal filtration of f w.r.t. the standard grading.
10: while true do
11: Let ∆1, . . . ,∆n be the faces of Γ(f) ordered by increasing slope.
12: if exist i 6= j and n1, n2 > 1 with m0 := xn1yn2 ∈ supp(∆i) ∩ supp(∆j) ⊂ S0 then
13: if m0 6= x2y2 and m0 6= x2y3 then
14: return false (modality > 2)
15: Γ0 := span(∆i,∆j)

16: f1 := jet(f,Γ0)

17: while exist a term of the form t = c · xn1−1yr or t = c · xryn2−1 in f1 do
18: f := output of Algorithm 4 with input f , f1, t, and weights w(∆i), w(∆j)

19: Let ∆1, . . . ,∆n be the faces of Γ(f).
20: Γ0 := span(∆i,∆j), where i and j are such that m0 ∈ supp(∆i) ∩ supp(∆j)

21: f1 := jet(f,Γ0)

22: if exists modal 1 or 2 type T with supp(T,Γ0) = supp(f1) then
23: return (f , T )
24: else
25: return false (modality > 2)
26: else
27: Let ∆ be the face of Γ(f) of smallest slope such that S0 ⊂ supp(∆).
28: f1 := jet(∆, f)

29: if µ(f1) =∞ then
30: Let g1 be the factor of f1 with highest multiplicity.
31: if degx(g1) = 1 then
32: Replace f by g1 7→ x, y 7→ y applied to f .
33: S0 := supp(jet(f,∆))

34: else
35: if supp(f,∆) = supp((y2 − x3)2) then
36: return (f , W ]

1,µ(f)−15)
37: else
38: return false (modality > 2)
39: else
40: if exists modal 1 or 2 type T with Γ(T ) = Γ(f1) then
41: return (f , T )
42: else
43: return false (modality > 2)



A CLASSIFICATION ALGORITHM FOR COMPLEX SINGULARITIES 9

Algorithm 3 Reverse linear jet.

Input: A polynomial f ∈ m3 ⊂ Q[x, y] with jet(f, 4) 6= 0.
Output: g ∈ m3 ⊂ K[x, y], where K is an algebraic extension field of Q, such that g ∼ f , and,

in case f is of type T 6= X9 of modality ≤ 2, then supp(jet(g, d)) = supp(T, d) where d is the
maximal filtration of f w.r.t. the standard grading.

1: Factorize jet(f, d) = cgα1 g
β
2 g

γ
3 g

δ
4 over C, where 0 6= c ∈ Q, g1, g2, g3 and g4 are monic in x

and pairwise coprime, and 4 ≥ α ≥ β ≥ γ ≥ δ ≥ 0.
2: if β, γ, δ = 0 then
3: if g1 6= c′y, c′ ∈ Q then
4: Replace f with g1 7→ x, y 7→ y applied to f .
5: else
6: Replace f with x 7→ y, y 7→ x applied to f .
7: if γ, δ = 0 then
8: Replace f with g1 7→ x and g2 7→ y applied to f .
9: if α = 2 and β, γ = 1 and δ = 0 then

10: if g1 6= c′y, c′ ∈ Q then
11: Replace f with g1 7→ x, y 7→ y applied to f .
12: else
13: Replace f with x 7→ y, y 7→ x applied to f .
14: Write f = a0x

4 + a1x
3y + a2x

2y2 +R, a0, a1 ∈ Q, a2 ∈ Q× and R ∈ E5.
15: Replace f with y 7→ y − a1

2a2
x, x 7→ x applied to f .

16: return f

Algorithm 4 Remove term via partials.

Input: f, f0 ∈ K[x, y] over a field K, with t a term of f , and weights u1, u2 ∈ Z2.
Output: g ∈ K[x, y] such that f ∼ g. If called with input as in Algorithms 2 or 5, then

f = g + t+ terms of higher (u1, u2) -degree than t.
1: mx := the sum of the terms of ∂f0∂x of lowest u2-degree
2: mx,y := the term of mx of lowest u1-degree
3: my := the sum of the terms of ∂f0∂y of lowest u1-degree
4: my,x := the term of my of lowest u2-degree
5: if mx,y|t then
6:

α : K[x, y] → K[x, y]

x 7→ x− t/mx,y

y 7→ y

7: return α(f)

8: if my,x|t then
9:

α : K[x, y] → K[x, y]

x 7→ x

y 7→ y − t/my,x

10: return α(f)

11: return f



A CLASSIFICATION ALGORITHM FOR COMPLEX SINGULARITIES 10

necessarily equal to supp(NF(T ),∆). We achieve equality by a weighted linear transformation.
In the cases where Γ(T ) has two faces, equality has already been achieved in Algorithm 2. Above
Γ(T ), we then use the method described in the proof of Lemma 19 to reduce f modulo Jac(f):
We iteratively apply Algorithm 4 to each term, in the two face case only considering terms in
Jac(f), proceeding weighted degree by weighted degree in increasing order (and in each weighted
degree according to a total (ordinary) degree ordering). Note that a term is in Jac(f) if and
only if it is in Jac(f0) for f0 = jet(f,Γ(T )). After handling a given weighted degree, if Arnold’s
system for type T contains a monomial m of this degree, we write the sum of the remaining
terms in the form

∂f0
∂x

v1 +
∂f0
∂y

v2 + cm,

where v1, v2 ∈ C[x, y] are weighted homogeneous, c ∈ C, and as
∂f0
∂x

v1 +
∂f0
∂y

v2,

otherwise. Applying x 7→ x− v1, y 7→ y− v2, results in replacing the sum of the remaining terms
by a sum of terms which are either in Arnold’s system in the w-degree under consideration, or of
higher w-degree. Since f is weighted d′-determined, we stop the iteration when we reach degree
d′ + 1, where d′ is the w-degree of the highest w-degree monomial in Arnold’s system.

Remark 22. In the semi-quasihomogeous cases, line 11 in Algorithm 5 can be omitted, since
the reduction modulo Jac(f) is also handled by lines 15 to 18.

Remark 23. In Algorithm 5, Arnold’s system can be replaced by any other choice of a system
of the local algebra.

Remark 24. The algebraic extension of Q introduced for representing the moduli parameters
can arise in two steps of the overall algorithm: Reversal of the linear jet in Algorithm 3, and
rescaling of the variables at the end of Algorithm 5. Note that the transformation reversing the
linear jet is obtained from the factorization jet(f, d) = cgα1 g

β
2 g

γ
3 g

δ
4. Here, a field extension can

only occur if α = β = 2 and γ = δ = 0.

4. A Classification Algorithm for Corank 2, Bimodal Singularities with
Degenerate Newton Boundary

In this section we give a classification algorithm for the singularities W ]
1,µ−15, where µ is the

Milnor number, in Arnold’s list. They have the property that in all coordinate systems the
Newton boundary is degenerate, which is the reason that they have to be treated separately.
They are of multiplicity 4 and the 4-jet is a 4-th power of a linear homogeneous polynomial.
After a suitable automorphism of C[[x, y]], we may assume that the corresponding polynomial is
of the form

f = (x2 + y3)2 +
∑

3i+2j≥12+d

wijx
iyj , d ≥ 1.

This automorphism was already constructed in the previous section. Singularities of this type
have been studied in Luengo and Pfister (1990). It is proved that the Milnor number satisfies
µ(f) ≥ 15 + d, and equality holds if and only if∑

3i+2j=12+d

(−1)[i/2]wij 6= 0.

If the Milnor number µ(f) = 15+d is even, then the germ of the curve defined by f is irreducible
with semi–group 〈4, 6, 12 + d〉. In the odd case, the curve has two branches. Let

f = (x2 + y3)2 +
∑

3i+2j>12

wijx
iyj

and assume µ := µ(f) <∞. Let > be the weighted degree reverse lexicographical ordering with
respect to the weights (3, 2) on C[[x, y]] with x > y.



A CLASSIFICATION ALGORITHM FOR COMPLEX SINGULARITIES 11

Algorithm 5 Determine the moduli parameters of a normal form equation of a corank 2 uni-
or bimodal singularities.

Input: f ∈ m3 ⊂ K[x, y], a germ of modality 1 or 2 and corank 2 of type T over an algebraic
extension field K of Q, as returned by Algorithm 2. In particular, the set of faces of Γ(T )

equals the set of faces of Γ(f).
Output: The normal form of f , as well as the values of all moduli parameters occuring in a

normal form equations that is equivalent to f , specified as elements of an algebraic extension
field of K.

1: if T = W ]
1,µ−15 for some µ then

2: return result of Algorithm 6 applied to f
3: w := w(T ) and d := d(T )

4: if Γ(T ) has exactly one face ∆ then
5: Apply a weighted homogeneous transformation to f such that supp(f,∆) = supp(T,∆).
6: d′ := highest w-degree of a monomial in Arnold’s system of T
7: f0 := w - jet(f, d)

8: for j = d+ 1, . . . , d′ do
9: for all terms t of f of w-degree j in increasing order by a total degree ordering do

10: if Γ(T ) has one face then
11: f := result of Algorithm 4 with input f , f0, t and (1, 1), (1, 1)

12: else
13: if t ∈ Jac(f0) then
14: f := result of Algorithm 4 with input f , f0, t and w2, w1

15: if exists monomial m of w-degree j in Arnold’s system then
16: Write w - jet(f, j)−w - jet(f, j − 1) = ∂f0

∂x v1 + ∂f0
∂y v2 + cm with c ∈ K, v1, v2 ∈ K[x, y]

weighted homogeneous.
17: else
18: Write w - jet(f, j) − w - jet(f, j − 1) = ∂f0

∂x v1 + ∂f0
∂y v2 with v1, v2 ∈ K[x, y] weighted

homogeneous.
19: Apply x 7→ x− v1, y 7→ y − v2 to f .
20: Delete all terms in f of w-degree > d′.
21: Apply transformation x 7→ ax, y 7→ by over an algebraic extension of K to transform the

non-parameter terms to the terms of NF(T ).
22: Read off the parameters ai.
23: return (NF(T ), (ai))

In Luengo and Pfister (1990) it is proved that in case of µ being even the leading ideal
of the Jacobian ideal 〈∂f∂x ,

∂f
∂y 〉 is generated by x3, x2y2, xy

µ−2
2 . If µ is odd, then the leading

ideal is generated by x3, x2y2, xy
µ−5
2 , y

µ+1
2 . We obtain a monomial basis of C[[x, y]]/〈∂f∂x ,

∂f
∂y 〉 as

{xiyi}(i,j)∈B with

B =
{

(i, j)
∣∣ i ≤ 2, j ≤ 1

}
∪
{

(i, j)

∣∣∣∣ i ≤ 1, 2 ≤ j ≤ µ− 4

2

}
in case that µ is even and

B =
{

(i, j)
∣∣ i ≤ 2, j ≤ 1

}
∪
{

(1, j)

∣∣∣∣ 2 ≤ j ≤ µ− 7

2

}
∪
{

(0, j)

∣∣∣∣ 2 ≤ j ≤ µ− 1

2

}
,

in case that µ is odd. Let

B1 := {(1, µ− 6

2
), (1,

µ− 4

2
)}



A CLASSIFICATION ALGORITHM FOR COMPLEX SINGULARITIES 12

if µ is even and

B1 := {0, µ− 3

2
), (0,

µ− 1

2
)}

if µ is odd.
In Luengo and Pfister (1990), the following theorem is proved.

Theorem 25. There exists an automorphism ϕ of C[[x, y]] such that

ϕ(f) = (x2 + y3)2 +
∑

(i,j)∈B1

wijx
iyj .

Note 26. In particular, it follows that these singularities are bimodal.

Remark 27. The normal form given in this way for the case that the Milnor number is odd
differs from Arnold’s normal form. Instead of y

µ−3
2 and y

µ−1
2 , he used the monomials x2y

µ−9
2

and x2y
µ−7
2 . From a computational point of view, our choice is better. It is easy to convert

our normal form to Arnold’s normal form. See Figure 5, for an illustration of the normal forms
(using our choice of parameter monomials).

The construction of the automorphism in the theorem is done separately for each weighted
degree: Assume we have already

f = (x2 + y3)2 +
∑

3i+2j≥12+a

wijx
iyj

for some a (with Milnor number µ = 15 + d). If a < d, then we have∑
3i+2j=12+a

(−1)[i/2]wij = 0.

This implies that ∑
3i+2j=12+a

wijx
iyj = l · (x2 + y3).

We obtain

f =

(
x2 + y3 +

1

2
l

)2

+
∑

3i+2j>12+a

w̃ijx
iyj

for suitable w̃ij ∈ C. Now we can choose an automorphism ϕ of C[[x, y]] such that

ϕ

(
x2 + y3 +

1

2
l

)
= x2 + y3 + terms of weighted degree ≥ µ

(note that we could even find an automorphism mapping x2 + y3 + 1
2 l to x

2 + y3). We obtain

ϕ(f) = (x2 + y3)2 +
∑

3i+2j>12+a

wijx
iyj

for suitable wij ∈ C.
If a = d then we have ∑

3i+2j=12+d

(−1)[i/2]wij 6= 0.

Similarly as before, we can write∑
3i+2j=12+d

wijx
iyj = wi0j0x

i0yj0 + l · (x2 + y3)

with

(i0, j0) =

{
(0, µ−32 ) if µ is odd
(1, µ−62 ) if µ is even.

Since the Milnor number is 15 +d, we obtain wi0,j0 6= 0. Using a similar automorphism as in the
previous case, we may assume with a0 := wi0,j0 (the first modulus), that

f = (x2 + y3)2 + a0 · xi0yj0 +
∑

3i+2j>12+d

wijx
iyj .



A CLASSIFICATION ALGORITHM FOR COMPLEX SINGULARITIES 13

Note, that 12 + d = µ − 3, and we have to compute the normal form of f up to degree µ − 1.
Now we can write ∑

3i+2j=13+d

wijx
iyj = e · xi1yj1 + l · (x2 + y3)

with

(i1, j1) =

{
(1, µ−52 ) if µ is odd
(0, µ−22 ) if µ is even.

Using an automorphism as before, we may assume that l = 0.
If e = 0, we are done with weighted degree µ− 2.
If e 6= 0 we define an automorphism ϕ of C[[x, y]] by the exponential of the vector field

δ = c · (3y2 ∂
∂x
− 2x

∂

∂y
)

with
c = (−1)µ−1

e

(µ− 3)a0
.

Since by construction, ϕ(x2 + y3) = x2 + y3, we obtain

ϕ(f) = (x2 + y3)2 + a0 · xi0yj0 +
∑

3i+2j≥14+d

w̃ijx
iyj

for suitable w̃ij ∈ C.

Remark 28. Note, that for practical purposes, we have to compute ϕ only up to weighted degree
5, and apply it to a0 · xi0yj0 +

∑
3i+2j=13+d

wijx
iyj since we know that ϕ((x2 + y3)2) = (x2 + y3)2.

Now let

(i1, j1) =

{
(0, µ−12 ) if µ is odd
(1, µ−42 ) if µ is even

and write ∑
3i+2j=14+d

w̃ijx
iyj = a1 · xi1yj1 + l · (x2 + y3).

Using an automorphism as in the first case, we may assume l = 0, and obtain as normal form

(x2 + y3)2 + a0x
i0yj0 + a1 · xi1yj1 .

We summarize the approach in Algorithm 6.

Remark 29. The approach described in Algorithm 5 in case of a non-degenerate Newton bound-
ary can be adapted to also handle the cases W ]

1,µ−15. However, this strategy requires more iter-
ations than Algorithm 6. To adapt Algorithm 5, we remove lines 1 and 2, and in line 11, we call
Algorithm 7 instead of Algorithm 4 if f is of type W ]

1,µ−15.
Note that, in these cases, Algorithm 2 does not require a field extension, hence, Algorithm 7

is called with input defined over Q. Note also, that Algorithm 7 is applicable with any choice of
a system B of the local algebra.

References

Arnold, V.I., 1974. Normal forms of functions in neighbourhoods of degenerate critical points.
Russ. Math. Surv. 29(2), 10-50.

Arnold, V.I., Gusein-Zade, S.M., Varchenko, A.N., 1985. Singularities of Differential Maps, Vol. I.
Birkhäuser, Boston.

Böhm, J., Marais, M., Steenpaß, A., 2015b. The classification of real singularities using Singular
Part III: Unimodal Singularities of Corank 2. http://arxiv.org/pdf/1512.09028v1.

Böhm, J., Marais, M., Pfister, G., 2016. classify2.lib. A Singular 4-0-2 library for classifying
isolated hypersurface singularities of corank and modality up to 2, and to determine the moduli
parameters. Singular distribution.

http://arxiv.org/pdf/1512.09028v1


A CLASSIFICATION ALGORITHM FOR COMPLEX SINGULARITIES 14

Algorithm 6 Algorithm to determine parameters for the bimodal singularities of type W ]
1,µ−15.

Input: f = γ · (αx2 + βy3)2+ terms of weighted (3, 2)-degree > 12 ∈ K[x, y] with α, β, γ ∈ K
and µ := µ(f) <∞.

Output: A normal form of f of the form

(x2 + y3)2 + a0 · xy
µ−6
2 + a1 · xy

µ−4
2 if µ is even

(x2 + y3)2 + a0 · y
µ−3
2 + a1 · y

µ−1
2 if µ is odd

with a0 6= 0, as well as the corresponding moduli parameters of a normal form equation
defined over an algebraic extension field of K.

1: Apply transformation x 7→ ax, y 7→ by over an algebraic extension field of K to f to transform
the weighted homogeneous part of f to (x2 + y3)2.

2: Let > be the local weighted degree reverse lexicographical ordering with weights (3, 2) and
x > y.

3: Compute a standard basis G of 〈∂f∂x ,
∂f
∂y 〉 with respect to >.

4: Compute µ the Milnor number of f , and set d := µ− 15.
5: a := 13

6: while a < 12 + d do
7: g := weighted homogeneous part of f of degree a
8: Write g = l · (x2 + y3).
9: Construct automorphism ϕ with ϕ(x2 + y3 + 1

2 l) = x2 + y3 up to degree µ− 1.
10: f := ϕ(f) , a := a+ 1

11: g := weighted homogenous part of f of degree 12 + d

12: if µ is odd then
13: m0 := y

µ−3
2 , m1 := xy

µ−5
2 , m2 := y

µ−1
2

14: else
15: m0 := xy

µ−6
2 , m1 := y

µ−2
2 , m2 := xy

µ−4
2

16: Write g = a0 ·m0 + l · (x2 + y3).
17: Construct automorphism ϕ with ϕ(x2 + y3 + 1

2 l) = x2 + y3 up to degree µ− 1.
18: f := ϕ(f)

19: g := weighted homogeneous part of ϕ of degree 13 + d

20: Write g = e ·m1 + l · (x2 + y3).
21: Construct automorphism ϕ with ϕ(x2 + y3 + 1

2 l) = x2 + y3 up to degree µ− 1.
22: f := ϕ(f)

23: if e 6= 0 then
24: c := (−1)µ−1 e

(µ−3)a
25: Construct automorphism ϕ defined by the vector field c · (3y2 ∂

∂x − 2x ∂
∂y ) up to degree 5.

26: f := (x2 + y3)2 + ϕ(f − (x2 + y3)2)

27: g := the weighted homogeneous part of f of degree 14 + d

28: Write g = a1 ·m2 + l · (x2 + y3).
29: return (NF(W ]

1,µ−15), (a0, a1))

Decker, W., Greuel, G.-M., Pfister, G., Schönemann, H., 2015. Singular 4-0-2 – A computer
algebra system for polynomial computations. http://www.singular.uni-kl.de

de Jong, T., Pfister, G., 2000. Local Analytic Geometry. Vieweg, Braunschweig.
Greuel, G.-M., Lossen, C., Shustin, E., 2007. Introduction to Singularities and Deformations.
Springer, Berlin.

Greuel, G.-M., Pfister, G., 2008. A Singular Introduction to Commutative Algebra, second ed.
Springer, Berlin.

http://www.singular.uni-kl.de


A CLASSIFICATION ALGORITHM FOR COMPLEX SINGULARITIES 15

Algorithm 7 Remove terms above the diagonal in cases with degenerate Newton boundary.

Input: f, f0 ∈ Q[x, y], t ∈ Q[x, y] a term, and weights u1, u2 ∈ Z2.
Output: h ∈ Q[x, y] such that f ∼ h.
1: w := w(f) and j := w - deg(t)

2: g := output of Algorithm 4 with input f , f0, t and u1, u2
3: B := Arnold’s system of Q[x, y]/ Jac(f)

4: if t ∈ Jac(f0) or g 6= f or (g = f and B contains an element of degree j) then
5: return g
6: m := monomial in B of minimal w-degree
7: Factorize f0 = γ · g20 over Q with γ ∈ Q and g0 ∈ Q[x, y] linear.
8: φ := automorphism defined by (∂g0∂y

∂
∂x −

∂g0
∂x

∂
∂y ) up to w -degree 5

9: s := coeff(f,m) ·m
10: t′ := w - jet(φ(s)− s, j)
11: for all terms t̃ of t′ in increasing order by standard degree do
12: t′ := −f0+ result of Algorithm 4 with input t′ + f0, f0, t̃ and u1, u2
13: t′ := w - jet(t′, j)

14: c := −t/t′
15: φc := automorphism defined by c · (∂g0∂y

∂
∂x −

∂g0
∂x

∂
∂y ) up to w -degree 5.

16: h := f0 + φc(f − f0)

17: for all terms t̃ of h of w-degree j in increasing order by standard degree do
18: h := result of Algorithm 4 with input h, f0, t̃ and u1, u2
19: return h

Krüger, K., 1997. classify.lib. A Singular 4-0-2 library for classifying isolated hypersurface
singularities w.r.t. right equivalence, based on the determinator of singularities by V.I. Arnold.
Singular distribution.

Luengo, I., Pfister, G., 1990: Normal forms and moduli spaces of curve singualrities with semi-
group <2p, 2q, 2pq+d>, Compositio Math. 76, 247-264.

Marais, M., Steenpaß, A., 2013. realclassify.lib. A Singular 4-0-2 library for classifying
isolated hypersurface singularities over the reals. Singular distribution.

Marais, M., Steenpaß, A., 2015a. The classification of real singularities using Singular Part I:
Splitting Lemma and Simple Singularities. J. Symb. Comput. 68, 61-71.

Marais, M., Steenpaß, A., 2016. The classification of real singularities using Singular Part
II: The Structure of the Equivalence Classes of the Unimodal Singularities. J. Symb. Com-
put. 74, 346-366.

Tobis, E., 2012. rootsur.lib. A Singular 4-0-2 library for counting the number of real roots
of a univariate polynomial.

Janko Böhm, Department of Mathematics, University of Kaiserslautern, Erwin-Schrödinger-
Str., 67663 Kaiserslautern, Germany

E-mail address: boehm@mathematik.uni-kl.de

Magdaleen S. Marais, University of Pretoria and African Institute for Mathematical Sciences,
Department of Mathematics and Applied Mathematics, Private bag X20, Hatfield 0028, South
Africa

E-mail address: magdaleen.marais@up.ac.za

Gerhard Pfister, Department of Mathematics, University of Kaiserslautern, Erwin-Schrödin-
ger-Str., 67663 Kaiserslautern, Germany

E-mail address: pfister@mathematik.uni-kl.de



A CLASSIFICATION ALGORITHM FOR COMPLEX SINGULARITIES 16

0

2

4

6

8

10

1 2 3 4 5 0

2

4

6

8

10

1 2 3 4 5 0

2

4

6

8

1 2 3 4 5

J3,0 Z1,0 W1,0

0

2

4

6

8

10

12

1 2 3 4 5 0

2

4

6

8

10

1 2 3 4 5 0

2

4

6

8

10

1 2 3 4 5

J3,p for p = 2 Z1,p for p = 2 W1,p for p = 2

Figure 1. Infinite series of bimodal corank 2 singularities with non-degenerate
Newton boundary.



A CLASSIFICATION ALGORITHM FOR COMPLEX SINGULARITIES 17

0

2

4

6

8

10

12

1 2 3 4 5 0

2

4

6

8

10

12

14

1 2 3 4 5 0

2

4

6

8

10

12

1 2 3 4 5

E18 E19 E20

Figure 2. Exceptional bimodal corank 2 singularities of type E.

0

2

4

6

8

10

1 2 3 4 5 0

2

4

6

8

10

1 2 3 4 5 0

2

4

6

8

10

1 2 3 4 5

Z17 Z18 Z19

Figure 3. Exceptional bimodal corank 2 singularities of type Z.



A CLASSIFICATION ALGORITHM FOR COMPLEX SINGULARITIES 18

0

2

4

6

8

1 2 3 4 5 0

2

4

6

8

1 2 3 4 5

W17 W18

Figure 4. Exceptional bimodal corank 2 singularities of type W.

0

2

4

6

8

1 2 3 4 5 6 7 0

2

4

6

8

10

2 4 6 8

W ]
1,2q−1 for q = 2 W ]

1,2q for q = 2

Figure 5. Infinite series of bimodal corank 2 singularities with degenerate New-
ton boundary.


	1. Introduction
	2. Definitions and Preliminary Results
	3. A Classification Algorithm for Corank 2 Complex Simple, Unimodal and Bimodal Singularities 
	4. A Classification Algorithm for Corank 2, Bimodal Singularities with Degenerate Newton Boundary
	References

