UNIMODULAR ICIS, A CLASSIFIER

DEEBA AFZAL, FARKHANDA AFZAL, SIDRA MUBARAK, GERHARD PFISTER, AND ASAD YAQUB

Abstract

We present the algorithms for computing the normal form of unimodular complete intersection surface singularities classified by C. T. C. Wall. He indicated in the list only the μ-constant strata and not the complete classification in each case. We give a complete list of surface unimodular singularities. We also give the description of a classifier which is implemented in computer algebra system Singular .

1. Introduction

In this article we report about a classifier for unimodular isolated complete intersection surface singularities in the computer algebra system Singular (cf. [DGPS13],[GP07]). Marc Giusti gave the complete list of simple isolated complete intersection singularities which are not hypersurfaces (cf. [GM83]). Wall achieved the classification of unimodular singularities which are not hypersurfaces (cf. [Wal83]). Two of the authors described Giusti's classification in terms of certain invariants. Based on this description it is not necessary to compute the normal form for finding the type of the singularity. This is usually more complicated and may be space and time consuming (cf. [ADPG1], [ADPG2]). Similarly the type of singularities in terms of certain invariants (Milnor number, Tjurina number and semi groups) for unimodular isolated complete intersection space curve singularities given by C. T. C. Wall is characterized [ADPG3].

A basis for a classifier is a complete list of these singularities together with a list of invariants characterizing them. Since Wall gave only representatives of the μ constant strata in his classification (cf. [Wal83]), we complete his list by computing the versal μ-constant deformation of the singularities. The new list obtained in this way contains all unimodular complete intersection surface singularities.

In section 2 we characterize the 2 -jet of the unimodular complete intersection singularities using primary decomposition, Krull dimension and Hilbert polynomials. In section 3 we give the complete list of unimodular complete intersection surface singularities by fixing the 2 -jet of the singularities and develop algorithms for each case. In section 4 we give the main algorithm for computing the type of unimodular complete intersection surface singularity.

[^0]
2. Characterization of normal form of 2-Jet of Singularities

Consider $I=\left\langle f_{1}, f_{2}\right\rangle \subseteq\langle x, y, z, w\rangle^{2} \mathbb{C}[[x, y, z, w]]$ defining a complete intersection singularity and let I_{2} be the 2 -jet of I. According to C.T.C. Wall's classification the 2-jet of $\left\langle f_{1}, f_{2}\right\rangle$ is a homogenous ideal generated by 2 polynomials of degree 2. We want to give a description of the type of a singularity without producing the normal form. C.T.C. Wall's classification is based on the classification of the 2 -jet I_{2} of $\langle f, g\rangle$. Let $\bigcap_{i=1}^{s} Q_{i}$ be the irredundant primary decomposition of I_{2} in $\mathbb{C}[[x, y, z, w]]$. Let t be the number of prime ideals appearing in primary decomposition of I_{2} and j_{i} be the number of conjugates corresponding to each prime ideal. Let $d_{i}=\operatorname{dim}_{\mathbb{C}} \mathbb{C}[[x, y, z, w]] / Q_{i}, i=1, \ldots, s$ and h_{i} be the Hilbert polynomial of $\mathbb{C}[[x, y, z, w]] / Q_{i}$. According to C.T.C. Wall's classification we obtain unimodular singularities only in the following cases.

Name	Characterization	Normal form
$T_{2,2,2,2}$	$\begin{gathered} s=1 \\ d_{1}=2, h_{1}=4 t \\ t=1, j_{1}=1, j_{2}=1 \end{gathered}$	$\left\langle x^{2}+y^{2}+z^{2}, y^{2}+\lambda z^{2}+w^{2}\right\rangle \lambda \neq 0,1$
$\begin{gathered} T_{p, 2,2,2} \\ p>2 \end{gathered}$	$\begin{gathered} s=1 \\ d_{1}=2, h_{1}=4 t \\ t=1, j_{1}=1 \end{gathered}$	$\left\langle x y+z^{2}+w^{2}, z w+y^{2}\right\rangle$
$\begin{gathered} T_{p, q, 2,2} \\ p, q>2 \end{gathered}$	$\begin{gathered} s=2 \\ d_{1}=d_{2}=2 \\ h_{1}=h_{2}=1+2 t \end{gathered}$	$\left\langle x y+z^{2}+w^{2}, z w\right\rangle$
$\begin{gathered} T_{p, q, r, 2} \\ p, q, r>2 \\ \\ \\ T_{p, q, r, s} \\ p, q, r, s>2 \\ \hline \end{gathered}$	$\begin{gathered} s=3 \\ d_{1}=d_{2}=d_{3}=2 \\ h_{1}=h_{2}=1+t, h_{3}=1+2 t \\ t=3, j_{1}=j_{2}=j_{3}=1 \end{gathered}$ $Q_{3} \nsubseteq Q_{1}+Q_{2}$ and Q_{3} has a generator of order 2 $\begin{gathered} s=4, d_{1}=d_{2}=d_{3}=d_{4}=2 \\ h_{1}=h_{2}=h_{3}=h_{4}=1+t \end{gathered}$	$\left\langle x y+w^{2}, z w\right\rangle$ $\langle x y, z w\rangle$
I	$\begin{gathered} s=4, d_{1}=d_{2}=d_{3}=d_{4}=1 \\ h_{1}=h_{2}=h_{3}=h_{4}=1+t \end{gathered}$	$\langle x y-x z, y z-y x\rangle$
J^{\prime}	$\begin{gathered} s=1 \\ d_{1}=2, h_{1}=4 t \\ t=1, j_{1}=1 \end{gathered}$ A_{2} after blowing up	$\left\langle x y+z^{2}, w^{2}+x z\right\rangle$
K	$\begin{gathered} s=1 \\ d_{1}=2, h_{1}=4 t \\ t=1, j_{1}=2 \end{gathered}$	$\left\langle x y+z^{2}, w^{2}+x^{2}\right\rangle$
L	$\begin{gathered} s=2, d_{1}=d_{2}=2 \\ h_{1}=1+t, h_{2}=1+3 t \end{gathered}$	$\left\langle x y+z^{2}, w^{2}+x z\right\rangle$
M	$\begin{gathered} s=3, d_{1}=d_{2}=d_{3}=2 \\ h_{1}=h_{2}=1+t, h_{3}=1+2 t \\ t=3, j_{1}=j_{2}=j_{3}=1 \end{gathered}$ $Q_{3} \subseteq Q_{1}+Q_{2}$ and Q_{3} has a generator of order 2	$\left\langle w y+x^{2}-z^{2}, w x\right\rangle$

Table 1. Charecterization table of normal forms of $2-j e t$ of I

[^1]
3. Unimodular complete intersection surface singularities

We set

$$
l_{i}(x, y)= \begin{cases}x y^{q}, & \text { if } i=2 q \\ y^{q+2}, & \text { if } i=2 q+1\end{cases}
$$

for brevity.
3.1. I singularities. Assume the $2-j e t$ of $<\langle f, g\rangle$ has normal form $\langle x y-x z, y z-$ $x y\rangle$. In this case according to C.T.C.Wall's classification the unimodular surface singularities with their Milnor number say μ and Tjurina number τ are given in the table below.

Name	Normal form	μ	τ
$I_{1,0}$	$\left\langle x(y-z)+w^{3}, y(z-x)+\lambda w^{3}\right\rangle \lambda \neq 0,1$	13	13
$I_{1, i}$	$\left\langle x(y-z)+w^{3}, y(z-x)+w^{2} l_{i-1}(x, w)\right\rangle$	$13+i$	$13+i-2$

TABLE 2

Proposition 3.1. The unimodular complete intersection surface singularity with Milnor number $\mu=13$ are $I_{1,0}$ with Tjurina number $\tau=13$ defined by the ideal

$$
\left\langle x y-x z+w^{3}, y z-x y+\lambda w^{3}\right\rangle
$$

and $I_{1,0,1}$ with Tjurina number $\tau=12$ defined by the ideal

$$
\left\langle x y-x z+w^{3}, y z-x y+\lambda w^{3}+w^{4}\right\rangle .
$$

Proof. In the list of C.T.C. Wall $I_{1,0}$ is the singularity defined by the ideal

$$
\left\langle x y-x z+w^{3}, y z-x y+\lambda w^{3}\right\rangle
$$

with Milnor number $\mu=13$ and Tjurina number $\tau=13$. The versal deformation of $I_{1,0}$ is given by

$$
\begin{aligned}
& \left\langle x y-x z+w^{3}+t_{1} z w+t_{2} w+t_{3} z+t_{4}, y z-x y+\lambda w^{3}+\lambda_{1} w^{4}\right. \\
& \left.\quad+\lambda_{2} w^{3}+\lambda_{3} w^{2}+\lambda_{4} z w+\lambda_{5} y w+\lambda_{6} w+\lambda_{7} z+\lambda_{8} y+\lambda_{9}\right\rangle .
\end{aligned}
$$

$I_{1,0}$ defines a weighted homogenous singularity with weights, $\left(w_{1}, w_{2}, w_{3}, w_{4}\right)=$ $(6,6,6,4)$ and the degrees $\left(d_{1}, d_{2}\right)=(12,12)$. The versal μ-constant deformation of $I_{1,0}$ is given by

$$
\left\langle x y-x z+w^{3}, y z-x y+\lambda w^{3}+\lambda_{1} w^{4}\right\rangle
$$

Using the coordinate change $x \rightarrow \xi^{6} x, y \rightarrow \xi^{6} y, z \rightarrow \xi^{6} z, w \rightarrow \xi^{4} w$. We obtain

$$
\left\langle x y-x z+w^{3}, y z-x y+\lambda w^{3}+\lambda_{1} \xi^{4} w^{4}\right\rangle .
$$

Choosing ξ such that $\lambda_{1} \xi^{4}=1$. So we obtain

$$
\left\langle x y-x z+w^{3}, y z-x y+\lambda w^{3}+w^{4}\right\rangle
$$

with Tjurina number $\tau=12$ different from $I_{1,0}$.

Summarizing the results of the above preposition we complete the list of unimodular complete intersection singularities in case of $\langle f, g\rangle$ having 2 -jet with normal forms $\langle x y-x z, y z-x y\rangle$.

Type	Normalform	μ	τ
$I_{1,0,1}$	$\left\langle x y-x z+w^{3}, y z-x y+\lambda w^{3}+w^{4}\right\rangle$	13	12

TABLE 3

Proposition 3.2. Let $(V(\langle f, g\rangle), 0) \subseteq\left(\mathbb{C}^{4}, 0\right)$ be the germ of a complete intersection surface singularity. Assume it is not a hypersurface singularity and the 2 -jet of $\langle f, g\rangle$ has normal form $\langle x y-x z, y z-x y\rangle .(V(\langle f, g\rangle), 0)$ is unimodular if and only if it is isomorphic to a complete intersection in Tables 2 and 3.

Proof. The proof is a direct consequence of C.T.C. Wall's classification and Propositions 3.1.

We summarize our approach in this case in Algorithm 1

```
Algorithm 1 Isingularity (I)
Input: \(I=\langle f, g\rangle \subseteq\langle x, y, z, w\rangle^{2} \mathbb{C}[[x, y, z, w]]\) such that 2-jet of \(I\)
    has normal form \(\langle x y-x z, y z-x y\rangle\)
Output: the type of the singularity
    compute \(\mu=\) Milnor number of \(I\);
    compute \(\tau=\) Tjurina number of \(I\);
    compute \(B=\) the singularity type of the strict transform of \(I\) in the blowing up
    of \(\langle x, y, z, w\rangle^{2}\)
    if \(\mu=13\) and \(B=A[1]\) then
        if \(\mu-\tau=0\) then
            return \(\left(I_{1,0}\right)\);
        if \(\mu-\tau=1\) then
            return ( \(I_{1,0,1}\) );
    if \(\mu=13+i, i>0\) and \(B=A[i+1]\) then
        if \(\mu-\tau=2\) then
            return \(\left(I_{1, i}\right)\);
    return (not unimodular);
```

Name	Normal form	μ	τ
$T_{2,2,2,2}$	$\left\langle x^{2}+y^{2}+z^{2}, y^{2}+z^{2}+w^{2}\right\rangle$	7	7
$T_{p, q, r, s}$	$\left\langle x y+z^{2}+w^{2}, z w+x^{2}+y^{2}\right\rangle$	$p+q+r+s-1$	$p+q+r+s-2$
$p>2, q, r, s \geq 2$			

TABLE 4

[^2]3.2. T singularities. Assume the $2-j e t$ of $\langle f, g\rangle$ has normal form $\left\langle x^{2}+y^{2}+\right.$ $\left.z^{2}, y^{2}+z^{2}+w^{2}\right\rangle,\left\langle x y+z^{2}+w^{2}, z w+y^{2}\right\rangle,\left\langle x y+z^{2}+w^{2}, z w\right\rangle$ or $\langle x y, z w\rangle$. In this case according to C.T.C.Wall's classification the unimodular surface singularities with Milnor number μ and Tjurina number τ are given in the table 4 above.

```
Algorithm 2 Tsingularity (I)
Input: \(I=\langle f, g\rangle \subseteq\langle x, y, z, w\rangle^{2} \mathbb{C}[[x, y, z, w]]\) such that the2-jet of \(I\) has normal
    form \(\langle x y, z w\rangle,\left\langle x y+z^{2}+w^{2}, z w+x^{2}+y^{2}\right\rangle,\left\langle x y+z^{2}+w^{2}, z w+y^{2}\right\rangle,\left\langle x y+z^{2}+w^{2}, z w\right\rangle\)
Output: the type of the singularity
    compute \(\mu=\) Milnor number of \(I ; \tau=\) Tjurina number of \(I\) and \(B=\) the singu-
    larity type of the strict transform of \(I\) in the blowing up of \(\langle x, y, z, w\rangle\)
    if \(\mu=\tau\) and 2 -jet has normal form \(\left\langle x y+z^{2}+w^{2}, z w+x^{2}+y^{2}\right\rangle\) and \(\mathrm{B}=1\) then
        return \(\left(T_{2,2,2,2}\right)\);
    if \(\mu-\tau=1\) then
        if 2-jet has normal form \(<\left\langle x y+z^{2}+w^{2}, z w+y^{2}\right\rangle\) then
            if \(\mu=8\) and \(B=1\) then
            return \(\left(T_{3,2,2,2}\right)\);
            if \(\mu>8\) and \(B=A[\mu-8]\) then
            return ( \(T_{\mu-5,2,2,2}\) );
        if 2-jet has normal form \(\left\langle x y+z^{2}+w^{2}, z w\right\rangle\) then
            if \(B=1\) then
                return ( \(T_{3,2,3,2}\) );
            if \(B=A[r-3]\) and \(r>3\) then
                return ( \(T_{3,2, r, 2}\) );
            if \(B=A[p-3], A[r-3]\) and \(p, r>3\) then
            return ( \(T_{p, 2, r, 2}\) );
        if 2-jet has normal form \(<\left\langle x y+w^{2}, z w\right\rangle\) then
            if \(B=1\) then
                return ( \(T_{3,3,3,2}\) );
            if \(B=A[r-3]\) and \(r>3\) then
                return \(\left(T_{3,3, r, 2}\right)\);
            if \(B=A[q-3], A[r-3]\) and \(q, r>3\) then
                return \(\left(T_{3, q, r, 2}\right)\);
            if \(B=A[p-3], A[q-3], A[r-3]\) and \(p, q, r>3\) then
                return \(\left(T_{p, q, r, 2}\right)\);
        if 2 -jet has normal form \(\langle x y, z w\rangle\) then
            if \(B=1\) then
                return ( \(T_{3,3,3,3}\) );
            if \(B=A[s-3]\) and \(s>3\) then
                return ( \(T_{3,3,3, s}\) );
            if \(B=A[r-3], A[s-3]\) and \(r, s>3\) then
                return \(\left(T_{3,3, r, s}\right)\);
            if \(B=A[q-3] A[r-3], A[s-3]\) and \(q, r, s>3\) then
                return \(\left(T_{3, q, r, s}\right)\);
            if \(B=A[p-3], A[q-3], A[r-3], A[s-3]\) and \(p, q, r, s>3\) then
                return ( \(T_{p, q, r, s}\) );
    return (not unimodular);
```

3.3. \mathbf{J}^{\prime} singularities. Assume the $2-j e t$ of $\langle f, g\rangle$ has normal form $\left\langle x y+z^{2}, w^{2}+\right.$ $x z\rangle$. According to C.T.C. Wall's classification the unimodular surface singularities are given in the following table

Name	Normal Form	μ	τ
$J_{6 m+9}^{\prime}$	$\left\langle x y+z^{2}, x z+w^{2}+y^{3 m+3}\right\rangle$	$6 m+9$	$6 m+9$
$J_{6 m+10}^{\prime}$	$\left\langle x y+z^{2}, w^{2}+x z+z y^{2 m+2}\right\rangle$	$6 m+10$	$6 m+10$
$J_{6 m+11}^{\prime}$	$\left\langle x y+z^{2}, w^{2}+x z+y^{3 m+4}\right\rangle$	$6 m+11$	$6 m+11$
$J_{m+1,0}^{\prime}$	$\left\langle x y+z^{2}, w^{2}+x z+z^{2} y^{m}+\lambda y^{3 m+2}\right\rangle \lambda \neq 0,-4 / 27$	$6 m+7$	$6 m+7$
$J_{m+1, i}^{\prime}$	$\left\langle x y+z^{2}, w^{2}+x z+z^{2} y^{m}+y^{3 m+2-i}\right\rangle$	$6 m+7+i$	$6 m+5+i$

Table 5

Proposition 3.3. The unimodular complete intersection surface singularities having Milnor number of the form $\mu=6 m+9$ where m is a positive integer are $J_{6 m+9}^{\prime}$ with Tjurina number $\tau=6 m+9$ defined by the ideal

$$
\left\langle x y+z^{2}, x z+w^{2}+y^{3 m+3}\right\rangle
$$

and $J_{6 m+9, i+1}^{\prime}$ with Tjurina number $\tau=6 m+8-i$ are defined by the ideal

$$
\left\langle x y+z^{2}, x z+w^{2}+y^{3 m+3}+z y^{3 m+2-i}\right\rangle \text { for } i=0,1, \ldots, m .
$$

Proof. In C.T.C. Wall's list the only unimodular complete intersection surface singularities are the singularities $J_{6 m+9}^{\prime}$ defined by the ideal

$$
\left\langle x y+z^{2}, x z+w^{2}+y^{3 m+3}\right\rangle .
$$

The versal deformation of $J_{6 m+9}^{\prime}$ is given by
$\left\langle x y+z^{2}+A w+B z+C, w^{2}+x z+y^{3 m+3}+\sum_{i=0}^{3 m+2} \alpha_{i} y^{3 m+2-i} z+\sum_{i=0}^{3 m+2} \beta_{i} y^{3 m+2-i}\right\rangle$.
$J_{6 m+9}^{\prime}$ defines a weighted homogenous isolated complete intersection singularity with weights

$$
\left(w_{1}, w_{2}, w_{3}, w_{4}\right)=(12 m+10,6,6 m+8,9 m+9)
$$

and degrees

$$
\left(d_{1}, d_{2}\right)=(12 m+16,18 m+18) .
$$

The versal μ-constant deformation of $J_{6 m+9}^{\prime}$ is

$$
\left\langle x y+z^{2}, w^{2}+x z+y^{3 m+3}+\sum_{i=0}^{m} \alpha_{i} y^{3 m+2-i} z\right\rangle
$$

Consider $\phi \in A u t_{\mathbb{C}}(\mathbb{C}[[x, y, z, w]])$ defined by $\phi(x)=\epsilon^{12 m+10} x, \phi(y)=\epsilon^{6} y, \phi(z)=$ $\epsilon^{6 m+8} z$ and $\phi(w)=\epsilon^{9 m+9} w$. If $\alpha_{m} \neq 0$, then we can write I as

$$
I=\left\langle x y+z^{2}, w^{2}+x z+y^{3 m+3}+y^{2 m+2} z\left(\sum_{i=0}^{m-1} \alpha_{i} y^{m-i}+\alpha_{m}\right)\right\rangle .
$$

Let $\mu_{m-1}=\sum_{i=0}^{m-1} \alpha_{i} y^{m-i}+\alpha_{m}$. Then I can be written

$$
I=\left\langle x y+z^{2}, w^{2}+x z+y^{3 m+3}+y^{2 m+2} z \mu_{m}\right\rangle .
$$

By applying the transformation ϕ we get

$$
\left\langle x y+z^{2}, w^{2}+x z+y^{3 m+3}+\epsilon^{2} y^{2 m+2} z \mu_{m-1}^{\prime}\right\rangle
$$

Choosing ε such that $\varepsilon^{2} \mu_{m-1}^{\prime}=1$, we obtain

$$
\left\langle x y+z^{2}, x z+w^{2}+y^{3 m+3}+y^{2 m+2} z\right\rangle .
$$

Now we assume that $\alpha_{m}=0$. This implies that

$$
I=\left\langle x y+z^{2}, w^{2}+x z+y^{3 m+3}+y^{2 m+3} z\left(\sum_{i=0}^{m-2} \alpha_{i} y^{m-1-i}+\alpha_{m-1}\right)\right\rangle
$$

Let $\mu_{m-2}=\sum_{i=0}^{m-2} \alpha_{i} y^{m-1-i}+\alpha_{m-1}$ then we can have

$$
I=\left\langle x y+z^{2}, w^{2}+x z+y^{3 m+3}+y^{2 m+3} z \mu_{m-2}\right\rangle
$$

Now applying the transformation ϕ we get I as

$$
\left\langle x y+z^{2}, w^{2}+x z+y^{3 m+3}+\epsilon^{6} y^{2 m+3} z \mu_{m-2}^{\prime}\right\rangle
$$

Choosing ε such that $\varepsilon^{6} \mu_{m-2}^{\prime}=1$, so we obtain

$$
\left\langle x y+z^{2}, x z+w^{2}+y^{3 m+3}+y^{2 m+3} z\right\rangle .
$$

Now we assume $\alpha_{m-1}=0$. Iterating in the same way we get $m+1$ different singularities defined by

$$
\left\langle x y+z^{2}, w^{2}+x z+y^{3 m+3}+y^{3 m+2-i} z\right\rangle
$$

for $i=0,1, \ldots, m$ and $m \geq 1$.
Proposition 3.4. The unimodular complete intersection surface singularities having Milnor number of the form $\mu=6 m+10$ where m is a positive integer are $J_{6 m+10}^{\prime}$ with Tjurina number $\tau=6 m+10$ defined by the ideal

$$
\left\langle x y+z^{2}, x z+w^{2}+z y^{2 m+2}\right\rangle
$$

and $J_{6 m+10, i+1}^{\prime}$ with Tjurina numbers $6 m+10-i$ is defined by the ideal

$$
\left\langle x y+z^{2}, x z+w^{2}+z y^{2 m+2}+y^{4 m+4-i}\right\rangle \text { for } i=0,1, \ldots, m .
$$

Proposition 3.5. The unimodular complete intersection surface singularities having Milnor number of the form $\mu=6 m+11$ where m is a positive integer are $J_{6 m+11}^{\prime}$ with Tjurina number $\tau=6 m+11$ defined by the ideal

$$
\left\langle x y+z^{2}, w^{2}+x z+y^{3 m+4}\right\rangle
$$

and $J_{6 m+11, i+1}^{\prime}$ with Tjurina number $6 m+10-i$ is defined by the ideal

$$
\left\langle x y+z^{2}, w^{2}+x z+y^{3 m+4}+y^{3 m+3-i}\right\rangle \text { for } i=0,1, \ldots, m .
$$

Proof. The proofs of Propositions 3.4 and 3.5 can be done similarly to the proof of Proposition 3.3.

Summarizing the above results we have the following table

Type	NormalForm	μ	τ
$J_{6 m+9, i+1}^{\prime}$	$\left\langle x y+z^{2}, x y+z^{2}+y^{3 m+3}+z y^{3 m+2-i}\right\rangle$	$6 m+9$	$6 m+8-i$
$J_{6 m+10, i+1}^{\prime}$	$\left\langle x y+z^{2}, w^{2}+x z+z y^{2 m+2}+y^{4 m+4-i}\right\rangle$	$6 m+10$	$6 m+9-i$
$J_{6 m+11, i+1}^{\prime}$	$\left\langle x y+z^{2}, w^{2}+x z+y^{3 m+4}+y^{3 m+3-i} z\right\rangle$	$6 m+11$	$6 m+10-i$
	for $i=0,1, \ldots, m$.		

TABLE 6

As a consequence of C.T.C. Wall's classification and Propositions 3.3-3.5 we obtain:

Proposition 3.6. Let $(V(\langle f, g\rangle), 0) \subseteq\left(\mathbb{C}^{4}, 0\right)$ be the germ of a complete intersection surface singularity. Assume it is not a hypersurface singularity and the 2 -jet of $\langle f, g\rangle$ has normal form $\left\langle x y+z 2, w^{2}+x z\right\rangle .(V(\langle f, g\rangle), 0)$ is unimodular if and only if it is isomorphic to a complete intersection in Tables 5 and 6.

We summarize our approach in this case in Algorithm 3.

```
Algorithm 3 J'singularity (I)
Input: \(I=\langle f, g\rangle \subseteq\langle x, y, z, w\rangle^{2} \mathbb{C}[[x, y, z, w]]\) such that 2-jet of \(I\)
    has normal form \(\left\langle x y+z^{2}, w^{2}+x z\right\rangle\)
Output: the type of the singularity
    compute \(\mu=\) Milnor number of \(I, \tau=\) Tjurina number of \(I\) and \(B=\) the singu-
    larity type of the strict transform of \(I\) in the blowing up of \(\langle x, y, z, w\rangle\)
    if \(\mu \equiv 3 \bmod 6\) and \(B=E[(\mu-15)+6]\) then
        if \(\mu=\tau\) then
            return \(\left(J_{\mu}^{\prime}\right)\);
        else
            return \(\left(J_{\mu, \mu-\tau}^{\prime}\right)\);
    if \(\mu \equiv 4 \bmod 6\) and \(B=E[(\mu-16)+7]\) then
        if \(\mu=\tau\) then
            return \(\left(J_{\mu}^{\prime}\right)\);
        else
            return \(\left(J_{\mu, \mu-\tau}^{\prime}\right)\);
    if \(\mu \equiv 5 \bmod 6\) and \(B=E[(\mu-17)+6]\) then
        if \(\mu=\tau\) then
            return \(\left(J_{\mu}^{\prime}\right)\);
        else
            return \(\left(J_{\mu, \mu-\tau}^{\prime}\right)\);
    if \(\mu \equiv 1 \bmod 6\) and \(B=J[(\mu-13) / 6,0]\) and \(\mu=\tau\) then
        return \(\left(J_{(\mu-7) / 6+1,0}^{\prime}\right)\);
    if \(\mu \neq \tau\) and \(B=J[(\mu-13) / 6, \mu-\tau-1]\) then
        return \(\left(J_{(\mu-7) / 6+1, \mu-\tau-1}^{\prime}\right)\);
    return not unimodular;
```

3.4. \mathbf{K}^{\prime} singularities. Assume the $2-j e t$ of $\langle f, g\rangle$ has normal form $\left\langle x y+z^{2}, w^{2}+\right.$ $\left.x^{2}\right\rangle$. In this case according to C.T.C.Wall's classification the unimodular surface singularities with Milnor number μ are given in the table below.

Name	Normalform	μ	τ
K_{10}^{\prime}	$x y+z^{2}, w^{2}+x^{2}+y^{3}$	10	10
K_{11}^{\prime}	$x y+z^{2}, x^{2}+w^{2}+z y^{2}$	11	11
$K_{1,0}^{\prime}$	$x y+z^{2}, x^{2}+w^{2}+z^{2} y+\lambda y^{4}\left(\lambda \neq 0, \frac{1}{4}\right)$	13	13
$K_{1, i}^{\prime}$	$x y+z^{2}, x^{2}+w^{2}+z^{2} y+y^{4+i}$	$13+i$	$13+i-2$
$K_{1, i}^{b}$	$x y+z^{2}, x^{2}+w^{2}+2 z^{2} y+y^{4}+z y I_{i}(z, y)$	$13+i$	$13+i-2$
K_{15}^{\prime}	$x y+z^{2}, x^{2}+w^{2}+z y^{3}$	15	15
K_{16}^{\prime}	$x y+z^{2}, x^{2}+w^{2}+y^{5}$	16	16

Table 7

Proposition 3.7. The unimodular complete intersection surface singularities with Milnor number $\mu=10$ are K_{10}^{\prime} with Tjurina number $\tau=10$ defined by the ideal

$$
\left\langle x y+z^{2}, w^{2}+x^{2}+y^{3}\right\rangle
$$

and $K_{10,1}^{\prime}$ with Tjurina number $\tau=9$ defined by the ideal

$$
\left\langle x y+z^{2}, w^{2}+x^{2}+y^{3}+y z^{2}\right\rangle
$$

Proof. In the list of C.T.C Wall K_{10}^{\prime} is the singularity defined by the ideal

$$
\left\langle x y+z^{2}, w^{2}+x^{2}+y^{3}\right\rangle
$$

with Milnor number $\mu=10$ and Tjurina number $\tau=10$. The versal deformation of K_{10}^{\prime} is
$\left\langle x y+z^{2}+t_{1} w+t_{2} y+t_{3}, x^{2}+w^{2}+y^{3}+\lambda_{1} y z^{2}+\lambda_{2} z^{2}+\lambda_{3} y z+\lambda_{4} z+\lambda_{5} y^{2}+\lambda_{6} y+\lambda_{7}\right\rangle$.
K_{10}^{\prime} defines a weighted homogenous isolated complete intersection singularity with

$$
\left(w_{1}, w_{2}, w_{3}, w_{4}\right)=(6,4,5,6) \text { and the degrees }\left(d_{1}, d_{2}\right)=(10,12)
$$

The versal μ-constant deformation of $K_{10,1}^{\prime}$ is given by $\left\langle x y+z^{2}, w^{2}+x^{2}+y^{3}+\lambda_{1} y z^{2}\right\rangle$. Using the coordinate change $x \rightarrow \xi^{6} x, y \rightarrow \xi^{4} y, z \rightarrow \xi^{5} z$ and $w \rightarrow \xi^{6} w$, we obtain

$$
\left\langle x y+z^{2}, w^{2}+x^{2}+y^{3}+\lambda_{1} \xi^{2} y z^{2}\right\rangle .
$$

Choosing ξ such that $\lambda_{1} \xi^{2}=1$, we obtain

$$
\left\langle x y+z^{2}, w^{2}+x^{2}+y^{3}+y z^{2}\right\rangle
$$

with Tjurina number $\tau=9$.
Proposition 3.8. The unimodular complete intersection surface singularities with Milnor number $\mu=11$ are K_{11}^{\prime} with Tjurina number $\tau=11$ defined by the ideal

$$
\left\langle x y+z^{2}, x^{2}+w^{2}+z y^{2}\right\rangle
$$

and $K_{11,1}^{\prime}$ with Tjurina number $\tau=10$ defined by the ideal

$$
\left\langle x y+z^{2}, x^{2}+w^{2}+z y^{2}+y^{5}\right\rangle .
$$

Proof. The proof of Proposition 3.8 can be done similarly to the proof of Proposition 3.7.

Proposition 3.9. The unimodular complete intersection surface singularities with Milnor number $\mu=13$ are $K_{1,0}^{\prime}$ with Tjurina number $\tau=13$ defined by the ideal

$$
\left\langle x y+z^{2}, x^{2}+w^{2}+z^{2} y+\lambda y^{4}\right\rangle, \quad \lambda \neq 0, \frac{1}{4}
$$

$K_{1,0,1}^{\prime}$ with Tjurina number $\tau=12$ defined by the ideal

$$
\left\langle x y+z^{2}, x^{2}+w^{2}+z^{2} y+\lambda y^{4}+y^{5}\right\rangle
$$

Proof. In C.T.C's Wall list $K_{1,0}^{\prime}$ is the singularity defined by the ideal

$$
\left\langle x y+z^{2}, x^{2}+w^{2}+z^{2} y+\lambda y^{4}\right\rangle \quad \lambda \neq 0, \frac{1}{4}
$$

with Milnor number $\mu=13$ and Tjurina number $\tau=13$. The versal deformation of $K_{1,0}^{\prime}$ is given by

$$
\begin{aligned}
& \left\langle x y+z^{2}+t_{1} w+t_{2} y+t_{3}, x^{2}+w^{2}+z^{2} y+\lambda y^{4}+\lambda_{1} z^{2}+\lambda_{2} y^{2} z\right. \\
& \left.+\lambda_{3} y z+\lambda_{4} z+\lambda_{5} y^{5}+\lambda_{6} y^{4}+\lambda_{7} y^{3}+\lambda_{8} y^{2}+\lambda_{9} y+\lambda_{10}\right\rangle
\end{aligned}
$$

$K_{1,0}^{\prime}$ defines a weighted homogenous isolated complete intersection singularity with weights

$$
\left(w_{1}, w_{2}, w_{3}, w_{4}\right)=(4,2,3,4)
$$

and the degrees

$$
\left(d_{1}, d_{2}\right)=(6,8)
$$

The versal μ-constant deformation of $K_{1,0}^{\prime}$ is given by

$$
\left\langle x y+z^{2}, x^{2}+w^{2}+z^{2} y+\lambda y^{4}+\lambda_{5} y^{5}\right\rangle
$$

Using the coordinate change $x \rightarrow \xi^{4} x, y \rightarrow \xi^{2} y, z \rightarrow \xi^{3} z, w \rightarrow \xi^{4} w$, we obtain

$$
\left\langle x y+z^{2}, x^{2}+w^{2}+z^{2} y+\lambda y^{4}+\lambda_{5} \xi^{2} y^{5}\right\rangle .
$$

Choosing ξ such that $\lambda_{5} \xi^{2}=1$ we obtain

$$
\left\langle x y+z^{2}, x^{2}+w^{2}+z^{2} y+\lambda y^{4}+y^{5}\right\rangle
$$

with Tjurina number $\tau=12$.
Proposition 3.10. The unimodular complete intersection surface singularities with Milnor number $\mu=15$ are K_{15}^{\prime} with Tjurina number $\tau=15$ defined by the ideal

$$
\left\langle x y+z^{2}, x^{2}+w^{2}+z y^{3}\right\rangle
$$

and $K_{15,1}^{\prime}$ with Tjurina number $\tau=14$ defined by the ideal

$$
\left\langle x y+z^{2}, x^{2}+w^{2}+z y^{2}+y^{6}\right\rangle
$$

and $K_{15,2}^{\prime}$ with Tjurina number $\tau=13$ defined by the ideal

$$
\left\langle x y+z^{2}, x^{2}+w^{2}+z y^{3}+y^{5}\right\rangle .
$$

Proof. In C.T.C. Wall's list K_{15}^{\prime} is the singularity defined by the ideal

$$
\left\langle x y+z^{2}, x^{2}+w^{2}+z y^{3}\right\rangle .
$$

with Milnor number $\mu=15$ and Tjurina number $\tau=15$. The versal deformation of K_{15}^{\prime} is given by

$$
\begin{aligned}
& \left\langle x y+z^{2}+t_{1} w+t_{2} y+t_{3}, x^{2}+w^{2}+z y^{2}+\lambda_{1} y z^{2}+\lambda_{2} z^{2}+\lambda_{3} y z\right. \\
& \left.\quad+\lambda_{4} z+\lambda_{5} y^{6}+\lambda_{6} y^{5}+\lambda_{7} y^{4}+\lambda_{8} y^{3}+\lambda_{9} y^{2}+\lambda_{10} y+\lambda_{11}\right\rangle .
\end{aligned}
$$

K_{15}^{\prime} defines a weighted homogenous isolated complete intersection singularity with weights

$$
\left(w_{1}, w_{2}, w_{3}, w_{4}\right)=(7,3,5,7)
$$

and the degrees

$$
\left(d_{1}, d_{2}\right)=(10,14)
$$

The versal μ-constant deformation of K_{15}^{\prime} is given by

$$
\left\langle x y+z^{2}, x^{2}+w^{2}+z y^{3}+\lambda_{5} y^{6}+\lambda_{6} y^{5}\right\rangle .
$$

If $\lambda_{6} \neq 0$ then

$$
I=\left\langle x y+z^{2}, x^{2}+w^{2}+z y^{3}+u y^{5}\right\rangle, \text { where } u=\lambda_{5} y+\lambda_{6} .
$$

Using coordinate change such that $x \rightarrow \xi^{7} x, y \rightarrow \xi^{3} y, z \rightarrow \xi^{5} z$ and $w \rightarrow \xi^{7} w$ we may assume

$$
I=\left\langle x y+z^{2}, x^{2}+w^{2}+z y^{3}+\xi \bar{u} y^{5}\right\rangle .
$$

Choosing ξ such that $\xi \bar{u}=1$ we obtain

$$
I=\left\langle x y+z^{2}, x^{2}+w^{2}+z y^{3}+y^{5}\right\rangle
$$

with Tjurina number $\tau=13$. If $\lambda_{6}=0$ then again applying the same coordinate change we obtain

$$
I=\left\langle x y+z^{2}, x^{2}+w^{2}+z y^{3}+y^{6}\right\rangle
$$

by choosing $\lambda_{5} \xi^{4}=1$ with Tjurina number $\tau=14$.
Proposition 3.11. The unimodular complete intersection surface singularities with Milnor number $\mu=16$ are K_{16}^{\prime} with Tjurina number $\tau=16$ defined by the ideal

$$
\left\langle x y+z^{2}, x^{2}+w^{2}+y^{5}\right\rangle
$$

$K_{16,1}^{\prime}$ with Tjurina number $\tau=15$ defined by the ideal

$$
\left\langle x y+z^{2}, x^{2}+w^{2}+y^{5}+z^{2} y^{3}\right\rangle .
$$

and $K_{16,2}^{\prime}$ with Tjurina number $\tau=14$ defined by the ideal

$$
\left\langle x y+z^{2}, x^{2}+w^{2}+y^{5}+z^{2} y^{2}\right\rangle
$$

Proof. The proof of Proposition 3.11 can be done similarly to the proof of Proposition 3.10.

Summarizing the results of the above propositions we complete the list of unimodular complete intersection singularities in case of $\langle f, g\rangle$ having 2-jet with normal forms $\left\langle x y+z^{2}, w^{2}+x^{2}\right\rangle$.

Type	Normalform	μ	τ
$K_{10,1}^{\prime}$	$\left(x y+z^{2}, w^{2}+x^{2}+y^{3}+y z^{2}\right)$	10	9
$K_{11,1}^{\prime}$	$\left(x y+z^{2}, w^{2}+x^{2}+z y^{2}+y^{5}\right)$	11	10
$K_{1,0,1}^{\prime}$	$\left(x y+z^{2}, w^{2}+x^{2}+y z^{2}+\lambda y^{4}+y^{5}\right)$	13	12
$K_{1,1}^{\prime}$	$\left(x y+z^{2}, w^{2}+x^{2}+z y^{3}+y^{6}\right)$	15	14
$K_{15,2}^{\prime}$	$\left(x y+z^{2}, w^{2}+x^{2}+z y^{3}+y^{5}\right)$	15	13
$K_{16,1}^{\prime}$	$\left(x y+z^{2}, w^{2}+x^{2}+y^{5}+y^{3} z^{2}\right)$	16	15
$K_{16,2}^{\prime}$	$\left(x y+z^{2}, w^{2}+x^{2}+y^{5}+y^{2} z^{2}\right)$	16	14

TABLE 8

Proposition 3.12. Let $(V(\langle f, g\rangle), 0) \subseteq\left(\mathbb{C}^{4}, 0\right)$ be the germ of a complete intersection surface singularity. Assume it is not a hypersurface singularity and the 2-jet of $\langle f, g\rangle$ has normal form $\left\langle x y+z^{2}, w^{2}+x^{2}\right\rangle$. $(V(\langle f, g\rangle), 0)$ is unimodular if and only if it is isomorphic to a complete intersection in Tables 7 and 8.

Proof. The proof is a direct consequence of C.T.C. Wall's classification and Propositions 3.7-3.11

Proposition 3.13. Let $(\mathbf{V}(\langle f, g\rangle), 0) \subseteq\left(\mathbb{C}^{4}, 0\right)$ be the germ of a complete intersection surface singularity. Assume it is not hypersurface singularity and the two jet of $\langle f, g\rangle$ has normal form $\left\langle x y+z^{2}, w^{2}+x z\right\rangle . \mathbf{V}(\langle f, g\rangle, 0)$ is unimodular if and only if it is isomorphic to a complete intersection in table 3.

We summarize our approach in this case in Algorithm 4.

```
Algorithm 4 K singularity (I)
Input: \(I=\langle f, g\rangle \subseteq\langle x, y, z, w\rangle^{2} \mathbb{C}[[x, y, z, w]]\) such that 2-jet of \(I\)
    has normal form \(\left(x y+z^{2}, w^{2}+x^{2}\right)\)
Output: the type of the singularity
    compute \(\mu=\) Milnor number of \(I\);
    compute \(\tau=\) Tjurina number of \(I\);
    compute \(B=\) the singularity type of the strict transform of \(I\) in the blowing up
    of \(\langle x, y, z, w\rangle\)
    if \(\mu=10\) and \(B=1\) then
        if \(\mu=\tau\) then
            return \(\left(K_{10}^{\prime}\right)\);
        if \(\mu-\tau=1\) then
            return \(\left(K_{10,1}^{\prime}\right)\);
    if \(\mu=11\) and \(B=A[1]\) then
        if \(\mu=\tau\) then
            return ( \(K_{11}^{\prime}\) );
        if \(\mu-\tau=1\) then
            return ( \(K_{11,1}^{\prime}\) );
    if \(\mu=13\) and \(B=A[3]\) then
        if \(\mu=\tau\) then
            return ( \(K_{1,0}^{\prime}\) );
        if \(\mu-\tau=1\) then
            return \(\left(K_{1,0,1}^{\prime}\right)\);
    if \(\mu=15\) and \(B=D[5]\) then
        if \(\mu=\tau\) then
            return ( \(K_{15}^{\prime}\) );
        if \(\mu-\tau=1\) then
            return \(\left(K_{15,1}^{\prime}\right)\);
        if \(\mu-\tau=2\) then
            return \(\left(K_{15,2}^{\prime}\right)\);
    if \(\mu=16\) and \(B=E[6]\) then
        if \(\mu=\tau\) then
            return ( \(K_{16}^{\prime}\) );
        if \(\mu-\tau=1\) then
            return ( \(K_{16,1}^{\prime}\) );
        if \(\mu-\tau=2\) then
            return \(\left(K_{16,2}^{\prime}\right)\);
    if \(\mu \neq \tau\) then
        if \(\mu-\tau=2\) and \(\mu>13\) then
            if \(B=D[\mu-10]\) then
                return \(\left(K_{1, \mu-13}^{\prime}\right)\);
            if \(B=A[\mu-10]\) then
            return \(\left(K_{1, \mu-13}^{b}\right)\);
    return (not unimodular);
```

3.5. L singularities. Assume the $2-j e t$ of $\langle f, g\rangle$ has normal form $\left\langle w z+x y, y^{2}+\right.$ $x z\rangle$. According to C.T.C. Wall's classification the unimodular singularities are given in the table.

Type	Normal form	μ	τ
L_{10}	$\left\langle w z+x y, y^{2}+x z+w^{3}\right\rangle$	10	10
L_{11}	$\left\langle w z+x y, y^{2}+x z+x w^{2}\right\rangle$	11	11
$L_{1,0}$	$\left\langle w z+x y, y^{2}+x z+x^{2} w+\lambda w^{4}\right\rangle$	11	11
L_{15}	$\left\langle w z+x y, y^{2}+x z+x w^{3}\right\rangle$	15	16
L_{16}	$\left\langle w z+x y, y^{2}+x z+w^{5}\right\rangle$	16	16

Table 9

Proposition 3.14. The unimodular complete intersection surface singularity with Milnor number $\mu=10$ and Tjurina number $\tau=10$ is L_{10} defined by the ideal

$$
\left\langle w z+x y, y^{2}+x z+w^{3}\right\rangle
$$

and $L_{10,1}$ with Tjurina number $\tau=9$ is defined by the ideal

$$
\left\langle w z+x y, y^{2}+x z+w^{3}+y w^{2}\right\rangle
$$

Proof. In C.T.C. Wall's list the only unimodular complete intersection singularity with Milnor number $\mu=10$ is the singularity L_{10} defined by the ideal $\left(w z+x y, y^{2}+\right.$ $x z+w^{3}$). The versal deformation of the above singularity is given by
$\left\langle x y+z w+H w^{2}+I w+J, y^{2}+x z+w^{3}+A y w^{2}+B w^{2}+C y w+D w+E z+F y+G\right\rangle$.
L_{10} defines a weighted homogenous isolated complete intersection singularity with weights

$$
\left(w_{1}, w_{2}, w_{3}, w_{4}\right)=(5,6,7,4)
$$

and degrees

$$
\left(d_{1}, d_{2}\right)=(11,12)
$$

The versal μ-constant deformation of L_{10} is

$$
\left\langle w z+x y, y^{2}+x z+w^{3}+A y w^{2}\right\rangle .
$$

Using the coordinate change

$$
x \rightarrow \varepsilon^{5} x, y \rightarrow \varepsilon^{6} y, z \rightarrow \varepsilon^{7} z \text { and } w \rightarrow \varepsilon^{4} w
$$

we obtain

$$
\left\langle w z+x y, y^{2}+x z+w^{3}+\varepsilon^{2} A^{\prime} y w^{2}\right\rangle
$$

Take ε such that $\varepsilon^{2} A^{\prime}=1$ then we obtain

$$
\left\langle w z+x y, y^{2}+x z+w^{3}+y w^{2}\right\rangle .
$$

Proposition 3.15. The unimodular complete intersection surface singularity with Milnor number $\mu=11$ and Tjurina number $\tau=11$ is L_{11} defined by the ideal

$$
\left\langle w z+x y, y^{2}+x z+x w^{2}\right\rangle
$$

and $L_{11,1}$ with Tjurina number $\tau=10$ is defined by the ideal

$$
\left\langle w z+x y, y^{2}+x z+x w^{2}+w^{4}\right\rangle .
$$

Proof. The proof of Proposition 3.15 can be done similarly to the proof of Proposition 3.14.
Proposition 3.16. The unimodular complete intersection surface singularity with Milnor number $\mu=13$ and with Tjurina number $\tau=13$ is $L_{1,0}$ defined by the ideal

$$
\left\langle w z+x y, y^{2}+x z+x^{2} w+\lambda y^{4}\right\rangle, \lambda \neq 0,-1
$$

and $L_{1,0,1}$ with Tjurina number $\tau=12$ is defined by the ideal

$$
\left\langle w z+x y, y^{2}+x z+x^{2} w+\lambda w^{4}+w^{5}\right\rangle
$$

Proof. In C.T.C. Wall's list the only unimodular complete intersection singularity with Milnor number 13 is the singularity $L_{1,0}$ defined by the ideal

$$
\left\langle w z+x y, y^{2}+x z+x^{2} w+\lambda w^{4}\right\rangle, \lambda \neq 0,-1
$$

The versal deformation of the above singularity is given by

$$
\begin{aligned}
& \left\langle x y+z w+J w^{3}+K w^{2}+L w+M, y^{2}+x z+x^{2} w+\lambda w^{4}+A w^{5}\right. \\
& \left.\quad+B w^{4}+C w^{3}+D w^{2}+E y w+F w++G z+H y+I\right\rangle
\end{aligned}
$$

$L_{1,0}$ defines a weighted homogenous isolated complete intersection singularity with weights

$$
\left(w_{1}, w_{2}, w_{3}, w_{4}\right)=(3,4,5,2)
$$

and degrees

$$
\left(d_{1}, d_{2}\right)=(7,8)
$$

The versal μ-constant deformation of $L_{1,0}$ is

$$
\left\langle w z+x y, y^{2}+x z+x^{2} w+\lambda w^{4}+A w^{5}\right\rangle .
$$

Now using the coordinate change $x \rightarrow \varepsilon^{3} x, y \rightarrow \varepsilon^{4} y, z \rightarrow \varepsilon^{5} z$ and $w \rightarrow \varepsilon^{2} w$. We obtain

$$
\left\langle w z+x y, y^{2}+x z+x^{2} w+\lambda w^{4}+\varepsilon^{2} A^{\prime} w^{5}\right\rangle
$$

Choosing ε such that $\varepsilon^{2} A^{\prime}=1$. We obtain

$$
\left\langle w z+x y, y^{2}+x z+x^{2} w+\lambda w^{4}+w^{5}\right\rangle
$$

with Tjurina number $\tau=9$.
Proposition 3.17. The unimodular complete intersection surface singularity with Milnor number $\mu=15$ and with Tjurina number $\tau=15$ is L_{15} defined by the ideal

$$
\left\langle w z+x y, y^{2}+x z+x w^{3}\right\rangle
$$

$L_{15,1}$ with Tjurina number $\tau=14$ is defined by the ideal

$$
\left\langle w z+x y, y^{2}+x z+x w^{3}+w^{6}\right\rangle
$$

and $L_{15,2}$ with Tjurina number $\tau=13$ is defined by the ideal

$$
\left\langle w z+x y, y^{2}+x z+x w^{3}+w^{5}\right\rangle
$$

Proof. In C.T.C. Wall's list the only unimodular complete intersection singularity with Milnor number $\mu=15$ is the singularity L_{15} defined by the ideal

$$
\left\langle w z+x y, y^{2}+x z+x w^{3}\right\rangle .
$$

The versal deformation of the above singularity is given by

$$
\begin{aligned}
& \left\langle x y+z w+L w^{3}+M w^{2}+N w+O, y^{2}+x z+x w^{3}+A w^{6}+B w^{5}\right. \\
& \left.\quad+C w^{4}+D w^{3}+E w^{2} y+F w^{2}+G y w+H w+I z+J y+K\right\rangle .
\end{aligned}
$$

L_{15} defines a weighted homogenous isolated complete intersection singularity with weights

$$
\left(w_{1}, w_{2}, w_{3}, w_{4}\right)=(5,7,9,3)
$$

and degrees

$$
\left(d_{1}, d_{2}\right)=(12,14)
$$

The versal μ-constant deformation of L_{15} is

$$
\left\langle w z+x y, y^{2}+x z+x w^{3}+A w^{6}+B w^{5}\right\rangle .
$$

Let $B \neq 0$,

$$
\left\langle x y+w z, y^{2}+x z+x w^{3}+w^{5}(A w+B)\right\rangle .
$$

Let $\mu_{B}=A w+B$, Now using the coordinate change $x \rightarrow \varepsilon^{5} x, y \rightarrow \varepsilon^{7} y, z \rightarrow \varepsilon^{9} z$ and $w \rightarrow \varepsilon^{3} w$, we obtain

$$
\left\langle w z+x y, y^{2}+x z+x w^{3}+\varepsilon \mu_{B}^{\prime} w^{5}\right\rangle .
$$

Choosing ε such that $\varepsilon \mu_{B}^{\prime}=1$. So we obtain

$$
\left\langle w z+x y, y^{2}+x z+x w^{3}+w^{5}\right\rangle
$$

with Tjurina number $\tau=13$. Now we if $B=0$ then it becomes

$$
\left\langle w z+x y, y^{2}+x z+x w^{3}+A w^{6}\right\rangle .
$$

Now using again the same coordinate change we obtain

$$
\left\langle w z+x y, y^{2}+x z+x w^{3}+\varepsilon^{4} A^{\prime} w^{6}\right\rangle
$$

Choosing ε such that $\varepsilon^{4} A^{\prime}=1$ so we obtain

$$
\left\langle w z+x y, y^{2}+x w^{3}+w^{6}\right\rangle
$$

with Tjurina number $\tau=14$.
Proposition 3.18. The unimodular complete intersection surface singularity with Milnor number $\mu=16$ and Tjurina number $\tau=16$ is L_{16} defined by the ideal

$$
\left\langle w z+x y, y^{2}+x z+w^{5}\right\rangle
$$

$L_{16,1}$ with Tjurina number $\tau=15$ is defined by the ideal

$$
\left\langle w z+x y, y^{2}+x z+w^{5}+y w^{4}\right\rangle
$$

and and $L_{16,2}$ with Tjurina number $\tau=14$ is defined by the ideal

$$
\left\langle w z+x y, y^{2}+x z+w^{5}+y w^{3}\right\rangle .
$$

Summarizing the above results we have the following table.

Name	Normal form	μ	τ
$L_{10,1}$	$\left\langle w z+x y, y^{2}+x z+w^{3}+y w^{2}\right\rangle$	10	9
$L_{11,1}$	$\left\langle x y+z w, y^{2}+x z+x w^{2}+w^{4}\right\rangle$	11	10
$L_{1,0,1}$	$\left\langle x y+z w, y^{2}+x z+x^{2} w+w^{4}+w^{5}\right\rangle$	13	12
$L_{15,1}$	$\left\langle x y+z w, y^{2}+x z+x w^{3}+w^{6}\right\rangle$	15	14
$L_{15,2}$	$\left\langle x y+z w, y^{2}+x z+x w^{3}+w^{5}\right\rangle$	15	13
$L_{16,1}$	$\left\langle x y+z w, y^{2}+x z+w^{5}+y w^{4}\right\rangle$	16	15
$L_{16,2}$	$\left\langle x y+z w, y^{2}+x z+w^{5}+y w^{3}\right\rangle$	16	14

Table 10

Proposition 3.19. Let $(V(\langle f, g\rangle), 0) \subseteq\left(\mathbb{C}^{4}, 0\right)$ be the germ of a complete intersection surface singularity. Assume it is not a hypersurface singularity and the 2-jet of $\langle f, g\rangle$ has normal form $\left\langle w z+x y, y^{2}+x z\right\rangle$. $(V(\langle f, g\rangle), 0)$ is unimodular if and only if it is isomorphic to a complete intersection in Tables 9 and 10.

```
Algorithm 5 Lsingularity (I)
Input: \(I=\langle f, g\rangle \in\langle x, y, z, w\rangle^{2} \mathbb{C}[[x, y, z, w]]\) such that 2-jet of \(I\)
    has normal form \(\left\langle w z+x y, y^{2}+x z+w^{3}\right\rangle\)
Output: the type of the singularity
    1: compute \(\mu=\) Milnor number of \(I, \tau=\) Tjurina number of \(I\) and \(B=\) the singu-
    larity type of the strict transform of \(I\) in the blowing up of \(\langle x, y, z, w\rangle\)
    if \(\mu=10\) and \(B=1\) then
        if \(\mu=\tau\) then
            return \(\left(L_{10}\right)\);
        if \(\mu-\tau=1\) then
            return \(\left(L_{10,1}\right)\);
    if \(\mu=11\) and \(B=A[1]\) then
        if \(\mu=\tau\) then
        return ( \(L_{11}\) );
        if \(\mu-\tau=1\) then
            return ( \(L_{11,1}\) );
    if \(\mu=13\) and \(B=A[3]\) then
        if \(\mu=\tau\) then
        return \(\left(L_{1,0}\right)\);
        if \(\mu-\tau=1\) then
        return \(\left(L_{1,0,1}\right)\);
    if \(\mu=15\) and \(B=D[5]\) then
        if \(\mu=\tau\) then
        return ( \(L_{15}\) );
        if \(\mu-\tau=1\) then
            return ( \(L_{15,1}\) );
        if \(\mu-\tau=2\) then
        return ( \(L_{15,2}\) );
    if \(\mu=16\) and \(B=E[6]\) then
        if \(\mu=\tau\) then
        return \(\left(L_{16}\right)\);
        if \(\mu-\tau=1\) then
        return ( \(L_{16,1}\) );
        if \(\mu-\tau=2\) then
        return ( \(L_{16,2}\) );
    if \(\mu-\tau=2\) and \(\mu>13\) then
        if \(B=D[\mu-10]\) then
            return ( \(L_{1, \mu-13}\) );
        if \(B=A[\mu-10]\) then
        return ( \(L_{1, \mu-13}^{b}\) );
    return (not unimodular);
```

3.6. \mathbf{M} singularities. Assume the $2-j e t$ of $\langle f, g\rangle$ has normal form $\left\langle w y+x^{2}-\right.$ $\left.z^{2}, w x\right\rangle$. In this case According to C.T.C.Wall's classification the unimodular surface singularities with Milnor number μ are given in the table below.

Name	Normal form	μ	τ
M_{11}	$\left\langle w y+x^{2}-z^{2}, w x+y^{3}\right\rangle$	11	11
$M_{1,0}$	$\left\langle w y+x^{2}-z^{2}, w x+y^{2} x+\lambda y^{2} z\right\rangle$	13	13
$M_{1, i}$	$\left\langle w y+x^{2}-z^{2}, w x+y^{2} x+z I_{i+1}(z, y)\right\rangle$	$13+i$	$13+i-2$
M_{15}	$\left\langle w y+x^{2}-z^{2}, w x+y^{4}\right\rangle$	15	15

Table 11

Proposition 3.20. The unimodular complete intersection surface singularities with Milnor number $\mu=11$ are M_{11} with Tjurina number $\tau=11$ defined by the ideal

$$
\left\langle w y+x^{2}-z^{2}, w x+y^{3}\right\rangle
$$

and $M_{11,1}$ with Tjurina number $\tau=10$ defined by the ideal

$$
\left\langle w y+x^{2}-z^{2}, w x+y^{3}+y^{2} w\right\rangle .
$$

Proof. In C.T.C. Wall's list M_{11} is the singularity defined by the ideal

$$
\left\langle w y+x^{2}-z^{2}, w x+y^{3}\right\rangle
$$

with Milnor number $\mu=11$ and Tjurina number $\tau=11$. The versal deformation of M_{11} is
$\left\langle w y+x^{2}-z^{2}+t_{1} y^{2}+t_{2} y+t_{3}, w x+y^{3}+\lambda_{1} y^{2} w+\lambda_{2} y w+\lambda_{3} w+\lambda_{4} y z+\lambda_{5} z+\lambda_{6} y^{2}+\lambda_{7} y+\lambda_{8}\right\rangle$.
M_{11} defines a weighted homogenous isolated complete intersection singularity with weights

$$
\left(w_{1}, w_{2}, w_{3}, w_{4}\right)=(4,3,4,5)
$$

and the degrees

$$
\left(d_{1}, d_{2}\right)=(8,9)
$$

The versal μ-constant deformation of M_{11} is given by

$$
\left\langle w y+x^{2}-z^{2}, w x+y^{3}+\lambda_{1} y^{2} w\right\rangle .
$$

Using the coordinate change $x \rightarrow \xi^{4} x, y \rightarrow \xi^{3} y, z \rightarrow \xi^{4} z$ and $w \rightarrow \xi^{5} w$ we obtain

$$
\left\langle w y+x^{2}-z^{2}, w x+y^{3}+\lambda_{1} \xi y^{2} w\right\rangle .
$$

Choosing ξ such that $\lambda_{1} \xi=1$ we obtain

$$
\left\langle w y+x^{2}-z^{2}, w x+y^{3}+y^{2} w\right\rangle
$$

with different Tjurina number $\tau=10$ from M_{11}.
Proposition 3.21. The unimodular complete intersection surface singularities with Milnor number $\mu=13$ are $M_{1,0}$ with Tjurina number $\tau=13$ defined by the ideal

$$
\left\langle w y+x^{2}-z^{2}, w x+y^{2} x+\lambda y^{2} z\right\rangle
$$

$M_{1,0,1}$ with Tjurina number $\tau=12$ defined by the ideal

$$
\left\langle w y+x^{2}-z^{2}, w x+y^{2} x+\lambda y^{2} z+y^{3} z\right\rangle .
$$

Proof. In the list of C.T.C Wall $M_{1,0}$ is the singularity defined by the ideal

$$
\left\langle w y+x^{2}-z^{2}, w x+y^{2} x+\lambda y^{2} z\right\rangle
$$

with Milnor number $\mu=13$ and Tjurina number $\tau=13$. The versal deformation of $M_{1,0}$ is

$$
\begin{gathered}
\left\langle w y+x^{2}-z^{2}+t_{1} y^{2}+t_{2} y+t_{3}, w x+y^{2} x+\lambda^{2} z+\lambda_{1} y w+\lambda_{2} w\right. \\
\left.+\lambda_{3} y^{3} z+\lambda_{4} y^{2} z+\lambda_{5} y z+\lambda_{6} z+\lambda_{7} y^{3}+\lambda_{8} y^{2}+\lambda_{9} y+\lambda_{10}\right\rangle .
\end{gathered}
$$

$M_{1,0}$ defines a weighted homogenous isolated complete intersection singularity with weights

$$
\left(w_{1}, w_{2}, w_{3}, w_{4}\right)=(6,4,6,8)
$$

and the degrees

$$
\left(d_{1}, d_{2}\right)=(12,14)
$$

The versal μ-constant deformation of $M_{1,0}$ is given by

$$
\left\langle w y+x^{2}-z^{2}, w x+y^{2} x+\lambda y^{2} z+\lambda_{3} y^{3} z\right\rangle
$$

Using the coordinate change $x \rightarrow \xi^{6} x, y \rightarrow \xi^{4} y, z \rightarrow \xi^{6} z, w \rightarrow \xi^{8} w$ we obtain

$$
\left\langle w y+x^{2}-z^{2}, w x+y^{2} x+\lambda y^{2} z+\lambda_{3} \xi^{4} y^{3} z\right\rangle .
$$

Choosing ξ such that $\lambda_{3} \xi^{4}=1$

$$
\left\langle w y+x^{2}-z^{2}, w x+y^{2} x+\lambda y^{2} z+y^{3} z\right\rangle .
$$

with Tjurina number $\tau=12$.
Proposition 3.22. The unimodular complete intersection surface singularities with Milnor number $\mu=15$ are M_{15} with Tjurina number $\tau=15$ defined by the ideal

$$
\left\langle w y+x^{2}-z^{2}, w x+y^{4}\right\rangle
$$

$M_{15,1}$ with Tjurina number $\tau=14$ defined by the ideal

$$
\left\langle w y+x^{2}-z^{2}, w x+y^{4}+y^{2} w\right\rangle
$$

and $M_{15,2}$ with Tjurina number $\tau=13$ defined by the ideal

$$
\left\langle w y+x^{2}-z^{2}, w x+y^{4}+y^{3} w\right\rangle .
$$

Proof. In the list of C.T.C Wall M_{15} is the singularity defined by the ideal

$$
\left\langle w y+x^{2}-z^{2}, w x+y^{4}\right\rangle
$$

with Milnor number $\mu=15$ and Tjurina number $\tau=15$. The versal deformation of M_{15} is

$$
\begin{aligned}
& \left\langle w y+x^{2}-z^{2}+t_{1} y^{2}+t_{2} y+t_{3}, w x+y^{4}+\lambda_{1} y^{3} w+\lambda_{2} y^{2} w+\lambda_{3} y w\right. \\
& \left.\quad+\lambda_{4} w+\lambda_{5} y^{2} z+\lambda_{6} y z+\lambda_{7} z+\lambda_{8} y^{3}+\lambda_{9} y^{2}+\lambda_{10} y+\lambda_{11}\right\rangle .
\end{aligned}
$$

M_{15} defines a weighted homogenous isolated complete intersection singularity with weights

$$
\left(w_{1}, w_{2}, w_{3}, w_{4}\right)=(5,3,5,7)
$$

and the degrees

$$
\left(d_{1}, d_{2}\right)=(10,12)
$$

The versal μ-constant deformation of M_{15} is given by

$$
\left\langle w y+x^{2}-z^{2}, w x+y^{4}+\lambda_{1} y^{3} w+\lambda_{2} y^{2} w\right\rangle
$$

If $\lambda_{2} \neq 0$ then we have

$$
I=\left\langle w y+x^{2}-z^{2}, w x+y^{4}+u y^{2} w\right\rangle
$$

where $u=\lambda_{1} y+\lambda_{2}$. Using the coordinate change $x \rightarrow \xi^{6} x, y \rightarrow \xi^{4} y, z \rightarrow \xi^{6} z$ and $w \rightarrow \xi^{8} w$ we obtain

$$
\left\langle w y+x^{2}-z^{2}, w x+y^{4}+u \xi y^{2} w\right\rangle
$$

Choosing $u \xi^{2}=1$ we obtain

$$
\left\langle w y+x^{2}-z^{2}, w x+y^{4}+y^{2} w\right\rangle
$$

with Tjurina number $\tau=14$. If $\lambda_{2}=0$ then again by the same transformation we obtain

$$
\left\langle w y+x^{2}-z^{2}, w x+y^{4}+y^{3} w\right\rangle
$$

with Tjurina number $\tau=13$ by choosing $\lambda_{1} \xi^{2}=1$.
Summarizing the results of the above prepositions we complete the list of unimodular complete intersection singularities in case of $\langle f, g\rangle$ having 2-jet with normal forms $\left\langle w y+x^{2}-z^{2}, w x\right\rangle$.

Type	Normalform	μ	τ
$M_{11,1}$	$\left\langle w y+x^{2}-z^{2}, w x+y^{3}+y^{2} w\right\rangle$	11	10
$M_{1,0,1}$	$\left\langle w y+x^{2}-z^{2}, w x+y^{2} x+\lambda y^{2} z+y^{3} z\right\rangle$	13	12
$M_{15,1}$	$\left\langle w y+x^{2}-z^{2}, w x+y^{4}+y^{3} w\right\rangle$	15	14
$M_{15,2}$	$\left\langle w y+x^{2}-z^{2}, w x+y^{4}+y^{2} w\right\rangle$	15	13

Table 12

Proposition 3.23. Let $(V(\langle f, g\rangle), 0) \subseteq\left(\mathbb{C}^{4}, 0\right)$ be the germ of a complete intersection surface singularity. Assume it is not a hypersurface singularity and the 2-jet of $\langle f, g\rangle$ has normal form $\left\langle w y+x^{2}-z^{2}, w x\right\rangle$. $(V(\langle f, g\rangle), 0)$ is unimodular if and only if it is isomorphic to a complete intersection in Tables 11 and 12.

Proof. The proof is a direct consequence of C.T.C. Wall's classification and Propositions 3.20-3.22

We summarize our approach in this case in Algorithm 6.

```
Algorithm 6 Msingularity(I)
Input: \(I=\langle f, g\rangle \subseteq\langle x, y, z, w\rangle^{2} \mathbb{C}[[x, y, z, w]]\) such that 2-jet of \(I\)
    has normal form \(\left\langle 2 w y+x^{2}-z^{2}, 2 w x\right\rangle\)
Output: the type of the singularity
    compute \(\mu=\) Milnor number of \(I\);
    compute \(\tau=\) Tjurina number of \(I\);
    compute \(B=\) the singularity type of the strict transform of \(I\) in the blowing up
    of \(\langle x, y, z, w\rangle\)
    if \(\mu=11\) and \(B=1\) then
        if \(\mu=\tau\) then
        return ( \(M_{11}\) );
        if \(\mu-\tau=1\) then
            return ( \(M_{11,1}\) );
    if \(\mu=13\) and \(B=A[1]\) then
        if \(\mu=\tau\) then
        return \(\left(M_{1,0}\right)\);
        if \(\mu-\tau=1\) then
            return \(\left(M_{1,0,1}\right)\);
    if \(\mu=15\) and \(B=D[5]\) then
        if \(\mu=\tau\) then
            return ( \(M_{15}\) );
        if \(\mu-\tau=1\) then
            return ( \(M_{15,1}\) );
        if \(\mu-\tau=2\) then
            return \(\left(M_{15,2}\right)\);
        if \(\mu \neq \tau\) then
            if \(\mu-\tau=2\) and \(\mu>13\) then
            if \(B=A[\mu-11]\) then
                return \(\left(M_{1, \mu-13}\right)\);
    return (not unimodular);
```


4. Main Algorithm

Now we give our main Algorithm 7 by using the all Algorithms given in section 3 by which we can compute the type of the singularity.

```
Algorithm 7 classifyicis2(I)[Unimodular surface singularities]
Input: \(I=\langle f, g\rangle \subseteq\langle x, y, z, w\rangle^{2} \mathbb{C}[[x, y, z]]\) isolated complete intersection curve
    singularity.
Output: The type of the singularity \((V(I), 0)\).
    compute \(I_{2}\) the 2-jet of \(I\);
    compute \(I_{2}=\bigcap_{i=1}^{s} Q_{i}\) the irredundant primary decomposition over \(\mathbb{C}\);
    compute \(d_{i}=\) Krull dimension of \(\mathbb{C}[x, y, z, w] / Q_{i}\);
    compute \(h_{i} \in \mathbb{Q}[t]\) the Hilbert polynomial corresponding to each \(Q_{i}\);
    compute \(t\) number of absolute prime ideals of \(I_{2}\) and \(j_{i}\) the number of conjugates.
    if \(s=4\) then
        if \(d_{1}=d_{2}=d_{3}=d_{4}=1\) then
            if \(h_{1}=h_{2}=h_{3}=h_{4}=1+t\) then
            return Isingularity (I); via Algorithm 1
    if \(s=3\) then
        if \(d_{1}=d_{2}=d_{3}=2\) then
            if \(h_{1}=1+2 t\) and \(h_{2}=h_{3}=1+t\) then
                if \(t=3, j_{1}=j_{2}=j_{3}=1\) then
                    if \(Q_{3} \subseteq Q_{1}+Q_{2}\) and \(Q_{3}\) has a generator of order 2 then
                        return Msingularity(I); via Algorithm 6
                    if \(Q_{3} \nsubseteq Q_{1}+Q_{2}\) and \(Q_{3}\) has a generator of order 2 then
                    return Tsingulrity (I); via Algorithm 2
    if \(s=2\) then
        if \(d_{1}=d_{2}=2\) then
            if \(h_{1}=1+t=h_{2}=1+3 t\) then
                return Lsingularity(I); via Algorithm 5
            if \(h_{1}=h_{2}=1+2 t\) then
                return Tsingularity(I); via Algorithm 2
            if \(h_{1}=h_{2}=1+2 t\) then
                return Tsingularity(I); via Algorithm 2
    if \(s=1\) then
        if \(d_{1}=2\) and \(h_{1}=4 t\) then
            if \(t=1, j_{1}=1\) then
            if \(A_{2}\) after blowing up then
                    return \(\mathrm{J}^{\prime}\) singularity(I); via Algorithm 3
            if \(A_{1}\) after blowing up then
                return Tsingularity(I); via Algorithm 2
            if \(t=2\) and \(j_{1}=1, j_{2}=1\) then
                    return Tsingularity(I); via Algorithm 2
            if \(t=1\) and \(j_{1}=2\) then
                    return K'singularity(I); via Algorithm 4
    return (not unimodular);
```

Acknowledgements The part of this work is carried out at Kaiserslautern University, Germany. We are thankful to DAAD Germany for the financial support.

References

[ADPG1] Afzal, D.; Pfister, G.: A classifier for simple isolated complete interssection singularities. Studia Scientiarum Mathematicarum Hungarica 52(1), (2015), 1-11.
[ADPG2] Afzal, D.; Pfister, G.: classifyci.lib. A Singular 3-1-6 library for classifying simple isolated complete singularities for the base field of characteristic 0 (2013).
[ADPG3] Afzal, D.; Pfister, G.: A classifier for unimodular isolated complete interssection curve singularities. Analele Univ. Ovidius din Constanta, Math. Series 24(1), (2016), 95-119.
[JP00] De Jong, T.; Pfister, G.: Local Analytic Geometry. Vieweg (2000).
[DGPS13] Decker, W.; Greuel, G.-M.; Pfister, G.; Schönemann, H.: Singular 3-1-6 - A computer algebra system for polynomial computations. http://www.singular.uni-kl.de (2013).
[GM83] Giusti, M.: Classification des Singularités Isolées Simples d'Intersections Complètes. Proc. Symp. Pure Math. 40, (1983), 457-494.
[GM75] Greuel, G.-M.: Der Gauß-Manin-Zusamnenhang isolierter singuläritaten von vollständigen Durchschnitten. Math. Ann. 214(1975), 235-266.
[GP07] Greuel, G.-M.: Pfister, G.: A Singular Introduction to Commutative Algebra. Second edition, Springer (2007).
[Wal83] Wall, C.T.C.: Classification of unimodal isolated singularities complete intersections. Proc. Symp. Pure Math. 40, Part2, Amer. Math. Soc. (1983), 625-640.

Deeba Afzal, Department of Mathematics, University of Kaiserslautern, Erwin-Schrödinger-Str., 67663 Kaiserslautern, Germany.
Department of Mathematics, University of Lahore, Near Raiwind Road, Lahore 54000, Pakistan

E-mail address: deebafzal@gmail.com
Farkhanda Afzal, School of Mathematics and systems science, Beihang University, SMSS, 37 Xueyuan Lu, Haitian District, Beijing 100096, China

E-mail address: farkhanda_imran@live.com
Sidra Mubarak, Department of Mathematics, University of Lahore, Near Raiwind Road, Lahore 54000, Pakistan

E-mail address: sidramubarak092@gmail.com
Gerhard Pfister, Department of Mathematics, University of Kaiserslautern, Erwin-Schrödinger-Str., 67663 Kaiserslautern, Germany

E-mail address: pfister@mathematik.uni-kl.de
Asad Yaqub, Department of Mathematics, University of Lahore, Near Raiwind Road, Lahore 54000, Pakistan

E-mail address: asad.yaqub11@gmail.com

[^0]: Date: August 22, 2017.
 Key words and phrases. Singularities, Milnor number, Tjurina number, blowing up.
 Mathematics subject classification: Primary 14B05; Secondary 14H20, 14J17.
 Reference number \#3569.

[^1]: ${ }^{1}$ Here after blowing up means the singularity type of the strict transform of I_{2} in the blowing up of $\langle x, y, z, w\rangle$.

[^2]: ${ }^{2}$ List B gives the singularity type of the strict transform of I in the blowing up of $\langle x, y, z, w\rangle$ and it returns 1 if it is smooth.

