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Introduction

This article is devoted to the problem of constructing geometric quotients of a
quasiaffine scheme X over a field of characteristic 0 by a unipotent algebraic
group G. This problem arises naturally if one tries to construct moduli spaces in
the sense of Mumford's 'geometric invariant theory' for singularities of algebraic
varieties or for modules over the local ring of such a singularity. Indeed, our
results grew out of the attempt to construct and describe moduli spaces for
torsion-free modules over the ring of a reduced curve singularity and they are
applied to that case in [8].

The theorems of this paper can be used to extend the result of [10] about
generic moduli for plane curves with fixed semigroup (p, q) to the non-generic
case by fixing a Hilbert function of the Tjurina algebra. The same method applies
to the classification of semiquasihomogeneous hypersurface singularities with
fixed principal part which will be presented in another article.

A general method for constructing moduli spaces is the following.

1. One starts with an algebraic family X-+T with finite-dimensional base T
which contains all isomorphism classes of objects to be classified. This is usually,
but not always, a versal deformation of the 'worst' object.

2. In general, T will contain analytically trivial subfamilies and one tries to
interpret these as orbits of the action of a Lie group or an algebraic group acting
on T. In fact, we start with a (infinite-dimensional) Lie algebra which is usually
the kernel of the Kodaira-Spencer map of the family X—*T. In many cases in
singularity theory it is possible to reduce this to an action of a finite-dimensional
solvable Lie algebra SB such that the orbits of SB (or rather of the group
G = exp(i£)) are the isomorphism classes of an object.

3. If it happens that there is an algebraic structure on the orbit space M = T/G
such that the G-invariant functions on T are the functions on M, then M is the
desired (coarse) moduli space. But usually this is not possible and one needs a
stratification T = {jTa such that Ta/G has this property. The stratification will be
defined by fixing certain invariants of the objects to be classified.

The problem of the existence of the geometric quotient TIG can in all known
applications be reduced to the existence of the geometric quotient by the
corresponding maximal unipotent subgroup.

Several papers exist which consider the problem of geometric quotients by
non-reductive groups (for example, [5,6,9,16,17]) mostly for free actions. But
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we know of none which gives, for unipotent groups, a general and sufficient
criterion for the existence of a geometric quotient as a separated scheme which
can actually be applied in concrete situations. It is the purpose of this note to
derive such criteria in characteristic zero. If X = SpecK[xlf..., xn], K[xx,..., xn] =
K[Xlf..., Xn]/I and if dlt..., Sm form a JT-basis of the Lie algebra of G, then
these criteria are given in terms of properties of the matrix (<5,(JC;)) which are
quite easily checked if the <5,(xy) are sufficiently well-known. If the action of G is
free (Theorem 3.10) or if G is abelian and the action is arbitrary (Theorem 4.1),
these criteria are necessary and sufficient; in general they are sufficient (Theorems
3.5, 3.8, 4.7). Moreover, ifX/G does not exist, we describe explicitly, using these
criteria, several stratifications of X into locally closed G-stable subschemes on
which the quotient exists (Theorem 4.7). These stratifications can also be
described invariantly as the flattening stratifications of certain coherent sheaves
on X, a fact which is important for the applications mentioned above. It is very
useful to have different stratifications at hand since in different geometric
situations some are more natural than others.

In § 1 we introduce the notion of a 'stable' point for the action of G on a
quasiaffine scheme X. Our main observation here is that this has to be done
relative to a G-equivariant embedding into an affine scheme in order to obtain a
separated quotient. We actually always work with the Lie algebra of G. The next
section provides many examples which demonstrate the (more or less well-
known) fact of pathological behaviour of unipotent group actions. Some of these
examples might be new. In each case we compute the set of stable points. In § 3
we study free actions, and the main criteria, also for later applications to general
actions, are derived here. Moreover, as a corollary of these criteria we derive a
positive answer to the Jacobian Umkehrproblem under additional conditions on
the Jacobian matrix (Corollary 3.13). Section 4 gives criteria for general actions
and describes the stratification mentioned above. These stratifications depend on
filtrations of the coordinate ring of X and of the Lie algebra of G with certain
properties. Such filtrations do always exist and we discuss certain variants.
Finally, we describe and compare different stratifications for the examples
from §2.

The only methods we use are methods from linear algebra and localization
(nevertheless the proofs are sometimes quite involved) and hence our results do
hold for affine schemes X = Spec A where A is any noetherian AT-algebra. In
some cases we have to assume that A is reduced but we do not need, for instance,
any normality assumption. We should like to mention that the examples coming
from the geometric applications in [8] were quite essential for deriving the
above-mentioned criteria.

We use the usual conventions of a commutative ring theory as in [11]. We use
A to denote a commutative ^-algebra, and if A' is a subscheme of the affine
^-scheme Spec>l, we write Xf or D(f) for the open subscheme X D Spec/I^ of
X. If a<=A is an ideal, V(a) denotes the closed subscheme Spec A/a of Spec/1
and D(a) the open subscheme Spec A — V(a).

We have profited a lot from discussions with our colleagues in Berlin and
Kaiserslautern and the members of the DFG Schwerpunkt 'Komplexe Mannigfal-
tigkeiten'. We are particularly indebted to Hanspeter Kraft for his comments
concerning free actions and principal fibre bundles.

We are grateful for financial support by the Humboldt-University of Berlin, the
University of Kaiserslautern, the DFG and the Stiftung Volkswagenwerk.
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General notation and assumptions. The symbol K denotes a field of charac-
teristic 0; a scheme X always means a separated scheme. We write K(X) for the
residue field of x e X. A geometric point is an F-valued point, where F is an
algebraically closed field, and a geometric fibre, respectively a geometric orbit,
means a fibre, respectively an orbit, of a geometric point. If G is an algebraic
group over K (and hence smooth and of finite type over K) which acts via
GxKx^>X then Gx denotes the orbit of x, that is, the image of the induced
map GXKK(X)-+XXKK(X), whilst Gx denotes the stabilizer. Note that Gx is a
subset of XXKK(X) while Gx is a subgroup of G XKK(X).

1. Geometric quotients and stable points

Let G be a unipotent algebraic group over K which acts rationally on a scheme
X over K.

DEFINITION 1.1. A pair (Y, n) consisting of a scheme Y/K and a morphism
n\ X—> Y over K is called a geometric quotient if

(i) Jt is open and surjective,
(ii) {JZ*GX)G = CY,

(iii) n is an orbit map; that is, the geometric fibres of n are precisely the
geometric orbits of G.

Since G is of finite type over K, this definition is equivalent to [13, Definition
0.6] and [1, II.6.3], and the quotient map is universally open [13, 0, § 2, Remark
(4)]. Moreover, (iii) is equivalent to the condition that for the induced action of
G on X, Ji~l(x) = Gx for all ^-rational points xeX where K denotes an
algebraic closure of K. (For any ^-scheme Z let Z = Z x Spec(^) and Jt be the
induced morphism.) Note that we require Y to be separated. A geometric
quotient, if it exists, is uniquely determined and denoted by X/G. We express
this fact by saying that X^>X/G is a geometric quotient, or that X/G exists.

REMARK 1.2. Since K is of characteristic 0, G is isomorphic (as a scheme) to its
Lie algebra Lie G [4, IV, §2, 4.1; 2, §3]. Moreover, since a closed subgroup
i f c G a s well as the factor group G/H are again unipotent [4, IV, §2, 2.3], it
follows that if G acts on a reduced scheme X, the orbits Gx of G, with x e X, are
closed and isomorphic to the affine space A£(jt), where n = dim G XKK(X)/GX

[1, II.6.7; 2, § 3]. The action is called free if Gx = {1} for all x e X.

DEFINITION 1.3. A geometric quotient (Y, x) is locally trivial if an open
covering {V;}<6/ of Y and n, s* 0 exist, such that n~\Vi) = Vi x A£ over Vh

Now, let X be quasi-affine, and an open subscheme of SpecA Assume that the
action of G on X extends to an action on Spec A We want to describe an open
invariant subset U a X (of 'stable' points) such that U/G exists and satisfies:

(a) U is explicitly computable if the action is sufficiently well-known,
(b) U is as big as possible, subject to Condition (a).
A necessary condition for the existence of U/G is that geometric orbits in U are

all closed of locally constant dimension. Recall that the geometric orbits are
always closed since G is unipotent. Example 2.2 however shows that constant
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orbit dimension is not sufficient. Even worse, in Example 2.6 we have
X = Spec(y4) = XlUX2) where the Xt are open, affine and invariant subsets such
that JZ\ Xi-*XilG exists and is trivial for i = l, 2, but X/G does not exist.
Hence, there does not exist a maximal open invariant set U czX such that U/G
exists. Since no point of X plays a preferred role, there seems to be no canonical
way of defining 'stable' points: each point of X should be a stable point, at least if
it is considered as a point of X(. The following definition of stability, which we
propose, overcomes this difficulty by fixing a G-equivariant embedding of the
quasi-affine scheme X into a Spec A to which the definition refers.

DEFINITION 1.4. Let G be a unipotent algebraic group over K acting on the
quasi-affine scheme X and on the affine scheme Z = Spec A. Suppose i: X <-• Z is
a G-equivariant open embedding. Let n\ X—> Y : = SpecAc denote the canonical
map. A point x e X is stable (with respect to A or Z, i and the action of G) if an
f eAG, with x e Xf, exists such that the induced map nf\ Xf^>Yfis open and an
orbit map. We call x pre-stable (with respect to the action of G) if an open
invariant neighbourhood UaX of x exists such that nv\ £/-» Y is an open orbit
map. We use Xs(A) = X D Zs(A) to denote the set of stable points of X (with
respect to A and G) which depends on A but not on the embedding i. If
X = SpecA, we write Xs instead of Xs(A) and call xeXs simply stable (with
respect to G).

REMARK 1.5. (1) The definitions say that nf\ Xf—>Jz(Xf), and ny: U—^J

are geometric quotients. Example 2.6(6) shows how the stability of X depends on
the embedding of X in an affine scheme. Example 2.5(3) shows that nf{Xf) may
be a proper open subset of Yf. However, note that n~l(Yf) = Xf, while, in the
definition of pre-stable, U might not be a preimage of anything under n.

(2) The morphism nf\ Xf-*Yf is affine. Hence, our definition of stable,
respectively pre-stable, is similar to Mumford's for reductive groups in Definitions
(c) and (a), respectively, of [13,1, § 4].

(3) If A is reduced and of finite type over K, it follows from [5, Proposition
2.2.2] that Jif, respectively xv, are open if they are orbit maps. Hence, the set
Q2(X, G) in [5] is our X'(K[X]) in that case.

(4) The next proposition shows that Xs(A) is not empty (if A is reduced) and
defined by a universal property. This is what we gain at the cost of the fact that
there might be larger open subsets of X where the quotient exists.

PROPOSITION 1.6. (1) Xs(A) is G-stable and open in X; it is dense in X if X is
reduced.

(2) XS{A)IG exists, is quasi-affine and Jt\X'(Ay XS(A)—>JT(XS(A)) is a geo-
metric quotient. If X is of finite type over K and reduced, then Xs (A)/G is of finite
type over K.

(3) (Universal property) For each open, G-stable subset UczX for which an
open set V c= Spec(AG) exists, such that U = J I T ^ V ) and JZ: U—> V is a geometric
quotient, we have U c= Xs(A).

REMARKS 1.7. (1) Example 1.12 shows that Xs(A) may be empty if X is not
reduced. If X is reduced, we actually show that there exists an open dense subset
U = n~l(V)<zX, VczSpecAG open, such that xv\ U^>V is a locally trivial
geometric quotient.
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(2) Proposition 1.6(1) does also hold for pre-stable points. It is not difficult
to see that the geometric quotient of pre-stable points exists in the category of not
necessarily separated schemes.

Before we prove the proposition, we introduce some notation which will be
used in the sequel. Let Lie G denote the Lie algebra of G and recall that there is
an exponential map exp: Lie G-*G [4, IV, §2,4.1]. The action of G on Speol
induces a representation p: G—> AutK(A) and p*: Lie G—>DeTn^{A), fitting into
a commutative diagram

Here AM\K{A) is the group of AT-algebra automorphisms, and Der£'(,4) denotes
the set of nilpotent ^-linear derivations of A. We say that 6 e Der^(y4) is
nilpotent if, for each a eA, there is an n(a) such that 6"^a\a) = 0; (exp 5)(a): =
E/*o(l/»0S''(a) for deDerf(A). Note that L = Lie G is a finite-dimensional
Lie algebra which is nilpotent. Conversely, any representation of a finite-
dimensional nilpotent Lie algebra p: L—»Der£'(/4) gives rise to an action of the
unipotent algebraic group G = exp(L) over K, on Spec A In the following we
work with the Lie algebra L rather than G, and write AL, X/L,... instead of AG,
X/G, . . . . We always assume the action to be non-trivial. The action of G is free
if and only if the orbits of G have dimension equal to dim* L.

Proof of Proposition 1.6. Since Xs(A) is the union of open subsets which are
full preimages of open sets Y = Spec(v4G) under n, the local quotients can be
glued inside Y. This implies that Xs(A)/G is separated. Moreover, if X is reduced
and of finite type over K, then, by [5, Proposition 2.2.2], the same holds for
XS(A)/G. This proves (3), (2) and the first part of (1).

To prove that Xs(A) is dense if X is reduced, assume first that X = Spec A. We
use induction on dim L. Choose a vector field <5 =£0 in the centre of L and a eA
such that <5(a)=£0 and 6(a)eAL. This is always possible since L consists of
nilpotent derivations. Since A is reduced, Xs^a) is not empty. Now j45(a)[a] =
A6(a) (Lemma 3.1). Thus L/Kd acts on A^y By the induction hypothesis, there
are f eAL and xu ..., xreA6

6{a) such that Af6(a)[xu ..., xr] =A%{a) and xu ..., xr

are algebraically independent over A^y Then Afd(a)[xi, ...,xr, a] = Af6(a) and
Xi, ...,xr, are algebraically independent over Af6(a) (cf. Remark 3.4).

This shows that there is a maximal open subset U = JZ~1{V), 0 =£ V a Spec>lc

open, such that JT: U-*n{U) is a locally trivial geometric quotient. Assume that
U¥^X; then X — U^X is quasi-affine and open and we can apply the same
argument as above, which contradicts the maximality of U and proves the
proposition if X = Spec A In general, take the intersection of the maximal U
constructed for (SpecA)red with X.

DEFINITION 1.8. Let X a Z = Spec(y4) be a G-equivariant open embedding and
assume A to be reduced. Put A0:=A, Z0: = Z, X0: = X and, for / s* 1,

xr.=xnzh
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Then A%4,)/G exists and the X{ define a strictly decreasing filtration X = XQ 3
Xl=>X2=>..., Ĉ> — Xi_l = A!";^,-), into closed, reduced G-invariant subspaces of
X. If A is noetherian, then X = Ufinite ̂ /(^«) ' s a disjoint union of finitely many
locally closed invariant subspaces on which the geometric quotients exist and
are quasi-affine. We call this the canonical stratification of X (with respect to G
and Z).

REMARK 1.9. The notion of stable points seems to be rather tautological and
quite unworkable. In the subsequent section we shall show that this is not the
case. First notice that in Definition 1.4 we may require (by shrinking Yf) that jzf\s
surjective. Hence xeXs(A) if and only if an feAL exists such that xeXf

and nf\ Xf—>Yf is a geometric quotient. Therefore, we have to look for
criteria such that Spec/I—>SpecAL is a geometric quotient. Assume that A =
K[Xi,..., Xn]/I = K[xu ...,xn] and that the Lie algebra is generated over K by
61,. . . , 5r. We derive several criteria for stability in terms of the matrix (<5,(xy))
which can be checked explicitly if the <5,(xy) are known. The corresponding
quotients are locally trivial and hence of finite type over K. If the action is free,
then local triviality is automatic (cf. Theorem 3.10); we ignore the question of
whether this also holds in the general case. All our examples, in particular the
construction of a moduli space in [8], use these criteria.

2. Examples

EXAMPLE 2.1 (canonical stratification of Nagata's example). We first discuss
Nagata's example to Hilbert's 14th problem (cf. [14]). Let

A = ^ [ X j , . . . , Xr, Xr+\, . . . , X2r\

and
r 2r a

L = 2 Kdh 6j = 2 ha -r- and h(j = <5,(xy),

defined by the following matrix (aly e K):
0 . . .

0 . . .

0

0

«14*1 a2i

•

aXrxx a2

\X2 ^34*3

rX2 a3rX3

x4

0

0

0 0 . .
0 . .

•

0 . .

. 0

. 0

6
. X

Obviously, /»«eK[xl}..., x2r]
L and [6h <5y] = 0 for all i,j. Nagata proved that

K[xx, ..., x2r] is not a finitely generated /C-algebra provided r is large and the a^
are sufficiently general. Now let Xe = {x e A2r: rank(/i/y(x)) = e) be the stratifica-
tion of Spec K[xlf..., *2r] = L)Xe by constant orbit dimension with respect to the
action of L. An easy consequence of our results (see § 5, Examples (continuation)
5.1) will be that Xe—>Xe/L is a geometric quotient and, moreover, that XJL is a
locally closed subset in an affine space. This is the canonical stratification and it is
the best result we can obtain because constant orbit dimension is necessary for
the quotient to be separated.
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EXAMPLE 2.2 (constant orbit dimension does not suffice). Let

d d
6:=Xi — + x2 —- e D e r ^ x , , x2, x3]dx2 ox3

and L = Kd. Then 6(x1) = 0, 6(x2) = xl} <5(jt3)=Jt2, exp(L) is isomorphic to the
additive group of K and acts on A3 by

a o (xu x2, x3) = (xu x2 + axu x3 + ax2

It is not difficult to see, using Remark 3.2, that

(1) K[xu x2t x3]
L = K[xlf xxx3 - \x% and

(2) the L-invariant open set of all points of A3 with orbit dimension 1 is the
complement of the x3-axis and is covered by the invariant affine subsets

We obtain the picture of orbits shown in Fig. 1.

FIG. 1

Consider the map n induced by ^[x]^c^[x] , n: A3 = Spec K[x]-»A2 =
Spec K[xu xxx3 - \x% (xu x2, x3)^(xu xxx3 - \x\). Then

n~\x, y) = {(x, a, x~\y + W)) \cxeK} = orbit(x, 0, y/x) if x * 0,

n~l(0, y) = {(0, x, a) | x2 = -2y, a e K} = orbit(0, x, 0) U orbit(0, -x, 0).

(3) The restriction of K to the open subset D(xx) is a geometric quotient

JI: Spec/C[*!, x2, ^ . - • S p e c ^ f j : ! , x2, x3]x)
L.

(4) If A = K[xx, x2, x^x^-^, then L acts freely on Spec,4 but the restriction
to D(xiX3 — 2xl), Jt: Spec A —*• Spec AL is not a geometric quotient since some
fibres of' n are unions of two orbits. Notice that the assumption of Lemma 3.1 is
not satisfied, which would imply that there is an a eA such that 6(a) is a unit.
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(5) The restriction JZ\D(X1X3 — \x%) is also not a quotient in the analytic
category since (Spec>l)/L is not Hausdorff with respect to the analytic topology
(see (2)).

(6) Although Spec A—* Spec AL is not a geometric quotient, it becomes one
after an etale covering. Let F = XXZ2 + 2X2Z + 2X3, then

is e"tale since [9F/dZ]2 = — 2(xxx3 — 2*2) m°d F. The action of L can be lifted to
B by <5Z = - 1 . This implies BL[Z] = B, and Spec B-* Spec BL is a geometric
quotient (cf. 3.1).

(7) The restriction of it to the closed subset V(x1)^Sp&cA is a geometric
quotient since, on this set, x2 is invariant and a unit, that is, (A/x1)

L[x3\ =A/xt

(cf. 3.1).
Now (3) and (7) imply that A3 is stratified canonically by

Vl = {(x1,x2,x2): x^O}, V2 = {(xux2,x3): xx = 0, x2*0}
and

V3={(xux2,x3): xl=x2 = 0}.

Because of (4), this is the best result we can get.

EXAMPLE 2.3 (nowhere existence of geometric quotient). Let K be algebraically
closed, A = K[e, x], e2 = 0, and L = Kd with 6 = ex(d/dx). Then we have

(1) d(A) c eA and S2 = 0,

(2) AL = K + eA, that is, Specy4L is a fat point,

(3) (exp td)(x + a) = x(l + te) + a, for a eAL, that is all points of Spec A are
fixed under the action of L.

Now (2) and (3) imply that there is no open subset ( / c Spec A such that
U-* U/L is a geometric quotient. This is also a simple example where
AL = K[ex, EX2, ...] is not of finite type over K.

EXAMPLE 2.4 (stratification with respect to central series is not optimal). Let
3

A = k[x1,x2,x3,x4, Xs^^-xl and L='2tK6i

with

dx5

The centre of L is Z = Kd3, the lower central series is just given by L^Z. It is
not difficult to see (because Speed = D(xl)U D(x2) and di(x4) is a unit in A) that
AL[x4,x5] = A and SpecA^>SpecAL is a geometric quotient. But Spec/I—>
Spec4z is not a geometric quotient. The maximal open set where the geometric
quotient by Z exists is D(xx) which is the set of stable points of Spec/i with
respect to Z and A.
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EXAMPLE 2.5 (Winkelmann [17]; geometric quotient of affine space need not be
affine). Let

d d d
8: = x1 — + x2 — + (l+x1x4-x2x3) — e DcrfK[xu ...,x5]ax3 dx4 dx5

and L = K6. The following hold:

(1) Spec K[xu ..., X5] = D(xx) U D(x2) U D(l+xlx4-x2x3), that is, the action
of L is free;

(2) xx,x2, l+x1x4-x2x3eK[x1, ...,x5]
L;

(3) the canonical map

JI: Spec K[xx, ..., x5]^>SpecK[xx,..., xs]
L

is not surjective; the open subset U = D(xx, x2, l+xxx4 — x2x3)c.
SpQcK[xx, ...,x5]

L is a p r o p e r s u b s e t a n d ^ ( S p e c K [ x x , ...,x5]) = U; U is
not affine;

(4) by Remark 3.4 (cf. also Theorem 3.10) we have

but
H\L, K[xx, ...,x5]Xi) = H\L, K[xx> ...,x5]X2)

= H\L,K[xx,...,x5]x+XlX4_X2X3) = 0;

(5) n: SpecK[xx, ..., x5]—> U is a geometric quotient by (4), whence each
point of Spec K[xx, ..., JC5] is stable.

EXAMPLE 2.6 (Dixmier and Raynaud [5]; non-existence of a maximal open
subset for which the geometric quotient exists). Let

d d
d: = xx—- + (2x2x2-l) — eDerIZlK[xx,...,x4\.

0X3 dx4

Let X^SpecK[xx, ..., x4] be the closed subset defined by xxx4 — x3(x2x3 — 1) = 0
and A = K[xx, ..., X4\lxxx4 — x2{x2x3 — 1). Let L = Kb. The following hold:

(1) 6(xxx4 - Jt3(jt2*3 - 1)) = 0, that is, 5 e DerfA;
(2) AL = K[xx, x2] and L acts freely on X\
(3) X = D(xx) U V(xx, x3) U V(xu x2x3 - 1) and D(xx), V(xx, x3), and

V(xx, x2x3 — 1) are L-invariant under the action of L on X; if we let
(xx, x2, x3, x4) e X, then

e\p(td)(xx, x2, x3, x4) = (xx, x2, x3 + txx, x4 + t(2x2x3 - 1) + t2xxx2);

(4) if we let Xx = X - V(xx, x2x3 - 1) and X2 = (X - V(xx, x3)) H D(x2), then
X = Xx U X2\ Xx and X2 are affine open subsets of X, namely

Xx = SpecK[xx>x2> g],

with

= \x3lxx on D(xx),

and 6(g) = l, and

& =

lxj(x2x3 — 1) on D(x2x3 — 1),

= SpecK[xx,x2, h]X2,
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with

= (xjx2x3 on D(x3) D D(x2),

and <5(/i) = l; this implies that A',—»Spec K[xlf x2] and A^—•
Spec K[xlf x2]X2 are geometric quotients;

(5) K\ X = Spec J4—»• Speed*' is not a geometric quotient since the fibre of the
points (0, x2)eSpecAL = K2, with x2=£0, is the union of the two orbits
{(0, x2, 0, t): t e K} and {(0, x2, l/x2, t): teK};

(6) by (3), (4) and (5) we obtain Xs = D(x1)czXl = X\ (with D(xx)±Xx)
X2 = Xs

2, X\(A) = XS
2(A) = Xs.

3. Free actions and a relation to the Jacobian Umkehrproblem

In this chapter A denotes an arbitrary commutative ^-algebra, with K a field of
characteristic 0. We study free actions of a nilpotent Lie algebra L on the affine
^-scheme Spec A and derive necessary and sufficient conditions for Spec/l—»
Spec>lL to be a geometric quotient. The following simple lemma is the starting
point of all that follows (cf. also [7,15,10]).

LEMMA 3.1. Let 6eD<xf(A), xeA and d(x)eA6be a unit. Then A8[x] = A
and x is transcendental over A 6.

Proof. We may replace x by x/6(x) and hence assume 6(x) = 1. We only need
to show that A cA6[x]. So, let a eA and n be such that d"+x(a) = 0. Assume by
induction that {b eA \ 6n(b) = 0} cA8[x] and consider b : = a - (1/n!) 6"(a)xn.
Then 6n(b) = 0, and hence beA6[x]. On the other hand, d"(a)eA6, so that
aey46[jc]. Assume there exists a non-trivial polynomial peA6[X] of minimal
degree such that p(x) = 0. Then (dp)(x) = 6(p(x)) = 0 and Sp is a non-trivial
polynomial of lower degree vanishing in x, which is a contradiction.

REMARK 3.2. If <5 and x are as in Lemma 3.1, we easily obtain invariant
functions by putting

' 0 0 = 2 (l/v!)(-l)v6v(y)xv, for ye A.
V550

Then i(y) eA6 and i(y) = d°(y) =y if y eA6.

REMARK 3.3. If aeA is a unit and if A is reduced, then d(a) = 0 for each
6 e Der£'(>l).

Proof. Let ab = \. Since exptd is an algebraic automorphism, we get
exp td(a) exp td(b) = 1 in A[t], This implies 6(a) = 0 in Alp for each p e Spec A
since Alp is an integral domain (consider the maximal n for which <5"(a)=£0).
Since A is reduced, the intersection of all p e Speed is zero. This implies
6(a) = 0.

Notice that without the assumption of A being reduced the remark is not true:
let A = K[e, x], e2 = 0, and a = 1 + ex. Then a is a unit and d(a)/dx = e.
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To prepare the main theorem of this chapter we will give sufficient conditions
for A to be a polynomial ring over AL which are extremely useful in the
applications as well as for further theoretical results. They say that the derivatives
of certain subminors of the matrix (<5f-(*,-)) are linear combinations of 'earlier'
columns. We call this the column-minor criterion. In Theorem 3.8 we give a kind
of dual criterion for rows.

At an intermediate stage we need the Lie algebra cohomology (cf. [3]). Recall
the definition of H1: if dx,..., Sn is a basis of L and [dh <5y] = £* cijkdk, then
Hl(L, A) = ker di/lm d0, where

d0: A^An, with do{a) = (dx(a), ..., Sn(a)),

REMARK 3.4. If L is abelian, then Hl(L, A) = 0 if and only if there are
xx, ..., xn eA such that <5,-(*y) = <5{. Moreover, in this case A = A [xx, ..., xn] and
Xi, ...,xn are algebraically independent over AL.

Proof. Note that e, = (0, ..., 0, 1, 0, ..., 0) e ker dx since L is abelian. Hence, if
Hl(L, A) = 0, there are x, eA such that do(x,) = eit for / = 1, ..., n.

Conversely, assume 6i(xJ) = 6'i and let (au ..., an) €kerdu that is, <5,(ay) =
djifli). Applying Lemma 3.1 n times, we obtain that A=AL[xl,...,xn], with
xu ...,xn algebraically independent over AL. Therefore, we can write

a, = Xfl ^x v, where a ̂  e A L,

and get v/a
(
v^...>v,_1 Vn = Vja^l_tVnl Vn. Put

b = 2 Mv> &v,V n = ^ v ? ^ , - ! vnvy;

THEOREM 3.5 (column-minor criterion). Let dx, ..., dn e Der£'C<4)
xx,..., xn eA, satisfy the following properties:

(2) det(<5,-(jKy)) is a unit in A,
(3) for any k — \,...,n and any k-minor M of the first k columns of (d^Xj))

have

*(M) e 2
v<k

with the conventions x0 = 0 and 6 = 1 :

\i
Let Lc-Yty^Ady be any K-Lie algebra such that 6X, ..., 6neL. Then

AL[xi,..., xn] = A and xx,...,xn are algebraically independent over AL. In
particular, (Spec(>l))s = Spec A



86 GERT-MARTIN GREUEL AND GERHARD PFISTER

REMARK 3.6. Condition (3) is implied by

(3') bdj(xk) e 2 Ab(xv), for k = 1, ..., n,
v<k

that is, the derivative-vector of each element of the matrix (<5,-(xy)) is an >l-linear
combination of earlier columns.

Proof. Let M be a fc-minor of the first k columns of (<5,(jt;)). If k = 1, then
condition (3) is the same as (3'). Assume that k>\ and (3) is true for all
(k — l)-minors of the first k — 1 columns of (<5,(jty)).

We have M = E (-l)k+y5lv(xk)My, where <5/(,..., <5/t are the vector fields
defined by the rows of M and Mx,..., Mk are the corresponding (k — l)-minors.
Now

= 2 (-l)k+v(b(dlv(xk))Mv + 6lv(xk)bMv)

and (3) follows from (3') and the induction hypothesis.

REMARK 3.7. If A is reduced, then (3) in Theorem 3.5 can be replaced by the
following weaker condition:

(3") For any k = 1,..., n there is a fc-minor Mk of the first k columns such that
Mk is not a zero divisor and is obtained by deleting a row and the (k + l)th
column in Mk+X and satisfies

bMk € 2 Ab(xv).
v<k

This will become clear during the proof of Theorem 3.5.

Proof of Theorem 3.5. We prove the theorem by induction on n. The case
n = 1 is Lemma 3.1.

Let n > 1 and define 6y = £* bjkbj, (6,y) = (^(xy))"1. We claim that 5y e
Der£'(y4) and [dit6j\ = 0. Then, 6i{xj) = 6tj and, by Remark 3.4, we obtain
AL[xx, ..., xn] = A, where L = Tt"=iK6i. Let Lc£"=1,4<5v be a AT-Lie algebra
and #!,..., 6ne L. The theorem follows since AL = AL.

In order to prove the claim, let (for any k such that d^x^i^O and is not
nilpotent; by (2) such a k exists)

' ' 6k{xx)
6k'

Then, by definition, S}*^*!) = 0. Since Sk(xx)eAL, we obtain i4jj(jCl)[jCi] = A8dXl)

(Lemma 3.1) and 6jk) eDerf A6k(X]) (use the fact that 6jk\a) = 6j(a) for
% <k\ [k\ g> ? ^ ? >

j k(]) j) j)
and d<jk\xx) = 0). We will prove that 6[k\ ..., 6g>lf 6?^ , . . . , 6?> and

x2,..., xrt satisfy the conditions (1), (2) and (3) of the theorem.
Assuming this for a moment and using the induction hypothesis for x2,..., xn

and 6{k\ ..., 6k
klu 6k

ktx,..., «?> and any Lie-algebra L(*>cEv^i4at(jri)6?> such
that 6[k) e Lik) we get

Adk(Xi)[
X2> '••> Xn\ = ASk(Xty
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Now let a eA^Xi), that is, 6{k)(a) = 0, which implies that

Consider
= [Sv,Sk)(a)

** 8 ( }
S / « ( « ) (because of (*))

(because 6v(xi), 6k(xi)eAL). This implies that 8k e Der^t1^*,). Furthermore,
jCj e^ l^ , ) . This implies (Lemma 3.1) that ^^(xot-^i] = ^6*(*i) a nd consequently

Therefore, Sj e Dei$lA6kiXl) and [8h 6j](a) = 0 for all a eA6k{Xl). This holds for all
k with dk(xx) =5̂0 (if ^(^x) is nilpotent, it is trivial). Assumption (2) implies that

Hence, 3,eDer£U and [6h Sj] = O. It remains to prove that 6[k\ ..., 6k
k2u

6k
kll}..., 6?> and x2,..., xn satisfy (1), (2), (3). l\et [6,, <5,] = Ev c/yv6v. Then

that is, (1) is satisfied. Part (2) follows from

To prove (3) let M{k) be an /-minor of the first / columns of {6\k\xD)j92ii^k. Let
M be the (/ + l)-minor of (<5/(*/)) defined by the first / + 1 columns and by the
rows corresponding to the rows of M(fc) and the kxh row of (6,-(xy)). Then

M = ±dk(xl)M
w

and

cvb(xv),

by assumption. This implies in particular that SjM = T,V<I+ICV8J(XV) for suitable
cveA and all j . We obtain

V</+1

and (3) is proved.
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THEOREM 3.8 (row-minor criterion). Let 8U ..., 6ne Der^\A) and xu ..., xn e
A satisfy the following properties:

(1) [Sh 6y]eEv>max{i,;}^<5v,
(2) det(6;(jCy)) is a unit in A,
(3) for any k = 1, ..., n and any n — k + \ minor M of the last n — k + 1 rows of

(dj(Xj)), we have 6tM = 0for I = 1,..., k.

Let Lc£"= 1/l<5v be any K-Lie algebra such that Su..., 6ne L. Then
AL[xx,..., xn] = A and xx, ...,xn are algebraically independent over AL.

REMARK 3.9. Condition (3) follows from

(3') <5,<5,(x)e2^<5v(x) for all i,l
v>l

(with the convention that 6n+l = 0 and x = (xlt..., *„)).

Proof. Let M be an n-k + 1-minor of the last n-k + l rows of (^(JC,)). If
k = n, then (3) is the same as (3') for l = n. Assume (3) holds for all
{n — fc)-minors of the last n — k rows and write

Then, for l^k,

S,M = 2 (-l)v(8A(xiy)Mv + Sk(xiv)dtMv)

= 2 (-l)vQ*,A(*'v)Mv (because 6,Mv

H>k

= 0.

Proof of Theorem 3.8. Again we prove the theorem by induction on n. The
case n = 1 is considered in Lemma 3.1.

Let n>\ and define SJ = TtkbJkdJ, (biJ) = (di(xj))~
1. We claim that 5,-e

Der£'(j4) and [<5,, 6y] = 0. This implies, as in the proof of Theorem 3.5, that
AL[xu ...,xn] = A. In order to prove the claim we define, for any k such that

x x X k

Then xjk) eA^Xk) since 6n(Xj)eAL by (3). Using Lemma 3.1 we obtain
A6n

n(xk)[
xk]=A6n(Xk)' Now, by assumption (1), 6U ..., dn.t € DerfA^y On the

other hand,

that is, det(6,(jc}*)))/<n ;# i t is a unit in A%n
n^Xk). Let Af(fc) be an (n — A:)-minor of the

last n-k rows of (6i(xjk)))i<nj^k. If M denotes the (n- k + l)-minor of (6,(xy))
defined by the last n — k + 1 rows and the columns defining A/(A:) and the kth
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c o l u m n , t h e n M = ± 8 k ( x k ) M i k \ N o w 6,M = 0 f o r l^k i m p l i e s 6,M(k) = 0 in
A6k(Xky We have proved that the conditions (1), (2), (3) are satisfied for
6 l f . . . , dn-i and x\k\ ...,xk

klvxk
klv ...,x{k). Using the induction hypothesis we

obtain
AL r (*) (k) (k) r (* ) i_

and, finally,

As in the proof of Theorem 3.5 we can deduce that S( e Dernj\A) and [Sit Sj] = 0.

Now we are prepared to prove the main theorem of this chapter.

THEOREM 3.10. Let L c D e r ^ A ) be a finite-dimensional nilpotent Lie algebra
and r = dim^ L. The following conditions are equivalent:

(1) H\L,A) = 0;
(2) Hn(L,A) = 0forn^l;
(3) there are xx, ..., xreA and 8it ..., Sre L such that

(3.1) <5(-(*,) = l,
(3.2) 6i(xJ) = 0ifj<i,
(3.3) 6k6,{xj) = 0ifk&j;

(4) there are xx, ..., xreA and di, ..., 6re L such that
(4.1) det(6;(jcy)) is a unit,
(4.2) /or any k-minor M of the first k columns of (<5,(*y)), wiY/i A: = 1, ..., r,

we have

v<k

(5) there are xu ..., xr eA and dlt ..., 6re L such that
(5.1) [Sj, Sj] e Ev>max{«,y} ^ v ,
(5.2) det(6/(x>)) is a unit,
(5.3) for any r — k + 1-minor M of the last r — k + 1 rows of (6#(xy)), with

k = 1, ..., r, we have d/M = 0 for 1 = 1, ..., k;
(6) there are xx, ..., xreA algebraically independent over AL and 6X, ..., 6r e L

such that AL[xlf ..., xr] =A, and det(6/(jcy)) is a unit (Speol—»Spec,4L is a
trivial geometric quotient with fibre isomorphic to L).

Proof. To prove that (2) is equivalent to (1) we use the Hochschild-Serre
spectral sequence (cf. [3, p. 351]) for a sub-Lie algebra Z contained in the centre
of L:

Ep
2

q = Hp{LIZ,Hq{Z,A)) => Hp+q{L,A).

Theorem 5.11 in [3, p. 328] for the case of dim Z = 1 (especially Hq(Z, A) = 0 if
q =£ 0, 1) gives rise to the exact sequence

...-*H"{LIZ, Az)^Hn{L, A)^Hn~\LlZ, H\Z, A))^Hn+\LIZ, Az)-+... .

Now we can use induction on the dimension of L. The case n = 1 is obvious since
always H'(L, A) = 0 if i > dim L.
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Assume Hl(L, A) = 0 and let Z = K8 for some 6 =£ 0 in the centre of L. From
the exact sequence we obtain H1{LIZ, Az) = 0. By the induction hypothesis this
implies that Hn(L/Z, Az) = 0 for n ̂  1 and Hn{L, A) = Hn~\LlZ, H\Z, A)). In
particular, 0 = H°(L/Z, H\Z, A)) = H\Z, A)LIZ. By definition of H1 there is an
xeA such that 6(x) = 1. By Lemma 3.1 we have Az[x]=A. This implies that
H\Z, A) = 0 (Remark 3.4) and, consequently, Hn{L, A) = 0.

To prove that (1) implies (3) we again use induction on the dimension of L. If
dim L = 1, then the result is a consequence of Remark 3.4. Now let 6r be a
non-trivial element from the centre of L. As before, H\L, A) = 0 implies that
H\Z, A) = 0 and H\L/Z, Az) = 0. Thus, there is an xr eA such that dr(xr) = 1.

By the induction hypothesis there are xx,..., xr_x eAz and 8X,..., dr_x e LIZ
such that

= 0 if y<i,

Let <5x,..., 6r_! e L represent dx,..., dr_v Then 6 , , . . . , dr, xlt...,xr satisfy
(3.1), (3.2) and (3.3). The implication (3)=>(4) is obvious because a A:-minor of
the first k rows of (6,-(JC,-)) is either 1 or 0. Moreover, the assumptions of (3) imply
that [<5,, 6j\ e Ev>max{i,;} K6V. This can be proved using induction on r.

The conditions of (3) imply that 61} ..., 6r is a basis of L,br is in the centre of
L, *,, ..., jrr_j eA6r, and the classes 8^ ..., 8r_x of 6 t , ..., dr_x and JCt, ..., xr_x G
>l6' satisfy (3) too. On the other hand, any (r — k + l)-minor of the last r-k + 1
rows of (6i(Xj)) is either 1 or 0. This shows that (3) also implies (5). Now, using
Theorem 3.5 and Theorem 3.8, we obtain that (4), respectively (5), implies (6).

The implication (6) ̂  (1) is proved in the following supplement.

Supplement. Let B c.A be a subalgebra and L c DQT^A be a nilpotent Lie
algebra with the following properties:

(i) L is a free fi-module of rank r,
(ii) L = Z0(L) 3 Z j ( L ) 3 . . . 3Z / (L) 3 Z / + i ( L ) = 0 is filtered by sub Lie-

algebras Zj(L) such that [L, Zj(L)] c Zj+X{L) for ally, and Zi(L)/Zj(L) are
free Z?-modules of finite rank for i = 0, . . . , / , j = 1, . . . , / + 1.

Then the conditions (1) , . . . , (6) of Theorem 3.10 are equivalent.

Proof. Choosing a suitable base of the free fi-module L, we find that the proof
for the implications (1) to (6) works as well as for Theorem 3.10. It remains to
prove that (6) implies (1). Let (a,y) = (^(xy))"1; then Ev 8j(xv)aVJ = ty implies that

2 d,di(xv)aVj + 2 <5,(*v)<M«vy) = 0.
V V

Using this equality we obtain

2 [Si, 6,](xv)avj= 2 Si(
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Let [<5(, <5/] = £ „ Cn^df,; then

/(xM)( —-̂  - — ^ ) .

Now let I ; I e Ar such that dj(ak) - <5*(a,) = Ev cikvav. We have to prove that

there is a z eA such that <5,(z) = a-r We use the equality obtained for the cUj and
obtain

for all /,/. This implies that

ikj davj

y OX* y dXv

that is,

for all v,k. Consequently, we obtain zeA such that dz/dxk = Yljakjaj. This
implies that dk(z) = ak.

We should like to thank Hanspeter Kraft for the following remarks:

REMARKS 3.11. 1. The equivalent conditions of Theorem 3.10 imply that the
geometric quotient Spec4—»Spec>l*' is a principal fibre bundle with group
exp(L) in the sense of Mumford [13, 0.3, Definition 0.10].

We have to show that the following morphism is an isomorphism:

(CT, p2): exp L x Spec A -^ Spec(A ®ALA),

where o denotes the action and p2 the projection. Since the coordinate ring of
exp L is isomorphic to K[ylf ..., yr], we have to show the isomorphism

A®ALA=> A®KK[yl} ...,yr], a®b^{a®\)o*{b).

We use condition (3) and induction on r. For r = 1 we have the morphism

A6[x] ®AsA8[y]^A6[x] ®K K[y],

x>-*x and y*-+o*(l®y) = exp(yd)(x)=x+y, which is certainly an isomorph-
ism. By the induction hypothesis, we have

- ^ A6' KK[yu . . . j r . J .

Applying A6r[xr]®A^-=A®A^ from the left and -®A*A = -®A<*A6r[yr]
from the right we see that the above isomorphism composes with xr*->xr and
yr*-^exp(yrSr)(xr) to the desired isomorphism.
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2. If we use Lemma 7.4.1 of [9] we also get the converse, that is, the
conditions of Theorem 3.10 are equivalent to Spec/l—>SpecAL being a
geometric quotient and principal fibre bundle with group exp(L).

3. Of course, the equivalent conditions of 3.10 imply that the action of L is
free (either in our sense or in the strong sense of Mumford [13]) and
Spec A—> Spec AL is a geometric quotient. We do not know whether the converse
is true. This would follow from [9], but according to Kraft the statement 'If the
action is free we have clearly ...' in [9, p. 115] is not justified.

4. Note, however, that if A is of finite type over K and if the action of L on A
is free in the sense of Mumford, then a geometric quotient Spec A-* Spec AL is a
principal fibre bundle with group expL by [13, 0.3, Proposition 0.9].

Theorem 3.10 suggests the following conjecture.

CONJECTURE. Let L c Der£'(/1) be a nilpotent Lie algebra and r = dim L. Let
<5j,..., 6r e L, xlt ..., xr eA such that det(<5,(;ty)) is a unit. Then there exist
ylt...,yreA such that A = AL[yu ..., yr] (equivalently, H X(L, A) = 0). For the
moment we can show this only up to an e"tale covering:

REMARK 3.12. Let LcDer^(i4) be abelian and r = dimL. Let 6,, . . . , SreL,
xx,..., xreA such that det(<5,(jty)) is a unit. Then there is a B^A such that
Spec #-» Spec ,4 is etale, the action of L lifts to B and H\L,B) = 0. If K is
algebraically closed and A is of finite type over K then B can be chosen such that
Spec B —> Spec A is surjective.

Proof. Let F,(Z,,..., Zr): = (exp E Zfij)(xt) and B: = A[Z},..., Zr]/(F,,..., Fr).
Then the action of L on A lifts to B by 6,(Zy) = -6}. This implies that
Hl(L, B) = 0 (Remark 3.4). On the other hand, applying the automorphism
exp E Z/6/ yields that

(exp 2 ZA)(det(6,(xy))) = det((exp £ %)(«,(*,•))) = det[J|]

is a unit in A[ZU ..., Zr]. This implies that B D / 1 is etale.
Replacing JC, by x, + ociy where oc{ e K, we obtain, with the construction above

for every closed point of Spec A defined by the prime ideal p such that
xx + <*!, ..., xr + ar ep, an etale neighbourhood Spec B of p such that
Hl(L, B) = 0. This proves the rest of the remark.

The following stronger version of the conjecture is equivalent to the Jacobian
Umkehrproblem. Let L 3 Der£'(yl) be an abelian Lie algebra and r = dim L.
Let <5j,..., 6reL, xx,..., xr eA be such that det(6,(xy)) is a unit. Then
AL[xu ...,xr] = A. (For A = K[YU ..., Yr], 6i = d/dYh we obtain the Jacobian
Umkehrproblem.)

It is not difficult to see that a solution of the Jacobian Umkehrproblem also
solves the conjecture if A is reduced. Theorem 3.10 now provides a solution of
the Jacobian Umkehrproblem under additional conditions:
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COROLLARY 3.13. Letxx, ...,xn eK[z{, ..., zn] such that
(1) tet(dxt/dxj) = 1,

and assume that the following condition is satisfied:
(2) there is a sequence of non-vanishing k-minors Mk of the first k columns,

k = 1, ..., n, with the following properties: Mk is obtained by deleting a row
and the (k + \)th column in Mk+X and satisfies

j^eSflz , z,,]^
dz v<k dz

(with the convention that xo = 0 and d/dz = (d/dzx,..., d/dzn)).
Then K[xu ..., xn] = K[zx,..., zn].

4. General actions and algorithmic stratification

In this chapter we will give conditions for the existence of a geometric quotient
for the case where the action of L is not necessarily free. Again, A denotes a
commutative /w-algebra, char(^) = 0. The differential

d: A-*HomK(L, A), da(d) = 6(a),

will play an essential role in the construction of the stratifications. Moreover, we
consider the exterior derivation A—>QA/AL into the module of Kahler
differentials. Note that d factors

d: A—>QA/AL^> HomK(DerAL(A), A)—>HomK(L, A).

The exterior derivation will also be denoted by d. For any subset M czA, AdM
denotes the submodule generated by dM either in HomK(L, A) or in QA/AL.

The next theorem is a generalization of Theorem 3.10 to not-necessarily-free
actions of an abelian Lie algebra.

THEOREM 4.1. Let A be reduced and noetherian and L c DerJlU be a
finite-dimensional abelian Lie algebra. The following conditions are equivalent.

(1) There exists an open subset U of Speed*" such that Spec A —> U c Speol^ is
a geometric quotient and locally trivial.

(2) The orbit dimension under the action of L is locally constant and
QA/AL = AdJAL where $AL:={aeA | 6(a)eAL for all 6 e L).

(3) There are xx, ..., xneA and dlt ..., 6m€ L such that
(3.1) 6i(x,)eALforalli,j,
(3.2) rank(<5,(jty)) is locally constant on Speol and equal to the orbit

dimension.
(3') Let d: A—>HomK(L, A) be the differential defined as above. Then AdA is

locally free and AdA = Ad J AL.
(4) There is a covering {JfeI D(f) = Spec>l, / c AL, and for f el there exists a

sub-Lie algebra L^ c L such that
(4.1) ^
(4.2)
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Proof. First, we prove that Condition (1) implies (2), (3') and (4). The
conditions of (2) are local in the sense that it is sufficient to prove them on an
invariant affine covering of Spec A So we may assume that A=AL[xx, ...,xn]
and rank(<5,(;ty)(0) = n for all t e Spec,4, where L = ZTLi Kdt.

Now let M be an n-minor of the matrix (<5,(*y)) not vanishing identically. We
will see that M is invariant. Since A is noetherian and reduced, it is enough to
check it on the components of Spec A that is, we may assume that A is an
integral domain. Let Lo be the sub-Lie algebra generated by the vector fields
corresponding to the rows of the matrix defining the minor M, Lo= E"=i ^Av-
Since A/=£0, we obtain AL = AL°. Using the same method as in the proof of
Proposition 1.6, we obtain Af=Af°[yl,...,yn] for a suitable feAU) and
div(yv) = l> 8iAyi) = Q if v > 7 - On t n e other hand, Af =Af°[x,,..., xn] implies
that

that is, 1 = M det(<9y,/dxk). This implies that M eAf° (Remark 3.3) and, since A
is an integral domain, MeAL°. Since M is invariant under the action of L, we
obtain

AM = AM[xl} ..., xn] = AM[XI, ..., *„].

Since Lo acts freely, we can use Theorem 3.10 to obtain H\L0) AM) = 0. This
implies that there are zx, ..., zn eAM such that div(zf) = 6). Remark 3.4 implies
that ;4MO[ZI, •••> zn] = AM. If 6 e L is any vector field, then d = E"=i Kdiv, with
hv G AM, since the other rows of (<5,(jty)) are linearly dependent on the rows
corresponding to M. Now L is abelian and [5, <5Iv] = 0 for all v implies that
hv e AM. This implies that <5(z,) eAM = A^ for all 6 e L, that is, zu ..., zn e J AM.
Hence, AMdAM = AMd j AM and AMdAM is locally free and (3') follows.

On the other hand, QAM/AL = ECU AMdzv, that is, AMd jAM = QAM/A^, and we
have proved that (2) is true on the open set D(M). Now Speol is covered by the
open sets defined by all n-minors of (6,-(jCy)) and this proves (2) and (4).
Condition (4) implies (1) because of Theorem 3.10 (take U = Ufe/D(f) c
Spec4L).

Next, we prove that (2) implies (3). Choose xlt ..., xne j AL such that
QA\AL = Y,?=lAdxi. By definition of J AL, we have 6{Xi)eAL for all 6 e L. Let
Si, ..., Sm be a basis of L. We have to prove that rank(6,(xy)(f)) is equal to the
dimension of the orbit of / for all points t e Spec A Let us consider the exact
sequence

Locally at t we may assume that Q^ is generated by dxlf ..., dxn, dyx, ..., dys,
dyt6QAL such that xlf ...,xn, y,, ...,ys generate the maximal ideal of the local
ring of t. Now rank(<5J(x/), <5,(.y;))(f) is equal to the dimension of the orbit of t (cf.
Lemma 4.2). However, dy{ e QAL implies dj(y{) = 0, which proves the claim.

To prove that (3) implies (1) let M = det(6/u(jcy(i))V(M^r be an r-minor not
vanishing identically and r the orbit dimension on D(M) c= Spec A Let LM be the
Lie algebra generated by dix, ..., 5ir. Using Theorem 3.5, we obtain

J\> •-•> xjr\
 = AM-
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If AM£AMM, then there is an / eAL such that A^yx, ..., yt] = A^M
f for suitable

yu ...,y, (Proposition 1.6). This implies that the orbit dimension is not r and this
is a contradiction to the assumption. We obtain AM[XJX, ..., xjr]=AM. Let
UQSpecAL be the open set defined by all minors of size equal to the orbit
dimension of (6,-(jCy)); then Spec/1—> U is a geometric quotient and locally trivial.

Finally, we show that (3') implies (3). Choose xlf ...,xne f AL such that
AdA = Y/l=\Adxv. If 6U..., 8m is a basis of L, then dj(Xj)eAL. The second
condition of (3) is implied by the following lemma.

LEMMA 4.2. Let A be noetherian and L = T,T=\ K$i ^ Der£' A be a nilpotent Lie
algebra. Let d: A^>HomK(L, A) be the differential defined by da(d) = d(a) for
a e A, 6 e L, and let t be a point of Spec A Then the following hold:

(i) if xx, ..., xn generate the maximal ideal of the local ring oft then rk(dj(Xj){t))
is equal to the dimension of the L-orbit of t;

(ii) if AdA = T."-iAdXj then

dimK(l)AdA ®M JC(O = rk(<5,(*,)(0)

and is equal to the dimension of the L-orbit of t.

Proof, (i) Let <5,|, be defined by <5,-|,(a) = 6,(a)(f) for a eA. Then <5,|, generate
the tangent space to the L-orbit of t. Certainly, the dimension of this tangent
space is equal to rk(di(Xj)(t)). Since char(AT) = 0, this is equal to the orbit-
dimension at t [1, II, 6.7].

(ii) Let 4>: HomK(L, A)2>Am be the isomorphism defined by 3>(<p) =
(q)(di), ..., q)(8m)), where 6it ..., 8m form a #-basis of L. Then <&{AdA) is the
submodule generated by $>{dxi) = (6I(JC,-), ••-, &m(x,)). Certainly <I> does commute
with localization. Hence AdA <8>A K(t) = rk(6,(xy)(f)), which is equal to the orbit
dimension by (i).

REMARK 4.3. The condition AdA= Ad \ AL implies that L is abelian. More
generally, let LaDevKA be any Lie-algebra and Zj = [L, Zy_j], Zo= L, be the
lower central series. Define F°(A) = AL and F'(A) := J" F'-\A) := {a € A \ 6(a) e
F-\A) for all SeL}, for i ^ l . Then AdA=AdFk(A) implies that Zk = 0, in
particular, L is nilpotent. To see this, let xeA and 8 e Zj. Then 6(x) €
Fk~i~1(A), and hence S(x) = 0 if S e Zk and x e Fk(A). For arbitrary x eA we
have dx = £ ^tdxh with xt e Fk(A) by assumption. This shows that S(x) =
dx(d) = 0, that is, Zk = 0.

REMARK 4.4. If L is nilpotent but not abelian, we could use the lower (or
upper) central series

L = Zoz>Zt 3 . . . r>Z/=> {0},

and derive a criterion for the existence of a locally trivial quotient by applying
Theorem 4.1 successively to the abelian Lie algebras Zj/Zi+l. We do not
formulate this for two reasons. Firstly, it is of minor practical use since it would
require knowledge about the invariant functions AZi (/ = 1, ..., /), and secondly, it
is too strong, as Example 1.13 shows: there, the quotient with respect to L exists
but not with respect to the centre.

Instead we prefer to prove a criterion which uses a filtration of L and of A
(with properties like Z, and F' in Remark 4.3) and which does not require any
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knowledge about invariant functions. Moreover, if the quotient does not exist on
all of Spec/I, it provides a stratification of Spec,4, into locally closed invariant
subspaces admitting a locally trivial quotient. The construction of the strata is
completely explicit in terms of the given coordinates and vector fields.

Algorithmic stratification
Let A be a noetherian ^-algebra and L c Der^'/l be a finite-dimensional

nilpotent Lie algebra. Suppose that A = Ui6z F'(A) has a filtration

F': 0 = F~l(A) a F°(A) cz F\A) ^ ...

by sub-vector spaces F'(A) such that

(F) 6F(A) c F-\A) for all i e Z and all 6 e L.

Assume, furthermore, that

Z.: L = Z0(L) => ZX{L) =?... => Z,{L) => Zl+X{L) = 0

is filtered by sub-Lie algebras Zj(L) such that

(Z) [L, Z,(L)]c=Z/+1(L) for all ; eZ.

Let d: A—>HomK(L, A) be the differential defined by da(d) = d(a) for aeA
and 6 e L. The filtration F* of A induces a filtration of Ad A, the A -module
generated by the image of d:

(Since A is noetherian and AdA a submodule of the free module HomK(L, A),
there is a k such that AdFk(A) = AdA.) The filtration Z . of L induces projections

jij-. Hom*:(L, A)—> HomK(Zj(L), A)

and via jtj the module AdA defines submodules jtj(AdA) c Hom/f(Zy-(L), A). We
will study now the flattening stratification of Spec A with respect to the modules
HomK(L, A)lAdF{A) and Hom*(Z,(L), A)/jij(AdA).

We use the following notation. For any A -module M of finite presentation

<P
A" >AP >M >0

let Ij(M) be the ideal of A generated by the /-minors of <p with the convention
that /0(M) = A and /y(M) = 0 if j > min{p, q). Then /y(Af) is the (p -y)th Fitting
ideal and, consequently, independent of the presentation of M, a fact which is
used below several times. For r = (r,, ..., rk) and s = (^i, ...,St), with r, and s,
non-negative integers, we define ideals

ar,8:= 2 /,+i(Hom^(L, i4)/i4rfFf(i4)) + 2 /,/+i(HomJC(Zy(L),

i=i y=i

We define

Ur,s := (/r>8(F
#, Z . ) := V(ar>8) n D(br,s) c Spec/l

to be the quasi-affine subscheme defined by the intersection of the open set
£>(br>8) and the closed subset V(ar)S) = Spec4/ariS.
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REMARK 4.5. We give an explicit description of the strata UTS, using coordin-
ates and vector fields. Let xx,..., xn eA and dx,..., dm e L satisfy the following
properties:

(1) there are vx, ..., vk, with 0^vx^...^vk = n, such that dxx,...,dxv.
generate, over A, the A -module AdF'(A);

(2) there are po> •••> ft, with 1 = fj,0^[ix^...^ [ih such that dft.,...,6m

generate, over K, the K-vector space Zj(L).

Then Ih(HomK(L, A)/AdFi(A)) is the ideal generated by the /i-minors of the
matrix (Sa(xp))p^Vj, and Ih(HomK(Zj{L), A)/jij(AdA)) is the ideal generated by
the /^-minors of the matrix (^a(xp))a^^.

Hence, for any point t e Spec A we have

teU <S> J r a n k ( 5 " W W W , = r' for i = 1 , . . . , k,
1 T<n\k(da(xp)(t))a^. = sj for / = 1, . . . , / .

REMARK 4.6. Assume that Ur<s¥^0, let t e Urs and ic(t) be its residue field.
Then Lemma 4.2 implies that

r, = dim^dF'"^) ®A K(t), for i = 1, ..., A:,

Sj = dimKi0Jij(AdA) ®A K(t),

= orbit dimension of Zj(L) at t, for / = 1,..., /,

r̂  = orbit dimension of L at t.

This implies, in particular, that 0 «s r, ^ r2 =s ... «* /*., 0 =̂  5/ ̂  st-x =s... =s sx ^ rfc and
that the set {(r, s) e lk x Z': Urs±0} is finite.

THEOREM 4.7. Let A be a noetherian K-algebra. Assume either that A is reduced
or, with the above notation, that Speol = Ur,s^r,s- Then

(1) {UT<S} is the flattening stratification of Speol with respect to the modules
HomK(L, A)IAdF{A), for i = 1, ..., k, and Hom^(Zy(L), A)/jij(AdA) for
7 = 1,. . . , / ,

(2) UTS is invariant under the action of L,
(3) UTS admits a locally trivial geometric quotient with respect to the action of L.

We call UIS the algorithmic stratification of Spec A (with respect to the filiations
F*, Z . and the action of L satisfying (F) and (Z)).

Proof (1) For fixed i, the locally closed subspaces

, A)lAdF(A))) n D(In(HomK(L, A)/AdF(A))),

where 0^/-,=^^, define the flattening stratification of Spec>l with respect to
Hom^(L, A)/AdF'(A), and a similar result holds for Hom(Zy(L), A)/jtj(AdA)
(cf. [12, Lecture 8]. Then {UTS} is just the intersection of these stratifications.

(2) It is sufficient to prove that the ideals Ih(HomK(L, A)/AdF'(A)) and
Ih(HomK(Zj(L), A)/jtj(AdA)) are stable under the action of L. For arbitrary
6X,..., 6re L and xu ..., xr e A let

det(<5,,..., Sr, xi, ...,xr):=det(dj(Xj)).
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We need the following lemma.

LEMMA 4.8. Let 6, 8X,..., 6reL, xx,..., xreA. Then

,, ...,3r>xx, ...,xr))
r

= 2 det(<5x,..., 8r, xx, ..., xv_x, 6(xv), xv+u ..., xr)
v = l

[S, 6V], 6V+X, ..., 6r, xu ..., xr).

Proof. We have

d(det(dx, ...,6r,xx, ...,

8x(xx)

v = l

= 2

66x(xv) ... 8x(xr)

66r(xv) ... dr(xr)

6(xv),
v=l

[6,

dr(xr)
The latter sum can be developed into

, ..., Sr, xu ..., i v , ..., xr)

, ..., [6, 6M], ..., dr, xu ..., xr),

which yields the lemma.

Now let di,..., dhe L (respectively 6U ..., dhe Zj(L)) and JC,, ..., xh e F'(A)
(respectively xx,..., xh eA). Then

det(dlf ..., 6h,xx, ...,xh)eIh(HomK(L,A)/AdFi(A))

(respectively det(6x, ..., 6h, xx, ..., xh)e Ih(HomK(Zj(L), A)/jij(AdA))) and the
ideal is generated by all such determinants. Note that xv eF (A) implies
S(xv) € F'(A) and Sv e Zj(L) implies [6, dv] e Zj(L) by the properties of the
filiations.

Using the lemma we obtain the required invariance of the ideals above. To
prove Theorem 4.7(3) we need the following notation.

DEFINITION 4.9. Let r = (rx, ..., rk) and s = (sx, ..., st) be sequences of integers
such that 0 ^ 7 1 * 5 . . . ^rk, 0^Si^s,-x^... ^sx^rk, and let dx,...,drke L and
xx, ..., xrkeA. The matrix (6,(xy)) is called (r,s)-nested (with respect to the
filtrations F* and Z.) if

(1) xi, ...,xr.eF'(A) for i = 1, ..., k,
(2) 6rk.s.+x, ...,6rke Zj(L) for / = 1 , . . . , /.
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We set

JfTS:={deA \d = det(du ..., 6rk, xu ...,xri),xu ...,xrkeA, dlf ..., <5r,eL

and (6i(xj)) is (r, s)-nested}.

LEMMA 4.10. (i) Let deJfrs. Then 6(d) e ar, for all 6 e L.
(ii) We have t/r>s = V(aT,s) n (U^ / , . , D(d)). '

Proof. To prove (i) let d = det(6x, ..., drk, xx, ..., xrk) e JfT>s. Using Lemma 4.8
we obtain

, . . . , [ 6 , <5V], ..., 5rk, x u ..., x r j .
V

Let v be fixed and choose i minimal such that v =s r, and j maximal such that
rk — Sj;_! + 1 =£ v. Using rf e JfriS and the properties of the filtrations we obtain
JC,, ..., xo_,, 6(xv) e Fl-\A) and ^ _ , / + 1 , ..., 6r,, [6, <5V] e Zy(Z.). This implies (by
definition of ar s) that

det([<5, dv], drk-Sj+1,..., drk, xu ..., i5 ;+1) e a r s

for all;?!, . . . , JCJ;+1 e A and

..., ^r,._1+i, * i , ..., xr._,, 6(xv)) e ar>s

for all 6] , ..., <5r._1+1 e L. Consequently,

det(<5!, . . . , 8rk, xu ..., d(xv), ...,xrk)e a r s

and

d e t ( 6 , , . . . , [ 6 , 6 V ] . . . , 6rk, x u ..., ^ r J e a r s

for all v which proves (i).
To prove (ii) we choose xif ..., xn eA and 61} ..., 6m e L as in Remark 4.5 and

such that JC,, ..., xr. e Fl{A) for / = 1, . . . , k. Let f e t/r s; then rank(6a(jc/3)(f))/3«v, =
r, and rank(6a,(jc/3)(f))a.^M/ = 1sy. This implies that there is a quadratic submatrix M
of (Sa(xp)) which is (r, s)-nested and det M(t)^0. This proves (ii) of the lemma.

To prove (3) of the theorem we choose any rf = det(61, ..., Srk,xu ...,xrk)e
Jfrja such that V(aTS)r\D(d)i=0. We want to apply Theorem 3.5 and Remark
3.6. Letv4 := (A/ars)dandxA, ..., xrk e A be the images of xx, ..., xrk. Let L be the
image of L in Der^ A under the induced representation which exists since a r s is
L-invariant by the proof of Theorem 4.7(2). Since d is L-invariant by Lemma
4.10, LcDer^ '^4 is nilpotent (and also finite-dimensional since L is so). Let
<5],..., 6^ be the images of 6U ..., 8rk in L. We have to show that L <= £v=i Adv.
Let 6 e L; then, since det(6!, ..y 8rk, xlf ..., jcrj is a unit in y4, there are £, e^4
such that, for 6 = <5 — E/i i £,-<5,-, we have <5(iy) = 0 for j = 1, ..., rk. Since
det(6!, ..., 3rjt, 6, jCi, ..., xrk±y) = 0 for all 6 e L, yeA (definition of a r s ) , we
obtain 5{y) = 0 for all yeA, that is, 6 = E?=i ^,A-
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Property (3') of Remark 3.6,

bdj(xs) € 2 A b ( x v ) , f o r j , s = l , . . . , r k ,

means just (where d: A^>HomK(L, A) is the differential)

ddj(xs) e ^ Adxv.
v<s

This holds because of the fact that, for all / = 1, ..., k,

dxu ..., dxr. generate AdF'(A) 0 ^ A

and if / is minimal such that r^s, then 6j(xs)eF' *(A), the image of F' l(A)
in A. The fact that dxlf..., dxr. generate AdF'(A) ®AA is a consequence of
det(<5!,..., Srk, xlf ..., xrk) being a unit in A: let a e F'A and a be the correspond-
ing element in A. By definition of ars and Remark 4.5, the (r, + l)-minors of the
matrix

vanish. This implies that, in any open set D{M) of Spec/i, defined by an
r,-minor M of (Sa(xp))p^r., the last column of the matrix above is a linear
combination of the first r, columns, that is, da e Tiv=\AMdxv. The r,-minors
of the matrix (6a(xp))p^r. define an open covering of SpecA, and consequently
AdF'(A) = Tiv=iAdXy. Now we may apply Theorem 3.5 and obtain the result
that AL[xx, ..., xrk] = A, which proves the theorem.

Improvement of the stratification for abelian L
In the case of L being abelian we use the trivial filtration of L given by

L = Z0(L) ^ Zj(L) = 0 and the notation UT(F°) for the algorithmic stratification.
If L(o) © L(1) is abelian and L(o) admits an algorithmic stratification with respect
to some filtration F*, and if L(1) acts freely and satisfies the hypothesis of Theorem
3.10, we can combine Theorem 4.7 and Theorem 3.10 and obtain a geometric
quotient by L on the strata of the algorithmic stratification with respect to F* and
L(0). Even if, in the situation above, L admits an algorithmic stratification, it can
be useful to split L = L(o) © L(1) because the stratification with respect to L(o) may
have bigger strata.

We will now analyse this situation in the graded case. Let A = (BV*OAV, with
Ao = K, be a reduced noetherian graded ^-algebra. Let F'(A) = ®v^niAv, with

•••, for i = 0, 1, ..., be a filtration of A. Let L = L ( o ) 0 L ( 1 ) c
be a finite-dimensional abelian Lie algebra satisfying the following

properties:

(1) SF(A) c Fl-\A) for all <5 e L(o),
(2) Hl(L«\ALm) = 0,
(3) L(/):= 0 v<0Ly is graded (/ = 0,1) and 6 e Lj">, a eA^ imply that d(a) e

Let {UT(F'(A))} be the algorithmic stratification of SpecA with respect to
the action of L(o) and the filtration F\A), and let {Ur(F*(A) HALW)} be the
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algorithmic stratification of Speed L(1) with respect to the induced action of L(o) on
ALW and the induced filtration F\A) nAL°\

PROPOSITION 4.11. Let JZ: Speed-* Speed L<) be the canonical morphism. Then
jr-l(Ur(F'(A)nAL°)) = Ur(F'(A)) and Ur(F'(A)) is invariant under the action
ofL.

Proof. Let du ..., <5r be a homogeneous basis of L(1). By Remark 3.4, there
are xu ..., xr €ALi0) such that Si(xj) = di

i, especially AL°)[x1, ..., xr] = A. The
elements xx, ...,xr can be chosen to be homogeneous. This implies that F'(A) is
the K-vector space generated by all elements of the form gx\x -... -xv

r
r, with

geALW homogeneous, and deg(g) + Ej=i y,degx;^n,. Let d: A—>
HomK(Lm,A) be the differential. Then AdF\A) is generated by {dg: g e
AL(i) n F'(A)}, that is, AdF'(A) = Ad(F'(A) n i4t(1)). This holds because JC, e ALm

implies ^ , = 0. Now [L(o), L(1)] = 0 implies that, for g e AL°\ Im(dg) c i4L<l), that
is, ALO)d(Fi(A)nALXi)^UomK(L^),AL{l)). Now /I is a faithfully flat AL(n-
algebra, that is, the flattening stratification of HomK(L(0), A)IAd{Fi{A)C\ALW) is
the flattening stratification induced via JZ: SpecA-*SpecALW by the flattening
stratification of Hom^(L(0), AL('))/AL°)d(Fi(A)nAL0)). This completes the proof
by definition of Ur(F'(A) C\ALW) and Ur(F'(A)).

COROLLARY 4.12. The geometric quotient Ur(F'(A))/L exists.

Proof. The morphism JC: Speed—» Spec/I*'0' is a geometric quotient of Speed
under the action of L(1) by Theorem 3.10. The Lie algebra L{Q) = LlLSl) acts on
Spec4L0) and, by Theorem 4.7, the geometric quotient Ur(F*(A) C\ALW)IL{0)

exists.

The usefulness of Proposition 4.11 and Corollary 4.12 lies in the fact that this
stratification obtained from L(o) leads to bigger strata on which the quotient by
L = L(o) © L(1) exists than the algorithmic stratification obtained from L. We do
not need any knowledge of AL( since the strata are computed from the same
matrix (<5,(*y)) just by larger subminors (cf. Remark 4.5).

REMARKS 4.13. (1) Let Z{(L) be either the lower or the upper central series of
L and F'm(A) defined by

Fl{A): = AL, F'm(A): = j F'-1

(as in Remark 4.3). These are canonical filiations which satisfy the properties (F)
and (Z). In particular, algorithmic stratifications do exist, but the strata are in
general smaller than for the canonical stratification introduced in § 1 (cf. the
following Example (5.3)). On the other hand, for a given classification problem
there might be a filtration which leads to strata that are more natural with respect
to the objects to be classified although the quotient exists on bigger strata. This is,
for example, the case for the classification of modules in [8]. Note also that we
need only a little information about the F'(A) (respectively AdF'(A)) in order
to compute the strata (see examples below).



102 GERT-MARTIN GREUEL AND GERHARD PFISTER

(2) Let A = 0V5BO>IV be a noetherian graded AT-algebra and L=0 v =s - a L v

a finite-dimensional graded Lie algebra, and let a > 0 be such that

[Lv, L J c Lv+M and SiA^) c >l/x+v for 6 e Lv.

Fix some integer b, with 1 «= b =s a. Then the graded nitrations defined by

Fl
g{A)= 0 Av, Zj{L)= 0 Lv,

«( + l ) f c v=s-(y'+l)a

have the properties (F) and (Z) .
(2') Let A and L be as in (2) and assume that L is abelian. Fix 1 ̂  b =s a. Then

the graded filiations defined by

Fi
g(A)= 0 Av, L = Z O ( L ) D Z 1 ( L ) = 0,

vs£(/+l)a-fc

have the properties (F) and (Z).
(3) Let L be abelian and L = Z0(L) 3 Z^L) = 0 and Fl

m(A) be defined as in
(1). Theorem 1.30 implies that if UTS = :UT (1 = 0) is open in Specy4, then
r1

 = r2 =... =rk, since we can cover UT by affine open subsets such that
AdA=AdJAL.

(4) Let A be a reduced and noetherian K-algebra and B c A a subalgebra. Let
L c Der^A be a nilpotent Lie algebra. Suppose that A and L have filiations F*
and Z . satisfying (F) and (Z) and that Zj(L)/Zj(L) are free B-modules of finite
rank, with i = 0,..., / and y = 1, . . . , / + 1. Then Theorem 4.7 also holds for this
situation.

DEFINITION 4.14. The filtration {F^A)} from (1) is called the maximal
filtration of A (since it is maximal with respect to property (1)), and {Fg(A)} from
(2) is called the graded filtration.

REMARK 4.15. It follows from Remark 4.5 (and will also show up in the
following examples) that the filtration AdF'A of AdA (and not so much F*A) is
essential for the construction of the algorithmic stratification. Different F'A may
lead to the same AdF'A, in particular, AdF*A is a finite filtration while F*A is
usually not. Therefore, it might be useful to give a different interpretation of
AdA. The differential

d: A-*HomK(L, A), da(d) = d(a),

factorizes as follows:

A - ^ Ql
MK > (QV)** = (Der*04))* > (A ®K L)* = HomK(L, A),

where Ql
A/K are the Kahler differentials, — * = Homy4( — , A) and the maps are

the canonical ones. Since all maps except d0 are A -linear, AdA is just the image
of Ql

AiK in the free /l-module Hom^(L, A). The condition (F) then reads as
dFAcHomK(L, F'-'A).

REMARK 4.16. If A = K[Xly ..., XN]/I = K[xlt ..., xn] and if dl} ..., dm is a
basis of L, then AdA a HornK(L, A) = Am is generated by the columns of the
matrix (Sa(xp)a=:l m>/3=1 „). Hence , dxx,..., dxv. generate AdF'(A) if and only
if the image of AdF'(A) in A m is generated by the columns of (da(xp)) with index
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p^vh For teX = SpecA, let L^>TtX, <5,-^£y <5((x7)(Oa/dA'l|,, be the
differential of the orbit map G x^Spec K(t)—> TtX, where G = exp(L). Hence, if
we consider TtX as a subvector space of K{t)n, the rows of (da(xp)(t)) generate
the tangent space to the G-orbit of t (cf. also Lemma 4.2). Moreover, the rows
with index a ^ /iy generate the tangent space to the G,-orbit of t if <5M., ..., 5m

form a basis of Zj(L) and G, = exp Zy(L).

5. Examples (continuation)

Finally let us compute the stratifications for some examples.
5.1. In Example 2.1, A = K[xlf..., x2r] is graded by degx, = 1 if i ^ r, and by

degx, = 2 if i>r. Then all vector fields of L are homogeneous of degree — 1,
that is, L = L_X. We get F%A) = K, xx, ...,xrzF\{A) and xr+1) ...,x2reF2

g(A).
This implies that dF°g(A) = dF\{A) = 0 and ^ = ^ ( y 4 ) = E r

v = ,M r + v .
Therefore, we have only the strata Ur, where

r = (0, 0, r2), r2 = rk(6,(xy) Ijlfe.1;.^);

that is, the algorithmic stratification with respect to F* is the stratification by orbit
dimension. This is also the canonical stratification. If we consider the maximal
filtration, we obtain F°m(A) = AL, xr+x, ..., x2r e Fl

m(A). This implies that
F'm(A) = F'g

+X(A) and we obtain the same stratification.
5.2. In Example 2.2, A = K[x1} x2, x3] is graded by degx, = i and deg 6 = — 1.

For the graded filtration we obtain xx e Fl(A), x2 e F2
g(A), x3 e F3

g(A) and
dFx

g(A) = 0, AdF2
g(A) = Adx2 and AdFg{A) = AdA = Adx2 + Adx3. This implies

that if £/r>s= f / r #0 , r = (rlf r2, r3), then r e {(0,1,1), (0,0,1), (0,0,0)}. Now

This is exactly the canonical stratification we have already constructed in Example
2.2. If we consider the maximal filtration, we obtain F°m(A) = AL, x2 e Fx

m(A) and
x3 e F2

m(A); hence AdA = AdF2(A) = Adx2 + Adx3. This implies that if Ur ^ 0 for
some r = (rx, r2), then re{ ( l , l ) , (0 , l ) , (0 , 0)}, which leads to the same stratifica-
tion as before.

5.3. We give an example which shows that the graded and the maximal
filtration define different stratifications. Let

A = K[xx, x2, x3, x4] and L = Kb
with

d d d
^ = *i -z- + x2 —- + (2xxx3 - x\) — .

dx2 dx3 dx4

Then A is graded by degx, = / for i^3, and deg^4 = 5. Hence L = L_X,
F°g(A) = K, xt e Fg(A) for i ^ 3, and x4 e F5

g(A). This implies that dF'g(A) = 0 for
/ = 0, 1, AdF2

g(A) = Adx2, AdFl(A)=Adx2 + Adx3, AdFg(A) = AdFg(A) and
AdA =AdF5

g(A) = LUiAdXj. Hence, UT(F'g)*0 implies that

r = (rx>..., r5) e {(0, 1, 1, 1, 1), (0, 0, 1, 1, 1), (0, 0, 0, 0, 1), (0, 0, 0, 0, 0)}.
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Because 6(x4) = 2xxx3-xl, we have U^OtOiOiOiX) = 0- Therefore, the graded
stratification is given by

^(0,1.1.1.1) = D(xx), t/(o,o.i.i.D = v(x\) n D(X2)> ^(0.0,0.0.0) = V(xux2).

If we consider the maximal filtration, we obtain xxeF°m{A)=AL, x2> x4e
Fx

m{A), x3eF2
m(A). This implies that AdA =AdF2

m(A), and dx2)dx4e
AdFl(A) and Ut(F^) # 0 implies that r = (r,, r2) e {(1, 1), (0, 1), (0, 0)}. Then
£/(1 1) = D(JC1, 2xxx3 — xl) = D(xl, x2), which is the set of all points with
orbit dimension 1, £/(o,i) = 0> and i/(O,o) = V(xx, x2). This is also the canonical
stratification.

5.4. In Example 2.4, A = K[xx, ..., x5] is graded by degx, = * for /*s3,
degx4 = degx5 = 5. Then L_x = Kdx, L_2 = 0, L_3 = Kd2 and L_4 = K<53. For the
graded filtration we obtain Z0(L) = L, ZX(L) = Z2(L) = KS2 + K63, Z3(L) =
K63, Z4(L) = 0. Also F°g(A) = K, x{ e F'g(A) for i ^ 3, JC4, x5 e F5

g(A). This implies
AdA=AdF5

g{A), dFg(A) = 0 for i = 0, 1 j j

If UtJiFg, Z.)±0, then

r = (r,, ..., r5) 6 {(0, 1, 1, 1, 2), (0, 0, 1, 1, 2), (0, 0, 0, 0, 0)}

and
s = (sx,s2,s3)e{(l, 1,1), (0,0,0)}.

We obtain for t/r,s=£0:

If we consider the maximal filtration, we obtain Z0(L) = L, Zx(L) = Kdi,
Z2(L) = 0 and F°m{A) = AL, xu x2, x^F'JA) and x3, x5eF2

m{A), that is,
AdA=AdF2

m(A). If t / r , s ( F - , Z . ) * 0 , then r = (/•„ r2) e {(1, 2), (0, 0)}, s = 5,e
{0,1}. We obtain U{Xt2)A = D{xx), Uix,2)>0=V(xx)n D(x2), U(o,olo=V(xx, x2).
This is the same stratification as before.

Example 2.4 shows that the stratification is not optimal.
5.5. If we take, in Example 2.5, the maximal filtration, we obtain for

A = K[xx, ..., x5] that AdA=AdF1
m(A) = T,5v=3Adxv is locally free of rank 1, that

is, r = rx = 1 is the only possibility and, consequently, Ux = Spec.4.
5.6. If we take, in Example 2.6, the maximal filtration, we obtain xx,

x2eF°m(A) = AL, x3eFUA), x4eF2
m(A), that is, AdA = AdF2

m(A) => AdFl
m(A) a

dx3. Since L has constant orbit-dimension on Spec A, this implies that the
stratification is given by UiXA) and U(0A), U{xx) = D(xx) and t/(0,i) = V(*\), which
is also the canonical stratification.
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