
A CLASSIFIER FOR SIMPLE SPACE CURVE SINGULARITIES

FAIRA KANWAL JANJUA AND GERHARD PFISTER

Abstract. The classification of Bruce and Gaffney resp. Gibson and Hobbs

for simple plane curve singularities resp. simple space curve singularities is
characterized in terms of invariants. This a basis for the implementation of a

classifier in the computer algebra system singular.

1. Introduction

The germ of a space curve is given by a germ of an analytic map f : (C, 0) →
(Cn, 0). Simple singularities of curves have been classified by Bruce and Gaffney
in the case n = 2 and Gibson and Hobbs for the case n = 3. We will describe
the implementation of a classifier in singular for simple curve singularities in case
n ≤ 3.
Instead of considering the germ f : (C, 0) → (Cn, 0) we may as well consider the
corresponding C-algebra morphism f∗ : C[[x1, .., xn]]→ C[[t]].
Let An := {f : C[[x1, .., xn]] → C[[t]] | dimC C[[t]] / Im(f) < ∞}. The group
An := AutCC[[x1, .., xn]]×AutC C[[t]] acts on An by (φ, ψ)(f) = ψ ◦ f ◦ φ−1.

Definition 1.1. f is called A-equivalent to g if f, g are in the same orbit of An.
Since a C-algebra morphism f : C[[x1, .., xn]] → C[[t]] is determined by f(xi) :=
xi(t) we may identify
An = {(x1(t), x2(t), .., xn(t)) ∈ C[[t]]n|dimC C[[t]] /C[[x1(t), x2(t), .., xn(t)]] <∞}.
In this terminology (x1(t), x2(t), .., xn(t)) , (y1(t), y2(t), .., yn(t)) ∈ An are
A-equivalent iff there exist H1, H2, ..,Hn ∈ 〈Y1, .., Yn〉 C[[Y1, ..Yn]], det ( ∂Hi

∂Yj
(0) ) 6=

0, and a unit u ∈ C[[t]] such that xi(t) = Hi( y1(t u(t)), .., yn(t u(t)) ) for all
i. An ⊆ C[[t]]n is equipped in a canonical way with a topology induced by the
classical topology of the affine spaces (C[[t]] / tN )n. It is the coarsest topology of
C[[t]]n such that the canonical maps C[[t]]n → (C[[t]] / tN )n are continuous for all
N .

Definition 1.2. f ∈ An is called to be A-simple, if there exist a neighbourhood
U ⊆ An of f such that U contains only finitely many orbits of An.

The following tables give the results of the classification of Gibson and Hobbs
respectively Bruce and Gaffney.
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Normal Form Generators of the Semi-group
(t) 1
(t2, t2k+1) 2, 2k + 1
(t3, t3k+1) 3, 3k + 1
(t3, t3k+2) 3, 3k + 2
(t3, t3k+1 + t3p+2) k ≥ 2,k ≤ p < 2k 3, 3k + 1
(t3, t3k+2 + t3p+1) k ≥ 2,k < p ≤ 2k 3, 3k + 2
(t4, t5) 4, 5
(t4, t5 + t7) 4, 5
(t4, t6 + t2k+1) k ≥ 3 4, 6, 2k + 7
(t4, t7) 4, 7
(t4, t7 + t9) 4, 7
(t4, t7 + t10) 4, 7

Normal Form Generators of the Semi-group
(t3, t3k+1, t3n+2) k ≤ n < 2k 3, 3k + 1, 3n+ 2
(t3, t3k+2, t3n+1) k < n ≤ 2k 3, 3k + 2, 3n+ 1
(t3, t3k+1 + t3p+2, t3n+2) k ≤ p < n < 2k 3, 3k + 1, 3n+ 2
(t3, t3k+2 + t3p+1, t3n+1) k < p < n ≤ 2k 3, 3k + 2, 3n+ 1
(t4, t5, t6) 4, 5, 6
(t4, t5, t7) 4, 5, 7
(t4, t5, t11) 4, 5, 11
(t4, t5 + t7, t11) 4, 5, 11
(t4, t6, t2k+1) k ≥ 3 4, 6, 2k + 1
(t4, t6 + t2k−1, t2k+1) k ≥ 4 4, 6, 2k + 1
(t4, t6 + t2k−3, t2k+1) k ≥ 5 4, 6, 2k + 1, 2k + 3
(t4, t6 + t2k−7, t2k+1) k ≥ 7 4, 6, 2k − 1, 2k + 1
(t4, t7, t9 + t10) 4, 7, 9
(t4, t7, t9) 4, 7, 9
(t4, t7, t10) 4, 7, 10
(t4, t7, t13) 4, 7, 13
(t4, t7, t17) 4, 7, 17
(t4, t7 + t9, t10) 4, 7, 10
(t4, t7 + t9, t13) 4, 7, 13
(t4, t7 + t9, t17) 4, 7, 17
(t4, t7 + t10, t17) 4, 7, 17

The aim of this paper is to describe the implementation of a classifier of simple
space curve singularities for n ≤ 3 in singular. The new investigation is that we
do not compute the normal form of a given singularity (see tables above) because
this would be very time consuming. We give a characterization of the different
types of singularities in terms of certain invariants and use this characterization to
identify the singularities.

2. Invariants: Semigroup of the curve and its differential module

In this section we will recall the invariants we need to set up an efficient classifier.

Definition 2.1. Let (x1(t), x2(t), .., xn(t)) ∈ An.
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(1) The δ-invariant of the corresponding algebra C[[x1(t), x2(t), .., xn(t)]] is
δ := dimCC[[t]] /C[[x1(t), x2(t), .., xn(t)]].

(2) Let tcC[[t]] = AnnC[[t]](C[[t]] /C[[x1(t), x2(t), .., xn(t)]]) then c is called the
conductor of C[[x1(t), x2(t), .., xn(t)]]. Note that tcC[[t]] is also an ideal in
C[[x1(t), x2(t), .., xn(t)]] the conductor ideal.

(3) Γ := {ordt(f)|f ∈ C[[x1(t), x2(t), .., xn(t)]]} is called the semi-group of
C[[x1(t), x2(t), .., xn(t)]].

The semi-group will play an important role in identifying the singularity. The
semi-group can be computed using sagbi bases, this we will explain in the next
section.

Definition 2.2. Let A = C[[x1(t), x2(t), .., xn(t)]] be a subalgebra of C[[t]]. The
A-module of the Kähler differentials denoted by Ω is defined as the A-module
generated by {dadt |a ∈ A}. It is easy to see that Ω = 〈dx1

dt ,
dx2

dt , ..,
dxn

dt 〉A.

Similarly, to the semi-group we define the semi-module of the differential module
Ω ⊂ C[[t]] as ΓΩ = {ord(γ)|γ ∈ Ω}.

3. sagbi bases:the special case C[[x1(t), x2(t), .., xn(t)]] ⊆ C[[t]]

In this part we would like to recall the notion of a Sagbi basis for the subalgebra
A of C[[t]] and A-modules M ⊆ C[[t]]. Details can be found in the paper of Hefez
and Hernandes [HH]. For a power series f =

∑
v≥m avt

v ∈ C[[t]], am 6= 0, we

will denote by LT (f) = amt
m, LM(f) = tm the leading term resp. the leading

monomial.

Definition 3.1. Let A ⊆ C[[t]] be a subalgebra. G ⊆ A is called sagbi basis of A
if for any f ∈ A, f 6= 0, there exist g1, g2, .., gs ∈ G and H ∈ C[Y1, .., Ys] such that
LM(f) = H(LM(g1), LM(g2), .., LM(gs)).

Definition 3.2. The Sagbi basis G = {g1, g2, · · · , gs} is called to be reduced, if
the coefficient of the leading terms is 1 and it has the following properties:

(1) LM(gi) 6∈ C[LM(g1), LM(g2), .., LM(gi−1), LM(gi+1), .., LM(gs)] for all i.
(2) Let m 6= LM(gi) be a monomial of gi then m 6∈ C[LM(g1), .., LM(gs)].

Note that in case of dimC C[[t]] /A <∞ there exist a reduced Sagbi basis.

Definition 3.3. let A = C[[x1(t), x2(t), .., xn(t)]] ⊆ C[[t]] be a subalgebra such
that dimC C[[t]] /A < ∞. Let G = {g1, g2, , · · · , gs} be a Sagbi basis of A. Let
M ⊆ C[[t]] be an A-module. H ⊆ M is called a G-standard basis, if for every
m ∈ M, m 6= 0, there exist h ∈ H and Q ∈ C[Y1, .., Ys] such that LT (m) =
LT (h).Q(LT (g1), LT (g2), .., LT (gs)).

Remark 3.4. Sagbi bases for subalgebras A ⊆ C[[t]] with dimC C[[t]]/A < ∞ and
standard bases of A-module M have been implemented in singular [DGPS].

Proposition 3.5. Let A ⊆ C[[t]] be a subalgebra such that dimC C[[t]]/A < ∞ and
M ⊆ C[[t]] be an A-module. Let G = {g1, g2, .., gs} be a sagbi bases of A and H =
{h1, h2, .., hk} be a G-standard basis of M . Then {ordtg1, ordtg2, .., ordtgs} resp.
{ordth1, ordtg2, .., ordthk} generate the semi-group of A resp. the semi-module of
M .

For a proof of the proposition cf. [HH].
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4. Classifying the Singularities Using the Invariants

Proposition 4.1. The polynomials in the normal form of the space curves given
in the lists above are already reduced sagbi bases of the subalgebra of C[[t]] generated
by them except in the following cases where one additional element is needed:

(1) t4, t6 + t2k+1, k ≥ 3, we need additionally t2k+7

(2) t4, t6 + t2k−3, t2k+1, k ≥ 5, we need additionally t2k+3

(3) t4, t6 + t2k−7, t2k+1, k ≥ 7, we need additionally t2k−1

Proof. We will give the proof for the case (t3, t3k+2 + t3p+1), k ≥ 2,k < p ≤ 2k
The proof for the other non-exceptional cases is similar. Let G = {g1, g2} =
{t3, t3k+2 + t3p+1} ⊆ A = C[[t3, t3k+2 + t3p+1]]. We consider t3 , t3k+2 being the
leading terms of g1, g2. The leading exponent of the g1 and g2 have greatest common
divisor equal to 1. We have to consider a polynomial H as H(LT (g1), LT (g2)) = 0.

Obviously it is enough to consider H(Y1, Y2) = Y 3k+2
1 − Y 3

2 .

H(g1, g2) = (t3)3k+2 − (t3k+2 + t3p+1)3

= −3t6k+3p+5 − 3t6p+3k+4 − t9p+3

= t3[−3(t3)k+p[t3k+2 + t3p+1]− (t3)3p]

= g1(−3(g1)k+pg2 − (g1)3p).

This implies that the normal form of H(g1, g2) with respect to G is zero. There
are no more relations to consider. Hence G is a required sagbi basis in this case.
Now we will give the proof for one of the exceptional cases. Consider the algebra
generated by t4, t6 + t2k−3, t2k+1.
We consider H(Y1, Y2) = Y 3

1 − Y 2
2 then H(t4, t6 + t2k−3) = −2t2k+3 + t4k−6. This

leads to a new element for the sagbi basis. t4k−6 is the leading monomial of
(t4)k−3(t6 + t2k−3). We can use these relation and similar once to cancel this term.
We obtain t4, t6 + t2k−3, t2k+1, t2k+3 as a candidate for the sagbi basis. As above we
have to check that for any element H(Y1, .., Y4) of a generating set of polynomials
of the algebraic relations between t4, t6, t2k+1, t2k+3 H(t4, t6 + t2k−3, t2k+1, t2k+3)
can be reduced to zero. This can easily be checked. The other exceptional cases
can be treated in a similar way. �

Proposition 4.2. The following tables contain the G-standard basis of the module
of Kähler differentials of the simple space curve singularities.
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Sagbi Basis of the Algebra Standard basis of Kähler Differentials
(t) (1)
(t2, t2k+1) (t, t2k)
(t3, t3k+1) (t2, t3k)
(t3, t3k+2) (t2, t3k+1)

(t3, t3k+1 + t3p+2) (t3, t3k + 3p+2
3k+1 t

3p+1, t3p+4)

k ≥ 2,k ≤ p < 2k

(t3, t3k+2 + t3p+1) (t3, t3k+1 + 3p+1
3k+2 t

3p, t3p+3)

k ≥ 2,k < p ≤ 2k
(t4, t5) (t3, t4)
(t4, t5 + t7) (t3, t4 + 7

5 t
6, t10)

(t4, t6 + t2k+1, t2k+7) k ≥ 3 k = 3,(t3, t5 + 7
6 t

6, t10, t12 − 15
26 t

14, t14)
k > 3,(t3, t5 + 2k+1

6 t2k, t2k+6, t2k+4)
(t4, t7) (t3, t6)
(t4, t7 + t9) (t3, t6 + 9

7 t
8, t12)

(t4, t7 + t10) (t3, t6 + 10
7 t

9, t16)

Sagbi basis of Algebra Standard basis of Kähler Differentials
(t3, t3k+1, t3n+2) k ≤ n < 2k (t3, t3k, t3n+1)
(t3, t3k+2, t3n+1) k < n ≤ 2k (t3, t3k+1, t3n)

(t3, t3k+1 + t3p+2, t3n+2) n = p+ 1,(t2, t3k + 3p+2
3k+1 t

3p+1, t3n+1)

k ≤ p < n < 2k n 6= p+ 1,(t2, t3k + 3p+2
3k+1 t

3p+1, t3n+1, t3p+4)

(t3, t3k+2 + t3p+1, t3n+1) n = p+ 1,(t2, t3k+1 + 3p+1
3k+2 t

3p, t3n)

k < p < n ≤ 2k n 6= p+ 1,(t2, t3k+1 + 3p+1
3k+2 t

3p, t3n, t3p+3)

(t4, t5, t6) (t3, t4, t5)
(t4, t5, t7) (t3, t4, t6)
(t4, t5, t11) (t3, t4, t10)
(t4, t5 + t7, t11) (t3, t4 + 7

5 t
6, t10)

(t4, t6, t2k+1) k ≥ 3 (t3, t5, t2k)
(t4, t6 + t2k−1, t2k+1) k ≥ 4 (t3, t5 + 2k−1

6 t2k−2, t2k, t2k+2)
(t4, t6 + t2k−3, t2k+1, t2k+3) k ≥ 5 (t3, t5 + 2k−3

6 t2k−4, t2k, t2k+2)
(t4, t6 + t2k−7, t2k+1, t2k−1) k ≥ 7 (t3, t5 + 2k−7

6 t2k−8, t2k, t2k−2, t2k−4)
(t4, t7, t9 + t10) (t3, t6, t8 + 10

9 t
9, t13)

(t4, t7, t9) (t3, t6, t8)
(t4, t7, t10) (t3, t6, t9)
(t4, t7, t13) (t3, t6, t12)
(t4, t7, t17) (t3, t6, t16)
(t4, t7 + t9, t10) (t3, t6 + 9

7 t
8, t9, t12)

(t4, t7 + t9, t13) (t3, t6 + 9
7 t

8, t12)
(t4, t7 + t9, t17) (t3, t6 + 9

7 t
8, t12, t16)

(t4, t7 + t10, t17) (t3, t6 + 10
7 t

9, t16)

Proof. we will just prove one case. The other are similar.
Consider the curve defined by (t4, t6 + t2k−7, t2k+1), k ≥ 7. The corresponding
algebra has reduced sagbi basis G = {g1, · · · , g4} = {t4, t6 + t2k−7, t2k−1, t2k+1}.
The module of the Kähler differentials is generated by {h1, · · · , h4} = {t3, t5 +
2k−7

6 t2k−8, t2k−2, t2k}. Now we consider all the combinations of gi and hj of the
form LT (hi)H1(LT (g1), · · · , LT (g4))− LT (hj)H2(LT (g1), · · · , LT (g4)) = 0.

Consider g1h2 − g2h1 the leading term cancels and we obtain ( 2k−13
6 )t2k−4 since
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the term t2k−4 is not of the form LT (hi)H(LT (g1), LT (g2), · · · , LT (g4)). We add
the new term into the G-standard basis of the module, h5 := t2k−4. We continue
and obtain no new term.
Thus the set H = {h1, h2, · · · , h5} = {t3, t5 + 2k−1

6 t2k−8, t2k−4, t2k−2, t2k} is the
required G-standard basis of the Kähler differentials. The other cases can be treated
similarly. �

Proposition 4.3. Let A := C[[x1(t), x2(t), x3(t)]] ⊆ C[[t]] be a subalgebra,
dimC[[t]] /C[[x1(t), x2(t), x3(t)]] < ∞. Let Γ be the semi-group of A.
If Γ is in the list of semi-groups of the singularities listed in the tables above then
A is a simple singularity.

Proof. We give the proof for one case. The other cases are similar. Assume Γ =<
4, 6, 2k+1 > is the semigroup of A. Let L = {t4+H1, t

6+H2, t
2k+1+H3} be a Sagbi

basis corresponding to this semigroup where ord(H1) > 4, ord(H2) > 6, ord(H3) >
2k+ 1 and k ≥ 3. Using the automorphism of C[[t]] mapping t4 +H1 to t4 we may
assume that H1 = 0. Since the conductor of Γ is 2k + 4 and < 4, 6 >⊆ Γ we may
assume that H2 = α7t

7 + α9t
9 + · · ·+ α2k+1t

2k+1 + α2k+3t
2k+3 and H3 = βt2k+3.

Let αi be minimal such that αi 6= 0. Since (t6 + H2)2 − (t4)3 = 2αit
6+i + · · ·

we obtain 6 + i ∈ Γ, i.e. i = 2k − 5 or i ≥ 2k − 1. Then above basis reduces to
{t4, t6 + γ0t

2k−5 + γ1t
2k−3 + γ2t

2k−1 + γ3t
2k+3, t2k+1 + ωt2k+3}, γ1 = γ0ω.

If γ0 6= 0 then A = C[[t4, t6 + H2]] and A is a simple plane curve singularity. If
γ0 = 0 then γ1 = 0 and L = {t4, t6 + γ2t

2k−1 + γ3t
2k+3, t2k+1 + ωt2k+3}. Using the

transformation t → t − 1
2k+1ωt

3 we may assume that ω = 0. This transformation

creates in t4 resp. t6 only additional terms of even degree which can be removed
afterwords. Using the transformation t→ t− 1

2k−1
γ3
γ2
t5 (if γ2 6= 0). We may assume

as before γ3 = 0 This leads to the case L = {t4, t6 + t2k−1, t2k+1}. If γ2 = 0 and
γ3 = 0 we are in the case L = {t4, t6, t2k+1}. It remains to consider the case
γ2 = 0,γ3 6= 0. We may assume that γ3 = 1,i.e. L = {t4, t6 + t2k+3, t2k+1}. The
transformation t→ t− 1

6 t
2k−2 gives

t4 → t4 − 2
3 t

2k+1 mod t2k+4

t6 + t2k+3 → t6 mod t2k+4

t2k+1 → t2k+1 mod t2k+4

We obtain finally L = {t4, t6, t2k+1}.
�

Proposition 4.4. The type of the simple space curve singularities is completely
characterized by the semi-group and the semi-module of its Kähler differentials ex-
cept in the following cases:

(1) (t3, t3k+1 + λ t3(n−1)+2, t3n+2) k < n < 2k, λ ∈ {0, 1}
(2) (t3, t3k+2 + λ t3(n−1)+1, t3n+1) k < n ≤ 2k, λ ∈ {0, 1}

Proof. Tables given in section 1 shows that there are different singularities with
same semi-group. An analysis of the tables given in Proposition 4.2 show that all
of them but the two cases above can be distinguished by the semi-module of the
Kähler differentials. �

Proposition 4.5. Let Γ = 〈3, 3k+1, 3n+2〉 resp. Γ = 〈3, 3k+2, 3n+1〉 be the semi-
group of A := C[[x1(t), x2(t), x3(t)]] ⊆ C[[t]]. Let {t3 + h1, t

3k+1 + h2, t
3n+2 + h3}
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resp. {t3 + h1, t
3k+2 + h2, t

3n+1 + h3} be the sagbi-basis of A. Let C[[t3, t3k+1 +
λ t3(n−1)+2]] resp. C[[t3, t3k+2+λ t3(n−1)+1]] be the normal form of C[[t3+h1, t

3k+1+
h2]] resp.C[[t3 +h1, t

3k+2 +h2]] λ ∈ {0, 1}. Then t3, t3k+1 +λ t3(n−1)+2, t3n+2 resp.
t3, t3k+2 + λ t3(n−1)+1, t3n+1 is the normal form of A.

Proof. We give the proof of one case and the other case is similar. By the assump-
tions above we have that C[[t3 + h1, t

3k+1 + h2]] ' C[[t3, t3k+1 + λt3(n−1)+2]]. Let
Φ : C[[t]]→ C[[t]] be the automorphism such that
Φ(C[[t3 + h1, t

3k+1 + h2]]) = C[[t3, t3k+1 + λt3(n−1)+2]]. Using this automorphism
we may assume that h1 = 0, h2 = λt3(n−1)+2. Since the conductor of Γ =<
3, 3k + 1, 3n+ 2 > is 3n we may also assume that h3 = 0. �

5. Description of the classifier

The following two algorithms classify the simple space curve singularities and
the simple plane curve singularities.

Algorithm 1 Simple Space Curves (spaceCur)

Input: x1(t), x2(t), x3(t) ∈ C[[t]] and A = C[[x1(t), x2(t), x3(t)]].
Output: y1(t), y2(t), y3(t), the normal form or 0 if it is not simple.

1: Compute G = {g1, g2, · · · , gs}, a reduced Sagbi basis of A such that LT (gi) =
tai , a1 < a2 < · · · < as.

2: Compute M , a minimal G-standard basis for the Kähler differentials of A.
3: Γ = 〈a1, a2, · · · , as〉, the semigroup of A and C the conductor of Γ.
4: If s = 2 return planeCur(G).
5: Compute ΓM the semi module of M and compute CM the conductor of ΓM .
6: if a1 = 3 then
7: if a2 = 3k + 1 then
8: H = planeCur(g1, g2)
9: if H = (t3, t3k+1 + λt3(n−1)+2) then

10: return (t3, t3k+1 + λt3(n−1)+2, t3n+2);
11: if a2 = 3k + 2 then
12: H = planeCur(g1, g2)
13: if H = (t3, t3k+2 + λt3(n−1)+1) then
14: return (t3, t3k+2 + λt3(n−1)+1, t3n+1)
15: if a1 = 4 then
16: if a2 = 5 then
17: if a3 = 6 then
18: return (t4, t5, t6);
19: if a3 = 7 then
20: return (t4, t5, t7);
21: if a3 = 11 then
22: Compute G′, a reduced sagbi-basis of {g1, g2} and, Compute M ′, a mini-

mal G′-standard basis of the module of Kähler differentials of C[[g1, g2]].
23: if ](M ′) = 2 then
24: return (t4, t5, t11);
25: if ](M ′) = 3 then
26: return (t4, t5 + t7, t11);
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Algorithm 1 Simple Space Curves (spaceCur)

1: if a1 = 4 then
2: if a2 = 6 then
3: if s = 3 then
4: if ](M) = 4 then
5: return (t4, t6 + ta3−2, ta3).
6: if ](M) = 3 then
7: return (t4, t6, ta3).
8: if s = 4 then
9: if ](M) = 4 then

10: return (t4, t6 + ta3−4, ta3);
11: if ](M) = 5 then
12: return (t4, t6 + ta4−8, ta4).
13: if a2 = 7 then
14: if a3 = 9 then
15: if ΓM = 〈3, 6, 8, 13〉 then
16: return (t4, t7, t9 + t10);
17: if ΓM = 〈3, 6, 8〉 then
18: return (t4, t7, t9)
19: if a3 = 10 then
20: if ΓM = 〈3, 6, 9, 12〉 then
21: return (t4, t7 + t9, t10)
22: if ΓM = 〈3, 6, 9〉 then
23: return (t4, t7, t10)
24: if a3 = 13 then
25: Compute G′, a reduced sagbi-basis of {g1, g2}.
26: Compute M ′, a minimal G′-standard basis of the module of Kähler dif-

ferentials of C[[g1, g2]].
27: if ](M ′) = 2 then
28: return (t4, t7, t13);
29: if ](M ′) = 3 then
30: return (t4, t7 + t9, t13);
31: if a3 = 17 then
32: if ΓM = 〈3, 6, 12, 16〉 then
33: return (t4, t7 + t9, t17);
34: if ΓM = 〈3, 6, 17〉 then
35: Compute G′, a reduced sagbi-basis of {g1, g2}.
36: Compute M ′, a minimal G′-standard basis of the module of Kähler

differentials of C[[g1, g2]].
37: if ](M ′) = 2 then
38: return (t4, t7, t17);
39: if ](M ′) = 3 then
40: return (t4, t7 + t10, t13);
41: return (0)
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Algorithm 2 Simple Plane Curves (planeCur)

Input: x1(t), x2(t) ∈ C[[t]].
Output: y1(t), y2(t), the normal form or 0 if it is not simple.

1: Compute G, a Sagbi basis of A = C[[x1(t), x2(t)]].
2: Compute M , a minimal G-standard basis for the module of Kähler differentials

of A.
3: Compute Γ = 〈a1, a2, · · · , as〉 the semigroup of A, a1 < a2 < · · · < as.
4: Compute C the conductor of Γ.
5: Compute ΓM the semi module of M .
6: Compute CM the conductor of ΓM
7: if a1 = 1 then
8: return (t);
9: if a1 = 2 then

10: return (t2, tC+1);
11: if a1 = 3 then
12: if a2 = 3k + 1 then
13: if ΓM = 〈2, 3k〉 then
14: return (t3, t3k+1)
15: if ΓM = 〈2, 3k,CM + 2〉 then
16: return (t3, t3k+1 + tCM )
17: if a2 = 3k + 2 then
18: if ΓM = 〈2, 3k + 1〉 then
19: return (t3, t3k+2)
20: if ΓM = 〈2, 3k + 1, CM + 2〉 then
21: return (t3, t3k+2 + tCM )
22: if a1 = 4 then
23: if a2 = 5 then
24: if ΓM = 〈3, 4〉 then
25: return (t4, t5);
26: if ΓM = 〈3, 4, 10〉 then
27: return (t4, t5 + t7);
28: if a2 = 6 then
29: return (t4, t6 + tCM−9);
30: if a2 = 7 then
31: if ΓM = 〈3, 6〉 then
32: return (t4, t7);
33: if ΓM = 〈3, 6, 12〉 then
34: return (t4, t7 + t9);
35: if ΓM = 〈3, 6, 16〉 then
36: return (t4, t7 + t10);
37: return (0);

Example 5.1. ring r=0,t,Ds;

ideal I=t3+3t4+3t5+4t6+6t7+3t8+3t9+3t10+t12,t2+2t3+t4+2t5+2t6+t8;

planeCur(I);

>[1]=t2
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>[2]=t3

Example 5.2. ring r=0,t,Ds;

ideal I=t3+3t4+3t5+t6,t13+14t14+92t15+377t16+1079t17+2288t18+3718t19+

4719t20+4719t21+3718t22+2288 t23+1079t24+377t25+92t26+14t27+t28,

t20+20t21+190t22+1140t23+4845t24+15504t25+38760t26+77520t27+

125970t28+16796 0t29+184756t30+167960t31+125970t32+77520t33+

38760t34+15504t35+4845t36+1140t37+19 0t38+20t39+t40;

spaceCur(I);

>[1]=t3

>[2]=t13+t14

>[3]=t20
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