AN ALGORITHM TO COMPUTE A PRIMARY DECOMPOSITION OF MODULES IN POLYNOMIAL RINGS OVER THE INTEGERS

NAZERAN IDREES, GERHARD PFISTER, AND AFSHAN SADIQ

Abstract

We present an algorithm to compute the primary decomposition of a submodule \mathcal{N} of the free module $\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]^{m}$. For this purpose we use algorithms for primary decomposition of ideals in the polynomial ring over the integers. The idea is to compute first the minimal associated primes of \mathcal{N}, i.e. the minimal associated primes of the ideal $\operatorname{Ann}\left(\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]^{m} / \mathcal{N}\right)$ in $\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ and then compute the primary components using pseudo-primary decomposition and extraction, following the ideas of Shimoyama-Yokoyama. The algorithms are implemented in Singular.

1. Introduction

Algorithms for primary decomposition in $\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]^{m}$ have been developed by Seidenberg (cf. [12]) and Ayoub (cf. [2]) and Gianni, Trager and Zacharias (cf. [7]). The method of Gianni, Trager and Zacharias have been generalized by Rutman ([10]) to a submodules of a free module. In our paper we present a slightly different approach using pseudo-primary decomposition, and the extraction of the primary components. We use the computation of minimal associated primes of ideals in $\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ (cf. [9]).
Let us recall the primary decomposition for ideals in $\mathbb{Z}[x], x=\left(x_{1}, \ldots, x_{n}\right)$, since the ideas for submodules of $\mathbb{Z}[x]^{m}$ are similar. The idea to compute the minimal associated prime ideals of an ideal $I \subseteq \mathbb{Z}[x]$ is the following. We compute a Gröbner basis G of I (cf. Definition 2.2). $G \cap \mathbb{Z}$ generates $I \cap \mathbb{Z}$. If $I \cap \mathbb{Z}=\langle a\rangle$ and $a=p_{1}^{v_{1}} \cdot \ldots \cdot p_{s}^{v_{s}}$ the prime decomposition then we compute for all i the minimal associated primes of $I \mathbb{F}_{p_{i}}[x]$, defined by the canonical map $\pi_{i}: \mathbb{Z}[x] \longrightarrow \mathbb{F}_{p_{i}}$. If \bar{P} is a minimal associated prime of $I \mathbb{F}_{p_{i}}[x]$ then $\pi_{i}^{-1}(\bar{P})$ is a minimal associated prime of I. We obtain all minimal associated primes of I in this way. If $I \cap \mathbb{Z}=\langle 0\rangle$ then we consider the ideal $I \mathbb{Q}[x]$ and compute its minimal associated primes. If $\bar{P} \supset I \mathbb{Q}[x]$ is a minimal associated prime then $\bar{P} \cap \mathbb{Z}[x]$ is a minimal associated prime of I. Using the leading coefficients of a Gröbner basis of $I \mathbb{Q}[x]$ we find $h \in \mathbb{Z}$ such that $I \mathbb{Q}[x] \cap \mathbb{Z}[x]=I: h$ and $I=(I: h) \cap\langle I, h\rangle$. The minimal associated primes of $\langle I, h\rangle$ can be computed as described above.
If we know the minimal associated primes $B=\left\{P_{1}, \ldots, P_{r}\right\}$ of I we can find knowing Gröbner bases of P_{i} a set of separators $S=\left\{s_{1}, \ldots, s_{r}\right\}$ wiith the property $s_{i} \notin P_{i}$ and $s_{i} \in P_{j}$ for all $j \neq i$. Using the separators we find pseudo-primary

[^0]ideals $Q_{i}=I: s_{i}^{\infty}=I: s_{i}^{k_{i}}$, i.e. the radical of Q_{i} is prime (cf. Definition 3.1), $\sqrt{Q_{i}}=P_{i}$. We have
$$
I=Q_{1} \cap \ldots \cap Q_{r} \cap\left\langle I, s_{1}^{k_{1}}, \ldots s_{r}^{k_{r}}\right\rangle
$$

To find a primary decomposition we have to continue inductively with $\left\langle I, s_{1}^{k_{1}}, \ldots s_{r}^{k_{r}}\right\rangle$ and find from Q_{i} the primary ideal of I with associated prime P_{i}. This is given by so-called extraction lemma (the version for modules is Lemma 3.5. If $Q_{i}=\bar{Q}_{i} \cap J$, \bar{Q}_{i} primary and $\sqrt{\bar{Q}_{i}}=P_{i}, \operatorname{ht}(J)>\operatorname{ht}\left(P_{i}\right)$, then we can extract the \bar{Q}_{i} using Gröbner bases with respect to special orderings.

2. Gröbner basis for Modules

Let A be a principal ideal domain. Let $\mathcal{M}=A[x]^{m}, m>0$ be the free module over the polynomial ring over $A, x=\left\{x_{1}, \ldots, x_{n}\right\}$ and $\mathbf{e}_{1}, \ldots, \mathbf{e}_{m}$ the canonical basis of \mathcal{M}. In this section we give basic results about Gröbner bases for modules in \mathcal{M}.

A monomial ordering $>$ is a total ordering on the set of monomials $\mathrm{Mon}_{n}=$ $\left\{x^{\alpha}=x_{1}^{\alpha_{1}} \cdot \ldots \cdot x_{n}^{\alpha_{n}} \mid \alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{N}^{n}\right\}$ in n variables satisfying

$$
x^{\alpha}>x^{\beta} \Longrightarrow x^{\gamma} x^{\alpha}>x^{\gamma} x^{\beta}
$$

for all $\alpha, \beta, \gamma \in \mathbb{N}^{n}$. Further more $>$ must be a well-ordering. We extend the notion of monomial orderings to the free module \mathcal{M}. We call $x^{\alpha} \mathbf{e}_{i}=\left(0, \ldots, x^{\alpha}, \ldots, 0\right) \in$ \mathcal{M}.

Definition 2.1. Let $>$ be a monomial ordering on $A[x]$. A (module) monomial ordering or a module ordering on \mathcal{M} is a total ordering $>_{m}$ on the set of monomials $\left\{x^{\alpha} \mathbf{e}_{i} \mid \alpha \in \mathbb{N}^{n}, i=1 \ldots m\right\}$, which is compatible with the $A[x]$-module structure including the ordering $>$, that is, satisfying

1. $x^{\alpha} \mathbf{e}_{i}>_{m} x^{\beta} \mathbf{e}_{j} \Longrightarrow x^{\alpha+\gamma} \mathbf{e}_{i}>_{m} x^{\beta+\gamma} \mathbf{e}_{j}$,
2. $x^{\alpha}>x^{\beta} \Longrightarrow x^{\alpha} \mathbf{e}_{i}>_{m} x^{\beta} \mathbf{e}_{i}$,
for all $\alpha, \beta, \gamma \in \mathbb{N}^{n}, i, j=1, \ldots, r$.
Two module ordering are of particular interest:

$$
x^{\alpha} \mathbf{e}_{i}>x^{\beta} \mathbf{e}_{j}: \Longleftrightarrow i<j \text { or }\left(i=j \text { and } x^{\alpha}>x^{\beta}\right),
$$

giving priority to the component, denoted by $(c,>)$, and

$$
x^{\alpha} \mathbf{e}_{i}>x^{\beta} \mathbf{e}_{j}: \Longleftrightarrow x^{\alpha}>x^{\beta} \text { or }\left(x^{\alpha}=x^{\beta} \text { and } i<j\right)
$$

giving priority to the monomial in $A[x]$, denoted by $(>, c)$.
Now fix a module ordering $>_{m}$ and denote it also with $>$. Since any vector $f \in \mathcal{M} \backslash\{0\}$ can be written uniquely as

$$
f=c x^{\alpha} \mathbf{e}_{i}+f^{*}
$$

with $c \in A \backslash\{0\}$ and $x^{\alpha} \mathbf{e}_{i}>x^{\alpha^{*}} \mathbf{e}_{j}$ for every non-zero term $c^{*} x^{\alpha^{*}} \mathbf{e}_{j}$ of f we can define as $\operatorname{LM}(f):=x^{\alpha} \mathbf{e}_{i}, \operatorname{LC}(f):=c, \operatorname{LT}(f):=c x^{\alpha} \mathbf{e}_{i}$ and call it the leading monomial, leading coefficient and leading term ${ }^{1}$, respectively, of f. Moreover, for $G \subset \mathcal{M}$ we call

$$
L_{>}(G):=L(G):=\langle\mathrm{LT}(g) \mid g \in G \backslash\{0\}\rangle_{A[x]} \subset \mathcal{M}
$$

[^1]the leading submodule of $\langle G\rangle$. In particular, if $\mathcal{N} \subset \mathcal{M}$ is a submodule, then $L_{>}(\mathcal{N})=L(\mathcal{N})$ is called the leading module of \mathcal{N}.

Definition 2.2. Let $\mathcal{N} \subset \mathcal{M}$ be a submodule. A finite set $G \subset \mathcal{N}$ is called a Gröbner basis of N if and only if $L(G)=L(\mathcal{N})$. G is called a strong Gröbner bases of \mathcal{N}, if for any $f \in \mathcal{N} \backslash\{0\}$ there exists $g \in G$ such that $\operatorname{LT}(g)$ divides $\operatorname{LT}(f)$.

Strong Gröbner bases always exist over $A[x]$ (cf. [1]). If A is not a principal ideal domain then this is not true in general.
The concept of a normal form with respect to a given system of elements in \mathcal{M} is the basis of the theory of Gröbner bases. We explain this by giving an algorithm. For terms $a x^{\alpha} \mathbf{e}_{i}$ and $b x^{\beta} \mathbf{e}_{k}, a, b \in A$, we say $a x^{\alpha} \mathbf{e}_{i}$ divides $b x^{\beta} \mathbf{e}_{k}$ and write $a x^{\alpha} \mathbf{e}_{i} \mid$ $b x^{\beta} \mathbf{e}_{k}$ if and only if $i=k, a \mid b$ and $x^{\alpha} \mid x^{\beta}$.

Algorithm 2.3. $\mathrm{NF}(f \mid S)$
Input: $S=\left\{f_{1}, \ldots, f_{m}\right\} \subseteq \mathcal{M}, f \in \mathcal{M}$.
Output: $r \in \mathcal{M}$ the normal form $N F(f \mid S)$ with the following properties: $r=0$ or no monomial of r is divisible by a leading monomial of an element of S. There exist a representation (standard representation) $f=\sum_{i=1}^{m} \xi_{i} f_{i}+r, \xi_{i} \in A[x]$ such that $\mathrm{LM}(f) \geq \mathrm{LM}\left(\xi_{i} f_{i}\right)$.
if $f=0$ then
return f;
$T:=\{g \in S, \operatorname{LT}(g) \mid \operatorname{LT}(f)\} ;$
while $(T \neq \emptyset$ and $f \neq 0)$ do
choose $g \in T, \operatorname{LT}(f)=h \mathrm{LT}(g)$;
$f:=f-h g$;
$T:=\{g \in S, \operatorname{LT}(g) \mid \operatorname{LT}(f)\} ;$
if $f=0$ then
return f;
return $(\mathrm{LT}(f)+N F(f-\mathrm{LT}(f) \mid S))$;

3. Primary Decomposition for Modules

First we introduce the notion of a pseudo-primary submodule and show how to decompose a module as intersection of pseudo-primary modules. Then we show how to extract the primary decomposition from a pseudo-primary module.

Definition 3.1. An ideal I of $\mathbb{Z}[x]$ is called a pseudo primary ideal if \sqrt{I} is a prime ideal. A submodule $\mathcal{N} \subset \mathcal{M}$ is called a pseudo primary resp. primary submodule of \mathcal{M} if $\operatorname{Ann}(\mathcal{M} / \mathcal{N})$ is a pseudo primary resp. primary ideal of $\mathbb{Z}[x]$.

Definition 3.2. Let \mathcal{N} be a submodule of \mathcal{M} and let $B=\left\{P_{1}, P_{2}, \ldots, P_{r}\right\}$ be the set of minimal associated primes. A set $S=\left\{s_{1}, \ldots, s_{r}\right\}$ is called a system of separators for B if $s_{i} \notin P_{i}$ and $s_{i} \in P_{j}$ for $j \neq i$.

Lemma 3.3 (Pseudo-Primary Decomposition). Let $\mathcal{N} \subseteq \mathcal{M}$ be submodule, $B=$ $\left\{P_{1}, \ldots, P_{r}\right\}$ be the set of minimal associated primes and $S=\left\{s_{1}, \ldots, s_{r}\right\}$ a system of separators for B. Let

$$
Q_{i}=N: s_{i}^{\infty}=N: s_{i}^{k_{i}}
$$

then Q_{i} is a pseudo-primary submodule and

$$
\mathcal{N}=Q_{1} \cap \ldots \cap Q_{r} \cap\left\langle\mathcal{N}+\left\langle s_{1}^{k_{1}}, \ldots, s_{r}^{k_{r}}\right\rangle \mathcal{M}\right\rangle .
$$

Proof. $\mathbb{Z}[x]_{s_{i}} \mathcal{N} \cap \mathcal{M}$ is pseudo-primary submodule with minimal associated prime P_{i}. We obtain this module as a quotient $\mathcal{N}: s_{i}^{\infty}=\mathbb{Z}[x]_{s_{i}} \mathcal{N} \cap \mathcal{M}$. This proves that Q_{i} is pseudo-primary

As in the case of ideals we have $\mathcal{N}=Q_{1} \cap\left(\mathcal{N}+s_{1}^{k_{1}} \mathcal{M}\right)$ (cf. [6]). Assume we have already
$\mathcal{N}=Q_{1} \cap \ldots \cap Q_{t-1} \cap\left(\mathcal{N}+\left\langle s_{1}^{k_{1}}, \ldots, s_{t-1}^{k_{t-1}}\right\rangle \mathcal{M}\right), t \leq r$ then
$\mathcal{N}=Q_{1} \cap \ldots \cap Q_{t} \cap\left(\mathcal{N}+\left\langle s_{1}^{k_{1}}, \ldots, s_{t}^{k_{t}}\right\rangle \mathcal{M}\right)$ since
$\left(\mathcal{N}+\left\langle s_{1}^{k_{1}}, \ldots, s_{t-1}^{k_{t-1}}\right\rangle \mathcal{M}\right): s_{t}^{k_{t}}=\mathcal{N}: s_{k}^{k_{t}}$.
The last equality hold since $\left(\mathcal{N}: s_{i}^{\infty}\right): s_{j}^{\infty}=\mathcal{M}$ if $i \neq j$.
Definition 3.4. Let $I \subset \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ be a prime ideal. Let $I \cap \mathbb{Z}=\langle p\rangle$ and \mathbb{F}_{p} the prime field of characteristic p. A subset

$$
u \subset x=\left\{x_{1}, \ldots, x_{n}\right\}
$$

is called an independent set (with respect to I) if $I \mathbb{F}_{p}[x] \cap \mathbb{F}_{p}[u]=\langle 0\rangle$. An independent set $u \subset x$ (with respect to I) is called a maximal if the number of elements is maximal ${ }^{2}$.

Lemma 3.5 (Extraction Lemma). Let $\mathcal{N}=Q \cap J$ be a pseudo-primary submodule of \mathcal{M} with $\sqrt{\operatorname{Ann}(\mathcal{M} / Q)}=P$ and Q be P-primary with $\operatorname{ht}(\operatorname{Ann}(\mathcal{M} / Q))$
$<\operatorname{ht}(\operatorname{Ann}(\mathcal{M} / J))$. Let $u \subset x$ be a maximal independent set for P. Let $P \cap \mathbb{Z}=\langle p\rangle$ and define $q:=\left\{\begin{array}{l}1 \text { if } p=0 \\ p \text { if } p>0\end{array}\right.$. Let $A:=\mathbb{Z}[x]_{\langle p\rangle}{ }^{3}$. Then the following holds:

1. $\mathcal{N} A[x \backslash u] \cap \mathcal{M}=Q$.
2. Let G be a strong Gröbner basis of \mathcal{N} w.r.t. a block ordering satisfying $(x \backslash u) \mathbf{e}_{i} \gg u \mathbf{e}_{j}$. Then G is a strong Gröbner basis of $\mathcal{N} A[x \backslash u]$ w.r.t. the induced ordering for the variables $x \backslash u$.
3. Let G be a strong Gröbner basis of \mathcal{N} w.r.t. a block ordering satisfying $(x \backslash u) \mathbf{e}_{i} \gg u \mathbf{e}_{j}, \operatorname{LT}_{A[x \backslash u]}\left(g_{i}\right)=q^{\nu_{i}} a_{i}(x \backslash u)^{\beta_{i}} \mathbf{e}_{j}$ with $a_{i} \in \mathbb{Z}[u] \backslash\langle p\rangle$ for $i=1, \ldots, k$, and $h=\operatorname{lcm}\left(a_{1}, \ldots, a_{k}\right)$. Then $\mathcal{N} A[x \backslash u] \cap \mathcal{M}=\mathcal{N}: h^{\infty}$.

Before proving the lemma let us illustrate it by an example.
Consider the module
$\mathcal{N}=\left\langle\left(\begin{array}{c}0 \\ 0 \\ x y^{2}-x^{2}-x y\end{array}\right),\left(\begin{array}{c}0 \\ y \\ x\end{array}\right),\left(\begin{array}{c}0 \\ x \\ 2 x y-x\end{array}\right),\left(\begin{array}{c}x \\ 0 \\ -x y\end{array}\right),\left(\begin{array}{c}0 \\ 0 \\ 18 x\end{array}\right)\right\rangle$,
with $\mathcal{N} \subseteq \mathbb{Z}[x . y]^{3}=\mathcal{M}$.
Let us compute $\operatorname{Ann}(\mathcal{M} / \mathcal{N})=\mathcal{N}: \mathcal{M}$.
ring $\mathrm{R}=$ integer, $(\mathrm{x}, \mathrm{y}), \mathrm{lp}$;
module $N=[0,0, x y 2-x 2-x y],[0, y, x],[0, x, 2 x y-x],[x, 0,-x y],[0,0,18 x] ;$
ideal $\mathrm{I}=$ quotient (N, freemodule(nrows(N)));
I;
I [1] $=18 \mathrm{x}$
I [2] $=x y 2$
I [3] $=x 2-2 x y 2+x y$

[^2]We can see that $P=\langle x\rangle$ is the only minimal prime associated to I. In this case obviously $u=\{y\}$ is the maximal independent set. We use the following ordering on $\mathbb{Z}[x, y]^{3}$:
$x^{i} y^{j} \mathbf{e}_{k}>x^{l} y^{m} \mathbf{e}_{j}$ if and only if $i>l$ or $i=l, j>m$ or $i=l, j=m$ and $k<j$.
Let us compute Gröbner basis with respect to this ordering.
std(N);
_ [1] $=18 \mathrm{y} * \operatorname{gen}(2)$
_ [2] $=y 3 * \operatorname{gen}(2)$
_ [3] $=x * \operatorname{gen}(1)+y 2 * \operatorname{gen}(2)$
_ [4] $=x * \operatorname{gen}(2)-2 y 2 * \operatorname{gen}(2)+y * \operatorname{gen}(2)$
_ [5] =x*gen (3) $+\mathrm{y} * \operatorname{gen}(2)$
The Gröbner basis is $G=\left\{\left(\begin{array}{c}0 \\ 18 y \\ 0\end{array}\right),\left(\begin{array}{c}0 \\ y^{3} \\ 0\end{array}\right),\left(\begin{array}{c}x \\ y^{2} \\ 0\end{array}\right),\left(\begin{array}{c}0 \\ x-2 y^{2}+y \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ y \\ x\end{array}\right)\right\}$
Since $P \cap \mathbb{Z}=0$ we have $\mathbb{Z}[u]_{\langle p\rangle}=\mathbb{Q}(y) . \mathcal{N} \mathbb{Q}(y)[x]$ is generated by G which can be simplified to $\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}x \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ x\end{array}\right)$ since $18 y$ is a unit in $\mathbb{Q}(y)$. This implies that $\mathcal{N} \mathbb{Q}(y)[x] \cap \mathbb{Z}[x, y]^{3}=\left\langle\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}x \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ x\end{array}\right)\right\rangle$.
We can see this also directly if we compute the Gröbner basis of $\mathcal{N} \mathbb{Q}(y)[x]$ over $\mathbb{Q}(y)[x]$:
ring $S=(0, y), x, l p$;
module $N=[0,0, x * y 2-x 2-x * y],[0, y, x],[0, x, 2 x * y-x],[x, 0,-x * y],[0,0,18 x] ;$
std(N);
_ [1] =gen (2)
_ [2] $=x * \operatorname{gen}(1)$
_ [3]=x*gen(3)
If we consider the leading terms $\mathrm{LT}_{\mathbb{Z}[x]_{\langle p\rangle}[x \backslash u]}$ of G we obtain $18 y \mathbf{e}_{2}, y^{3} \mathbf{e}_{2}, x \mathbf{e}_{1}, x \mathbf{e}_{2}, x \mathbf{e}_{3}$, i.e. $a_{1}=18 y, a_{2}=y^{3}, a_{3}=1, a_{4}=1, a_{5}=1$ and we obtain $h=\operatorname{lcm}\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right)=$ $18 y^{3}$. Let us compute $\mathcal{N}: 18 y^{3}$:
setring R;
quotient($\mathrm{N}, 18 \mathrm{y} 3$);
_ [1] $=\operatorname{gen}(2)$
_ [2] $=x * \operatorname{gen}(1)$
_ [3] $=x * \operatorname{gen}(3)$

We obtain again $\mathcal{N} \mathbb{Q}(y)[x] \cap \mathbb{Z}[x, y]^{3}$.
The computation shows that $\mathcal{N}=Q \cap J$ is pseudo-primary with
$Q=\left\langle\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}x \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ x\end{array}\right)\right\rangle$ and $P=\langle x\rangle=\operatorname{Ann}(\mathcal{M} / Q) . J$ is computed in the example at the end of the paper.

Proof. of the lemma 3.5
(1) Let $K=\sqrt{\operatorname{Ann}(\mathcal{M} / J)}$ and $\bar{K}=K \mathbb{F}_{p}[x]$ then ${ }^{4} \bar{K} \supsetneq \bar{P}=P \mathbb{F}_{p}[x]$ since $\operatorname{ht}(\operatorname{Ann}(\mathcal{M} / Q))<\operatorname{ht}(\operatorname{Ann}(\mathcal{M} / J))$. This implies that $\bar{K} \cap \mathbb{F}_{p}[u] \neq\langle 0\rangle$ since $u \subset x$ is maximally independent for \bar{P}. Therefore $K \cap(\mathbb{Z}[u] \backslash\langle p\rangle) \neq\langle 0\rangle$. Thus it holds $J A[x \backslash u]=A[x \backslash u]$. Finally, because Q is primary, we obtain $\mathcal{N} A[x \backslash u] \cap \mathcal{M}=Q A[x \backslash u] \cap \mathcal{M}=Q$.
(2) We have to prove that for every $h \in \mathcal{N} A[x \backslash u]$ there exists $g \in G$ such that $\mathrm{LT}_{A[x \backslash u]}(g) \mid \mathrm{LT}_{A[x \backslash u]}(h)$.
Let $h \in \mathcal{N} A[x \backslash u]$. Choose $\eta \in \mathbb{Z}[u] \backslash\langle p\rangle$ such that $\eta h \in \mathcal{N}$. As h is a polynomial in $x \backslash u$ with coefficients in A, the element ηh can be written as

$$
\eta h=q^{\nu} a(x \backslash u)^{\alpha} \mathbf{e}_{i}+\left(\text { terms in }(x \backslash u) \mathbf{e}_{j} \text { of smaller order }\right)
$$

with $a \in \mathbb{Z}[u] \backslash\langle p\rangle$.
Since G is a strong Gröbner basis of $\mathcal{N} \subset \mathcal{M}$ there exists a $g \in G$ such that $\mathrm{LT}_{\mathbb{Z}[x]}(g) \mid \mathrm{LT}_{\mathbb{Z}[x]}(\eta h)$.
If $q \neq 1$ and q^{τ} is the maximal power of q dividing the leading coefficient $\mathrm{LC}_{\mathbb{Z}[x]}(g)$ of g then $\tau \leq \nu$ because $\mathrm{LT}(g)$ divide

$$
\mathrm{LT}_{\mathbb{Z}[x]}(\eta h)=q^{\nu} \operatorname{LT}_{\mathbb{Z}[x]}(a)(x \backslash u)^{\alpha} \mathbf{e}_{i}
$$

Now we can write g as an element of $F_{u}[x \backslash u]$ w.r.t. the corresponding ordering, i.e.

$$
g=q^{\mu} b(x \backslash u)^{\beta} \mathbf{e}_{i}+\left(\text { terms in }(x \backslash u) \mathbf{e}_{j} \text { of smaller order }\right)
$$

(by assumption G is a strong Gröbner basis of \mathcal{N} w.r.t. a block ordering satisfying $\left.(x \backslash u) \mathbf{e}_{i} \gg u \mathbf{e}_{j}\right) b \in \mathbb{Z}[u] \backslash\langle p\rangle$ and $\mu \leq \tau \leq \nu$.
By definition we have

$$
\operatorname{LT}_{A[x \backslash u]}(g)=q^{\mu} b(x \backslash u)^{\beta} \mathbf{e}_{i}
$$

resp.

$$
\operatorname{LT}_{A[x \backslash u]}(h)=q^{\nu} \frac{a}{\eta}(x \backslash u)^{\alpha} \mathbf{e}_{i}
$$

and on the other hand it holds

$$
\mathrm{LT}_{\mathbb{Z}[x]}(g)=q^{\mu} \operatorname{LT}_{\mathbb{Z}[x]}(b)(x \backslash u)^{\beta} \mathbf{e}_{i}
$$

resp.

$$
\mathrm{LT}_{\mathbb{Z}[x]}(\eta h)=q^{\nu} \mathrm{LT}_{\mathbb{Z}[x]}(a)(x \backslash u)^{\alpha} \mathbf{e}_{i}
$$

Thus the assumption $\operatorname{LT}_{\mathbb{Z}[x]}(g) \mid \operatorname{LT}_{\mathbb{Z}[x]}(\eta h)$ implies $(x \backslash u)^{\beta} \mid(x \backslash u)^{\alpha}$ and consequently $\mathrm{LT}_{A[x \backslash u]}(g) \mid \mathrm{LT}_{A[x \backslash u]}(h)$.
(3) Obviously $\left(\mathcal{N}: h^{\infty}\right) \subset A[x \backslash u] \mathcal{N}$. To prove the inverse inclusion let $f \in A[x \backslash u] \mathcal{N} \cap \mathcal{M}$. This implies that $N F(f \mid G)=0$. But the normal form algorithm requires only to divide by the leading coefficients $\mathrm{LC}\left(g_{i}\right)$ of g_{i} for $i=1,2, \ldots, k$. Hence we obtain a standard representation $f=\sum_{i=1}^{k} c_{i} g_{i}$ with $c_{i} \in \mathbb{Z}[x]_{h}$. Therefore $h^{m} f \in \mathcal{N}$ for some m. This proves $A[x \backslash u] \mathcal{N} \cap \mathcal{M} \subset\left(\mathcal{N}: h^{\infty}\right)$.

[^3]
4. The algorithms

In this section we present the algorithm to compute a primary decomposition of a submodule of a free module in a polynomial ring over the integers by applying the results of section 3 .

The algorithm to a pseudo-primary component is based on the Pseudo-Primary Lemma 3.3. The algorithm to extract the primary component from the pseudoprimary component is based on the Extraction Lemma 3.5.

```
Algorithm 4.1. MODPRIMDECZ
Input: \(F_{\mathcal{N}}=\left\{f_{1}, \ldots, f_{k}\right\}, \mathcal{N}=\left\langle F_{\mathcal{N}}\right\rangle \subseteq \mathbb{Z}[x]^{m}\).
Output: \(K:=\left\{\left(Q_{1}, P_{1}\right), \ldots,\left(Q_{s}, P_{s}\right)\right\}, \mathcal{N}=Q_{1} \cap \ldots \cap Q_{s}\) irredundant primary
    decomposition with \(P_{i}=\sqrt{Q_{i}}\).
    \(P:=\emptyset\) a list of primary decomposition
    \(K:=\emptyset\) a list of remaining elements
    \(L:=\left\{\left(\bar{Q}_{1}, P_{1}\right), \ldots,\left(\bar{Q}_{r}, P_{r}\right)\right\}:=\operatorname{MODPSEUDOPRIMDECZ}(\mathcal{N}) ;\)
    for \(i=1, \ldots, r\) do
    if \(P_{i} \neq 0\) then
        compute \(u_{i}\) a maximal independent set for \(P_{i}\);
        \(\left(Q_{i}, h\right):=\) MODEXTRACTZ \(\left(\left(\bar{Q}_{i}, P_{i}\right), u\right)\);
        \(P:=P \cup\left(Q_{i}, P_{i}\right)\);
        \(K:=K \cup\left(\bar{Q}_{i}+h \mathbb{Z}[x]^{m}\right) ;\)
    else
        \(P:=P \cup\left(\bar{Q}_{i}, P_{i}\right) ;\)
    for \(j=1, \ldots, \operatorname{size}(K)\) do
        \(S:=\operatorname{MODPRIMDECZ}\left(K_{j}\right)\);
        \(P:=P \cup S\);
    return \(P\);
```


Algorithm 4.2. MODPSEUDOPRIMDECZ

Input: \mathcal{N} a submodule of the free module \mathcal{M}.
Output: a list R of pseudo-primary modules of \mathcal{N} and their associated primes.
if $\mathcal{N}=\mathcal{M}$ then return \emptyset
$I:=\operatorname{Ann}(\mathcal{M} / \mathcal{N})$;
if $\mathcal{N}=0$ then
return ($\mathcal{N}, 0$);
else
compute $B:=\left\{P_{1}, \ldots, P_{r}\right\}$, the set of minimal associated primes of I;
comute $\left\{s_{1}, \ldots, s_{r}\right\}$ a system of separators for B;
for $i=1, \ldots, r$ do
compute the saturation Q_{i} of N w.r.t s_{i} and the integer k_{i}, the index of the saturation.
$R:=\left\{\left(Q_{1}, P_{1}\right), \ldots,\left(Q_{r}, P_{r}\right)\right\} ;$
$L=\operatorname{MODPSEUDOPRIMDECZ}\left(\mathcal{N}+\left\langle s_{1}^{k_{1}}, \ldots, s_{r}^{k_{r}}\right\rangle \mathbb{Z}[x]^{m}\right) ;$
return $R \cup L$;
Algorithm 4.3. MODEXTRACTZ
Input: K the list of a pseudo-primary module the corresponding minimal associated prime and L is a list of maximal independent set u for the prime ideal.
Output: The primary component Q of \mathcal{N} associated to P and a polynomial h.

$$
I:=\operatorname{Ann}(\mathcal{M} / Q)
$$

compute $G=\left\{g_{1}, \ldots, g_{k}\right\}$, a strong Gröbner basis of \mathcal{N} w.r.t. a block ordering satisfying $x \backslash u \gg u$;
if $I \cap \mathbb{Z}=0$ then
compute $\left\{a_{1}, \ldots, a_{k}\right\}$ such that $L C_{\mathbb{Z}(u)[x \backslash u]}\left(g_{i}\right)=a_{i}$ with $a_{i} \in \mathbb{Z}[u]$;
compute $h=\operatorname{lcm}\left(a_{1}, \ldots, a_{k}\right)$, the least common multiple of a_{1}, \ldots, a_{k};
if $I \cap \mathbb{Z}=\langle p\rangle, p \neq 0$ then
compute $\left\{a_{1}, \ldots, a_{k}\right\}$ such that $L C_{\mathbb{Z}[u]_{\langle p\rangle}[x \backslash u]}\left(g_{i}\right)=p^{\nu_{i}} \cdot a_{i}$ with $a_{i} \in \mathbb{Z}[u] \backslash\langle p\rangle$; compute $h=\operatorname{lcm}\left(a_{1}, \ldots, a_{k}\right)$, the least common multiple of a_{1}, \ldots, a_{k};
compute the saturation Q of \mathcal{N} w.r.t h and k, the index of saturation.
return (Q, h^{k});

5. Example

We have implemented the algorithms (cf. section 4) in Singular in the library primdecint.lib (cf. [4])

```
Example 5.1.
LIB"primdecint.lib";
ring R=integer, (x,y), (c,lp);
module N=[0,0,xy2-x2-xy],[0,y,x],[0,x,2xy-x],[x,0,-xy], [0,0,18x];
> pseudo_primdecZM(N);
[1]:
    [1]:
        _[1]=[0,0,18x]
        _[2]=[0,0,xy2]
        _[3]=[0,0,x2-2xy2+xy]
        _[4]=[0,y,x]
        _[5]=[0,x,2xy-x]
        _[6]=[x,0,-xy]
    [2]:
        _[1]=x
> primdecZM(N);
[1]:
    [1]:
        _[1]=[0,0,x]
        _[2]=[0,1]
        _[3]=[x,0,-xy]
    [2]:
        _[1]=x
[2]:
    [1]:
        _[1]=[0,0,y3]
        _[2]=[0,0,18x]
        _[3]=[0,0,xy2]
        _[4]=[0,0,x2-2xy2+xy]
        _[5]=[0,y,x]
        _[6]=[0,x,2xy-x]
        _[7]=[y3]
        _[8]=[x,0,-xy]
    [2]:
        _[1]=y
        _[2]=x
```

The computation shows that the module \mathcal{N} is pseudo-primary with minimal associated prime $\langle x\rangle$ it has an embedded component with associated prime $\langle x, y\rangle$.

6. Acknowledgement

The authors would like to thank the reviewer for all the useful hints.

References

1] Adams, W.W.; Loustaunau, P.: An Introduction to Gröbner bases. Graduate studies in mathematics, vol. 3, American Mathematical Scociety, 2003.
[2] Ayoub, C.W.: The Decomposition Theorem for Ideals in Polynomial Rings over a Domain. Journal of Algebra 76, 99-110 (1982).
[3] Decker, W.; Greuel, G.-M.; Pfister, G.: Primary Decomposition: Algorithms and Comparisons. In: Algorithmic Algebra and Number Theory, Springer, 187-220 (1998).
[4] Decker, W.; Greuel, G.-M.; Pfister, G.; Schönemann, H.: Singular 3-1-6 - A computer algebra system for polynomial computations. http://www.singular.uni-kl.de (2013).
[5] Eisenbud, D.; Huneke, C.; Vasconcelos, W.: Direct Methods for Primary Decomposition. Inventiones Mathematicae 110, 207-235 (1992).
[6] Greuel, G.-M.; Pfister, G.: A Singular Introduction to Commutative Algebra. Second edition, Springer (2007).
[7] Gianni, P.; Trager, B.; Zacharias, G.: Gröbner Bases and Primary Decomposition of Polynomial Ideals. Journal of Symbolic Computation 6, 149-167 (1988).
[8] Idrees, N.: Algorithms for primary decoposition of modules. Studia Scientiarum Mathematicarum Hungarica 48 (2), 227-246 (2011).
[9] Pfister, G.; Sadiq, A.; Steidel, S.: An Algorithm for Primary Decomposition in Polynomial Rings over the Integers. Central European Journal of Mathematics Vol. 9, No. 4, (2010) 897-904
[10] Rutman, E.W.: Gröbner bases and primary decomposition of modules. J. Symbolic Computation (1992)14, 483-503.
[11] Sadiq, A.: Standard bases over Rings. International Journal of Algebra and Computation, Vol. 20, No. 7 (2010) 953-968.
[12] Seidenberg, A.: Constructions in a Polynomial Ring over the Ring of Integers. American Journal of Mathematics 100 (No. 4), 685-703 (1978).
[13] Shimoyama, T.; Yokoyama, K.: Localization and Primary Decomposition of Polynomial Ideals. Journal of Symbolic Computation 22, 247-277 (1996).

Nazeran Idrees, Department of Mathematics, GC University, Kotwali Road,Jinnah Town, Faisalabad 38000,Punjab, Faisalabad Pakistan,

E-mail address: nazeranjawwad@gmail.com
Gerhard Pfister, Department of Mathematics, University of Kaiserslautern, Erwin-Schrödinger-Str., 67663 Kaiserslautern, Germany

E-mail address: pfister@mathematik.uni-kl.de
URL: http://www.mathematik.uni-kl.de/~pfister
Afshan Sadiq,, Department of Mathematics,, Jazan University,, P.O. Box 114, Jazan, Saudia Arabia.

E-mail address: afshansadiq6@gmail.com

[^0]: Date: August 16, 2014.
 2000 Mathematics Subject Classification. Primary 13P99, 13E05;
 Key words and phrases. Gröbner bases, primary decomposition, Primary modules, Associated primes, Pseudo primary, Localization, Extraction.

[^1]: ${ }^{1}$ If we want to hint that we consider f in the ring $A[x]$ we write for the leading term $\operatorname{LT}_{A[x]}(f)$.

[^2]: ${ }^{2}$ The number of elements in a maximal independent set u for I is the dimension of $\mathbb{F}_{p}[x] / I \mathbb{F}_{p}[x]$.
 ${ }^{3} \mathrm{We}$ are treating the two cases $p=0$ or $p \neq 0$, together. If $p=0$ then $A=\mathbb{F}_{p}(u)=\mathbb{Q}(u)$ is a field. If $p \neq 0$ then A is a discrete valuation ring with residue field $\mathbb{F}_{p}(u)$. Especially we have in both cases the existence of strong Gröbner basis over $A[x \backslash u]$.

[^3]: ${ }^{4}$ In case $p=0, \bar{K}$ is the extended ideal $K \mathbb{Q}[x]$. In case $p \neq 0, \bar{K}$ is the ideal induced by the canonical map $\mathbb{Z}[x] \longrightarrow \mathbb{F}_{p}[x]$.

