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Abstract

We give an algorithm to compute a standard basis of the tangent space to the orbit
of an algebraic group action. Using this standard basis we can compute the codimen-
sion of the tangent space, an important invariant in the classification of map germs.
The task is not completely trivial since the tangent space is usually described as the
sum of two infinite dimensional vector spaces given by two modules over different rings.
We also explain how the standard basis can be computed using modular methods.
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1 Introduction

Let K be a field, x := (x1, . . . , xn), let > be a local ordering1 on K[[x]] and denote by >
the extension of this ordering to the following ordering on

K[[x]]
p
=

p∑
i=1

K[[x]]ei, ei =
(
0, . . . , 1, . . . , 0

)
:

xαei > xβej if i < j or( i = j and xα > xβ).

Let A(n, p) =< x > K[[x]]
p
, let R := AutK(K[[x]]), L := AutK(K[[y]]), y = (y1, . . . , yp)

and M := Gl(p,K[[x]]). Define the groups A := R × L and K := R × M. If K = C
the field of complex numbers then A(n, p) can be considered as the set of map germs
(Cn, 0) −→ (Cp, 0), R resp. L is the group of automorphism of (Cn, 0) resp. (Cp, 0).

In the classification of map germs the groups A and K resp. the tangent spaces to the
orbits under the action of these groups and their codimension play an important role (cf.
[BG82],[GH93],[Gi83],[Ri87],[RR91] and [Wa83]).

The group A(resp. K) acts on A(n, p) as follows:

A×A(n, p) −→ A(n, p), ((ϕ, ψ), f) 7→ ϕ−1 ◦ f ◦ ψ

K ×A(n, p) −→ A(n, p), ((ϕ,M), f) 7→ ϕ−1 ◦Mf.

1For the definition and properties see [GP07].
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If we write

R = {ϕ =

ϕ1...
ϕn

 , ϕi ∈< x > K[[x]], det(
∂ϕj
∂xl

(0)) ̸= 0}

L = {ψ =

ψ1

...
ψp

 , ψi ∈< y > K[[y]], det(
∂ψj

∂yi
(0)) ̸= 0}

and
M = {ψ = (ψij), ψij ∈ K[[x]], det(ψij) a unit},

then the action of A can be written explicitly as

ϕ−1 ◦ f ◦ ψ =

ψ1(f1(ϕ̄1, . . . , ϕ̄n), . . . , fp(ϕ̄1, . . . , ϕ̄n))
...

ψp(f1(ϕ̄1, . . . , ϕn), . . . , fn(ϕ̄1, . . . , ϕ̄n))

 , ϕ−1 =

ϕ̄1...
ϕ̄n

 .

Similarly we obtain a formula for the K-action:

ϕ−1 ◦Mf =M

f1...
fn

(
ϕ̄1, . . . , ϕ̄n

)
.

We assume now (only for the introduction) that K is a field of characteristic 0. Given
f ∈ A(n, p) we define the orbit map θf : A −→ A(n, p) by θf (ϕ, ψ) = ϕ−1 ◦f ◦ψ. Especially
we have θf (id) = f . The image of θf is the orbit of f under the action of A, let Af :=
Im(θf ).

The corresponding tangent map

TAf ,id : TA,id −→ TA(n,p),f

has an image the tangent space to the orbit at f , TAf ,f . This follows from the fact that we
are in characteristic 0 and therefore the orbit map is separable (cf. [Bo98] and [Sp98]).

It is not difficult to see that

TAf ,f =< x >K[[x]]<
∂f

∂x1
, . . . ,

∂f

∂xn
>K[[x]] + < f1, . . . , fp >K[[f1,...,fp]] K[[f1, . . . , fp]]

p.

Note, this is a sum of K-vector spaces.
Since TAf ,f is not an K[[x]]− module we cannot use ordinary standard bases to compute

the codimension
codA(f) := dimKA(n, p)/TAf ,f .

Similarly we obtain a formula for the tangent space to the orbit at f under the action of K
replacing the automorphism ψ by a matrix ψ = (ψij):

TKf ,f =< x >K[[x]]<
∂f

∂x1
, . . . ,

∂f

∂xn
>K[[x]] + < f1, . . . , fp >K[[x]] K[[x]]

p
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Here the situation is different. TKf ,f is an K[[x]]-module and we can compute the codimen-
sion

codK(f) := dimKA(n, p)/TKf ,f

computing a standard basis of TKf ,f . We define the extended tangent space with respect
to the action of A(resp. K) by

TAe
f ,f

:=<
∂f

∂x1
, . . . ,

∂f

∂xn
>K[[x]] +K[[f1, . . . , fp]]

p

resp.

TKe
f ,f

:=<
∂f

∂x1
, . . . ,

∂f

∂xn
>K[[x]] + < f1, . . . , fp >K[[x]] K[[x]]

p

Mather proved (cf. [Ma69]) that f is finitely A-determined if and only if codA(f) <∞.

Definition 1. f ∈ A(n, p) is A-finitely determined if there exists k > 0 such that for all
g ∈ A(n, p) with jet(f, k) = jet(g, k) it follows that g is in the orbit of f under the action
of A.

The following theorem of Du Plessis (cf. [Du80]) gives a sufficient condition for f ∈
A(n, p) to be finitely determined:

Theorem 1. Let f ∈ A(n, p) and suppose that

< x >l K[[x]]p ⊆ TKe,f+ < x >l+1 K[[x]]p

< x >k K[[x]]p ⊆ TAe,f+ < x >k+l K[[x]]p

Then f is k + l determined and < x >kK[[x]]
p ⊆ TAe,f .

From now on we assume that f is k-determined. Let A(k) = jet(A, k) and A(k)(n, p) =
jet(A(n, p), k). Then A(k) acts smoothly on A(k)(n, p).

We obtain
T
A

(k)
f ,f

= TAf ,f/ < x >k+1 K[[x]]p

and
codA(f) = dimKA(n, p)/ < x >k+1 K[[x]]p − dimKTA(k)

f ,f
.

We define the notion of a standard basis for a K-vector space contained in K[[x]]
p
.

Definition 2. Let U ⊆ K[[x]]p be a subspace of the K-vector space K[[x]]p and > a local
monomial ordering. A subset W ⊆ U is called standard basis of U if L(U) = L(W ). Here
L(U) is the K-vector space generated by the leading monomials of U with respect to the
ordering >.

The aim of the paper is to give an algorithm to compute a standard basis of the vector
space TAf ,f resp. TA(k)

f ,f
. In Section 2 we will generalize this problem and give a solution.

As in the case of Gröbner bases it is easy to see that dimKK[[x]]p/U = dimKK[[x]]p/L(U).
In Section 3 we will describe a modular version of the algorithms of Section 2 and give
timings in Section 4.
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2 Standard bases of special subspaces of K[[x]]p

Let R = K[[x]], x =< x1, x2, . . . , xn >, let M ⊆ Rp be an R-module such that < x >k

Rp ⊆ M for some k.2 Let N =< w1, . . . , ws >K⊆ Rp be a finite dimensional K-vector
space. The aim is to compute a standard basis for the K-vector space M +N with respect
to a given local monomial ordering >. We choose an extension of the ordering > to Rp as
defined in Section 1. By assumption dimKR

p/M <∞. Let {m1,m2, . . . ,ml} be the set of
monomials of Rp not being in L(M). Assume that m1 > . . . > ml. Using a standard basis
G of M (as R-module) we can compute the normal form of the generators wi of N with

respect to M , NF (wi|M) = NF (wi|G) =
∑l

j=1 cijmj , cij ∈ K.

Let (c̄ij) be the matrix obtained from (cij) in reduced row echelon form, i.e. the c̄ij
have the following properties: ∃ j1, . . . , ja such that c̄iji = 1, c̄ij = 0 if j < ji, i = 1, . . . , a
and c̄ij = 0 if i > a.

Proposition 1. L(M +N) is the K-vector space generated by the monomials of L(M) and
{mj1 , . . . ,mja}.

Proof. Let f ∈ M + N , f = fM + fN , fM ∈ M , fN ∈ N . If the leading monomial of f ,
LM(f) is in L(M) we are done. If LM(f) /∈ L(M) then
NF (f |M) = NF (fN |M) ∈< m1, . . . ,ml >K and LM(f) = LM(NF (f |M)).
Let fN =

∑t
i=1 ciwi + fT , fT ∈< x >k Rp ⊆M , ci ∈ K. This implies

NF (fN |M) =
∑t

i=1 ciNF (wi|M). All together we obtain

NF (f |M) =
∑t

i=1 ciNF (wi|M). According to the definition of j1, j2, . . . , ja we find b such
that LM(NF (f |M)) = mjb .

Corollary 1. Let G be a standard basis of M as R-module and H := {xαg|g ∈ G,α ∈ Zn
≥0}

and L := {
∑l

j=1 c̄ijmj , i = 1, . . . , a}. Then H ∪L is a standard basis of M+N as K-vector
space.

Corollary 2.

dimKR
p/(M +N) = dimK(Rp/M)− a

Definition 3. With the notations of corollary 1 we will call the pair (G,L) a standard basis
of M +N , if G is a standard basis of M (as R-module) and {xαg|g ∈ G,α ∈ Zn

≥0} ∪L is a
standard basis for M +N (as K-vector space).

We call the pair (G,L) a reduced standard basis, if G is a reduced standard basis of M ,
L is a set of monic polynomials, no monomial of a polynomial in L is in L(M) and L is in
reduced row echelon form.

Remark 1. A reduced standard basis of M + N exists and is uniquely determined. This
is a consequence of the fact that M is zero-dimensional. The behavior with respect to local
orderings in this situation the same as for global orderings.

2This implies dimKRp/M < ∞.
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We obtain the following algorithms to compute a standard basis and the codimension
of a submodule in K[[x]]

p
. 3

Algorithm 1 vStd

Input: M ⊆ K[[x]]
p
K[[x]]-module, N ⊆ K[[x]]

p
finite dimensional K-vector space , bound

an integer
Output: (G,L) a standard basis of M +N+ < x >bound K[[x]]

p

1: compute G a standard basis of M+ < x >bound K[[x]]
p
;

2: use Gaussian algorithm to compute a reduced row echelon form of L := {L1, . . . , Lt} of
NF (N |G) :=< N1, . . . , Ns > with respect to the ordering.

3: return(G,L);

Algorithm 2 codimMod

Input: f = ⟨f1, . . . , fp⟩ ⊆ K[[x]]
p
, M ⊆ K[[x]]

p
an K[[x]]-module, N =< N1, . . . , Ns >⊆

Sp an S = K[[f ]] module and bound an integer
Output: codimension of M +N+ < x >bound K[[x]]

p

1: compute N := {f i11 . . . f
ip
p .Ni|f i11 . . . f

ip
p .Ni /∈< x >bound K[[x]]

p
, i = 1, . . . , s}

2: (G,L) := vStd(M,N, bound);
3: return dim(K[[x]]

p
/L(G))−#L;

Remark 2. One important application is the following. Let f = (f1, f2, . . . , fp) ∈ Rp and
S = K[[f ]]. Let M ⊆ Rp be an R-module, and N = < n1, n2, . . . , ns >S ⊆ Sp a finitely
generated S-module.

The aim is to compute a standard bases of the K-vector space M+ < x >k Rp +N . Let
W = {f i11 . . . f imm .ni|f i11 . . . f imm .ni /∈< x >k Rp, i = 1, . . . , s} =: {w1, . . . , wt} and N0 =<
w1, . . . , wt >K then

M+ < x >k Rp +N =M+ < x >k Rp +N0.

We obtain the following algorithm to compute the codimension of the tangent space of
the orbit of a map germ under the action of A.

We use the local reverse lexicographic ordering for Q[[x, y]] resp. Q[[t]] and with the
extension to modules as defined in Section 1.

3These algorithms are implemented in the Singular library classifyMapGerms.lib (cf. [AKP16]).
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Algorithm 3 codimMap

Input: f = ⟨f1, . . . , fp⟩ ⊆ K[[x]],

Output: extended codimension of < ∂f
∂xj

> +K[[f ]]
p

1: compute M :=< ∂f
∂xj

>;

2: N := K[[f ]]
p
;

3: bound = computeBound(M,N, f);
4: returncodimMod(M,N, f, bound);

The algorithm computeBound computes an estimate for the determinacy of f . It is
based on Theorem 1 and computes l such that < x >l K[[x]]p ⊆ TKe,f+ < x >l+1 K[[x]]p

by computing a standard basis of TKe,f and checking case by case if < x >l K[[x]]p ⊆
TKe,f+ < x >l+1 K[[x]]p. It uses k = 10 as initial bound and increases the bound k as
long as < x >k K[[x]]p ⊆ TAe,f+ < x >k+l K[[x]]p. Then by using Theorem 1 f is k + l
determined.

In the following examples we want to compute the codimension to the orbit for the
action of A. We give explicitly the standard basis (G,L) and the codimension.

Example 1. R = Q[[x, y]], f = (x, xy + y4), S = Q[[x, xy + y4]]

M =< x, y > . <

(
1
y

)
,

(
0

x+ 4y3

)
>R

N =< x, xy+ y4 >S2. We obtain as standard basis for M+ < x >10 R2 (as R-module)

G = {
(
x
0

)
,

(
y
0

)
,

(
0
x2

)
,

(
0
xy

)
,

(
0
y10

)
} and

L = {
(
0
x

)
,

(
0
y4

)
,

(
0
y5

)
,

(
0
y6

)
,

(
0
y7

)
,

(
0
y8

)
,

(
0
y9

)
}

Especially

dimQR
2/(M+ < x >10 R2 +N) = dimQR

2/M − 7 = 5.

Example 2. R = Q[[t]], f = (t4, t7 + t9, t17), S = Q[[t4, t7 + t9, t17]]

M =<

 4t3

7t6 + 9t8

17t16

 >R, and N = S3.

We obtain a standard basis for M+ < t >14 R3 (as R-module)

G = {

 4t3

7t6 + 9t8

0

 ,

 0
t14

0

 ,

 0
0
t14

} and

L = {

1
0
0

 ,

0
1
0

 ,

 0
t4

0

 ,

 0
t7 + 9/7t9

0

 ,

 0
t8

0

 ,

 0
t9

0

 ,

 0
t10 + 16/7t12

0

 , 0
t11 + 9/7t13

0

 ,

 0
t12

0

 ,

 0
t13

0

 ,

0
0
1

 ,

 0
0
t4

 ,

 0
0
t7

 ,

 0
0
t8

 ,

 0
0
t11

 ,

 0
0
t12

}.

Especially

dimQR
3/(M+ < t >14 R3 +N) = dimQR

3/(M+ < t >14 R3)− 16 = 15.
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3 Modular Computations

Modular computation reduces the computation of standard basis to the case of finite fields,
when we apply in Section 2. In this section we describe how to compute the standard basis
for the vector spaces described in Section 2 with modular methods. Let K = Q be the
field of rational numbers. As before we fix a local monomial ordering > on R := K[[x]] and
extend it to a module ordering on Rq. Let M ⊆ Rq be an R-module such that

1. M ⊇< x >k Rq for some k.

2. M =< f1, . . . , fr >R with fi ∈ K[x].

Let N =< w1, . . . , ws >K be a finitely generated sub space in Rq, wi ∈ K[x]. The aim is
to compute a standard basis (G,L) of M +N using modular methods.

The idea is as follows. Choose P , a finite set of primes which do not divide any de-
nominator of the coefficients of the fi and wj , compute a reduced standard basis (Gp, Lp)
of Mp + Np ⊆ Fp[[x]]

q, for every p ∈ P . Here Mp :=< f1 mod p, . . . , fr mod p > and
Np =< w1 mod p, . . . , ws mod p >. Then lift these modular standard basis to a standard
basis (G,L) of M +N . The lifting process consists of two steps. Using Chinese remainder
algorithm we can lift {(Gp, Lp)}p∈P to (Ga, La) over Z/a[[x]]q with a :=

∏
p∈P p. Since

(Ga, La) is uniquely determined modulo a, we need a to be larger then the moduli of all
coefficients occurring in a standard basis over Q. The problem is that we do not know this
in advance. The second step uses the Farey rational map (cf. [KG83]). This map gives a
unique result provided

√
a/2 is larger than the moduli of all coefficients in (G,L). This

motivates the following definition (cf. [IPS11]) :

Definition 4. Let (G,L) be a standard basis of M +N .

1. If (Gp, Lp) is a standard basis of Mp +Np then p is called lucky for M +N if G and
Gp have the same leading monomials, LM(G) = LM(Gp), and L and Lp have the
same leading monomials, LM(L) = LM(Lp). If p is not lucky for M +N it is called
unlucky.

2. A set P of lucky primes for M +N is called sufficiently large for M +N if

∏
p∈P

p ≥ max{2|c|2| c a coefficient in G or L}.

Since we do not know the standard basis we cannot test a single prime for being unlucky
(for more details see [BDFP15]. Therefore we fix a set of primes P . After having computed
the set of standard bases B := {(Gp, Lp)|p ∈ P} we delete unlucky primes as follows by
majority vote.

DeleteUnluckyPrimes. We define an equivalence relation on (B,P ) by

(Gp, Lp) ∼ (Gp′ , Lp′) ⇔ LM(Gp) = LM(Gp′) and LM(Lp) = LM(Lp′).

The equivalence class of largest cardinality is stored in (B,P ), the others are deleted.
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Similarly to [Pf07] and [IPS11] we obtain the following algorithm.

Assume > is a local ordering.

Algorithm 4 modVStd

Input: M ⊆ Q[[x]]
q
, Q[[x]]-module, N ⊆ Q[[x]]

q
finite dimensional Q-vector space, bound

an integer
Output: (G,L) a standard basis of M +N+ < x >bound Q[[x]]

q

1: choose P , a list of random primes;
2: B := ∅; M :=M+ < x >bound Q[[x]]

q

3: loop
4: for p ∈ P do
5: compute the reduced standard basis (Gp, Lp) of Mp +Np

6: B := B
∪
{(Gp, Lp)}

7: (B,P ) = DeleteUnluckyPrimes(B,P );

8: lift (B,P ) to (G,L) , G, L ⊆ Q[x]
q
using Chinese remainder algorithm and Farey

rational map;
9: if M ⊆< G >Q[[x]] and M +N ⊆< G >Q[[x]] + < L >Q then

10: if G is a standard basis of M as Q[[x]]-module then
11: return(G,L);

12: enlarge P ;

The algorithm terminates by construction and its correctness follows by the next theorem
which goes back to E. Arnold (cf. [Ar03]) for homogenous ideals and was proved in [GP07]
for ideals and local orderings.

Theorem 2. Let M , N be as above, let p be a prime and G, L ⊆ Q[x]
q
such that LM(G) =

LM(Gp) and LM(L) = LM(Lp). Assume that (Gp, Lp) is a reduced standard basis of
Mp + Np and G is a standard basis of < G >Q[[x]]. Assume that M ⊆< G >Q[[x]] and
M +N ⊆< G >Q[[x]] + < L >Q then (G,L) is a reduced standard basis 4of M +N .

Proof. Since Gp is a reduced standard basis ofMp andM ⊆< G >Q[[x]] and G is a standard
basis of < G > we obtain from [Pf07] (which can be proved for modules similarly to the
case of ideals) that M =< G >Q[[x]]. The lifting G of Gp is a reduced standard basis since
G is a standard basis and Gp is a reduced standard basis. Since Lp is in reduced echelon
form the lifting L is also in reduced echelon form. Since Lp is a set of monic vectors and
no monomial of a vector in Lp is in L(Mp) the same holds for L. This implies that (G,L)
is a reduced standard basis of < G >Q[[x]] + < L >Q.

It remains to prove that M +N =< G >Q[[x]] + < L >Q=M+ < L >Q. We know that
M +N ⊆< G >Q[[x]] + < L >Q. This implies that

dimQM +N/ < x >k Rq ≤ dimQM+ < L >Q / < x >k Rq.

4We do not assume that the prime is lucky, but it is a consequence of the theorem.



14 Tangent Space to the Orbit of an Algebraic Group Action

On the other hand we have for p ∈ P that

dimQM +N/ < x >k Rq ≥ dimFpMp +Np/ < x >k Fp[[x]]
q
.

But
dimQM+ < L >Q / < x >k Rq = dimFpMp +Np/ < x >k Fp[[x]]

q

implies the result we were looking for.

4 Examples and timings

We create the examples (coming from the classification of map germs) as follows:
Given f = (f1, f2), fi ∈ C[[x]] and ϕ, ψ : C[[x]] −→ C[[x]]. We construct the A-

equivalent map germ F defined by (ϕ, ψ), i.e. F = ψ ◦ f ◦ ϕ−1.
Let M =< x >< ∂F

∂x > and N = FC[[F ]]2(tangent space) in case of two variables x

resp. M =< ∂F
∂x >, N = C[[F ]]2(extended tangent space) in case of one variable x. Given

a bound b we compute vStd(M,N, b), its modularized version and the parallel modular
version and give the corresponding timings.

Example 3.

bound= 15, f1 = x, f2 = xy + y5 + y7, g1 = f1 + f1f2, f =< g1, g2 >

ϕ(x, y) = (x+ y+ x3 + xy3 + y11 + y14 + xy17, y+ y2 + x3 +2x3y+ x6 + y14 +2y15 +
2x3y14 + xy17 + 2xy18 + 2x4y17 + y28 + 2xy31 + x2y34)

F = ϕ(f), M =< x, y >< ∂F
∂x ,

∂F
∂y >, N = FC[[F ]]2

Example 4.

bound= 15, f1 = x,f2 = xy2 + y5 + y9, f =< f1, f2 >

ϕ(x, y) = (x+ xy4, y + x2 + y11)

F = ϕ(f), M =< x, y >< ∂F
∂x ,

∂F
∂y >, N = FC[[F ]]2

Example 5.

bound= 15, f =< x, x2y + y4 >, ϕ(x, y) = (x+ xy4, y + x2 + y11)

F = ϕ(f), M =< x, y >< ∂F
∂x ,

∂F
∂y >, N = FC[[F ]]2

Example 6.

bound= 250, f1 = t56, f2 = t70 + t91, f3 = t84 + 2t105, f4 = t101

g1 = f1 + 231f2f1 + 311f1f3 + 71f21 + 611f1f2f3, g2 = f2 + 911f21 + 511f2f3 + f21 f
2
2 ,

g2 = f2 + 911f21 + 511f2f3 + f21 f
2
2 , g3 = f3 + 731f1f2f3 + 1171f23 + f32

ϕ(t) = t+ 22t2 + 323t3 + 555t4 + 777t6
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F = ϕ(f), M =< ∂F
∂t >, N = C[[F ]]2

Example 7.

bound= 300, f1 = t80, f2 = t120 + t140 + t150 + t175, f3 = t181

g1 = f1 + 231f2f1 + 71f21 , g2 = f2 + 911f21 + f21 f
2
2 , g3 = f3 + f1f2, f =< g1, g2, g3 >

ϕ(t) = t+ 55t2 + 366t3 + 577t4 + 788t6, F = ϕ(f), M =< ∂F
∂t >, N = C[[F ]]2

Example 8.

bound= 350, f1 = t84, f2 = t140 + t210 + t245, f3 = t139

g1 = f1 + 231f2f1 + 715f21 , g2 = f2 + 911f21 + 4567f21 f
2
2 , g3 = f3 + 333f1f2

f =< g1, g2 >, ϕ(t) = t+ 22t2 + 333t3 + 544t4 + 755t6 + 567t7, F = ϕ(f)

M =< ∂F
∂t >, N = C[[F ]]2

We summarize the results in the table below where modVStd0 denotes the parallelized
version of modVStd computing the characteristic p results in parallel. All timings are
given in seconds. The computation are made on a Dell PowerEdge R720 with two Intel(R)
Xeon(R) CPU E5− 2690 @ 2.90GHz, 20 MB Cache, 16 Cores, 32 Threads, 192 GB RAM
with a Linux operating system (Gentoo). ”–” means that the task did not finish because
of memory overflow.

The timings show that as expected for complicated examples the parallel modular version
of vStd is more successful. For simple examples the overhead dominates the computation.

Example vStd modVStd modVStd0

3 4123 2942 52
4 – 532 324
5 – 3 8
6 2258 36 24
7 56 19 12
8 864 4 14
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[Wa83] Wall, C.T.C. Classification of Unimodal Isolated Singularities of Complete Inter-
sections, Proc. Symp. Pure Math. Part2, Amer. Math. Soc., 40, 625-640 (1983).



Deeba Afzal, Shamsa Kanwal, Gerhard Pfister 17

Received: 22-03-2017
Revised: 15-05-2017
Accepted:31-05-2017

(1) (i) Department of Mathematics, University of Kaiserslautern
Erwin-Schrödinger-Str., 67663 Kaiserslautern, Germany
(ii) Department of Mathematics, University of Lahore

Near Raiwind Road, 54000 Lahore, Pakistan

E-mail: deebafzal@gmail.com

(2) Abdus Salam School of Mathematical Sciences, GC University
Lahore, 68-B New Muslim Town, 54000 Lahore, Pakistan

E-mail: lotus zone16@yahoo.com

(3) Department of Mathematics, University of Kaiserslautern
Erwin-Schrödinger-Str., 67663 Kaiserslautern, Germany

E-mail: pfister@mathematik.uni-kl.de


