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ABSTRACT. Let K be an algebraically closed field of characteristic p > 0. The
aim of the article is to give a classification of simple parametrized plane curve
singularities over K. The idea is to give explicitly a class of families of singularities
which are not simple such that almost all singularities deform to one of those and
show that remaining singularities are simple.
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1. INTRODUCTION

The study and the classification of singularities have a long history. Very impor-

tant contributions go back to Zariski (cf. [13]) and Arnold (cf. [1]). Most of the
results were obtained over the complex numbers. Greuel and his students started
a classification for hypersurface singularities in characteristic p (cf. [2],[3],[7], [8]).
Bruce and Gaffney (cf. [4]) classified the simple parametrized plane curve singular-
ities over the complex numbers (for space curves cf. [6]). The aim of this paper is
to give a similar classification in positive characteristic.
Let K be an algebraically closed field of characteristic p. A parametrization of a germ
of a plane curve singularity is given by a pair (z(t),y(t)) of power series, z(t),y(t) €
K{[[t]]. Two parametrizations (z(t),y(t)) and (Z(t),y(t)) are A—equivalent (we write
(x(t),y(t)) ~a (T(t),y(t))) if there exist automorphisms

o K1) = K[[t]] and ¢ = (1, ¢2) : Kz, y]] = K[z, y]]
such that
(@((0)), y(¥ (1)) = (Pr(T(X), Y(1)), pa(T(t), H(1)))-

We will always assume that a given parametrization (x(t),y(t)) is primitive, i.e.
dimg K[[t]]/ K[[z(t),y(t)]] =: § < co. Furthermore we may assume that ord;z(t) =:
n < ordyy(t) =: m and n {m.

Given a parametrization f = (x(t),y(t)) we denote by I'y (or just I' if f is fixed )
the semigroup

Ly ={ordi(h)[h € K[z(t), y(D)]]}-
Generators of the semigroup can be computed using a sagbi basis (cf. [10]) for
Kl (t), y(1)]].

The authors would like to thank very much the referee for his helpful comments.
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As in characteristic 0 it is easy to see ([11], [13]) that the following hold.

Theorem 1. (Zariski)

(1) In case ptn (resp. ptm) the parametrization is A—equivalent to

(t™,y(t)) (resp. (T(t),t™)) for suitable G(t) (resp. T(t))

with ordy(t) = m (resp. ord,T(t) =n).
(2) Assume that k € T' then

(" ™ >, aitt) ~a (4 Y alth)

with a; = a; if i < k and aj, = 0.
(3) Assume that ptm and k+n —m €T then

("t > ait’) ~q (t" " + Y iom alt')

with a; = @ if i < k and aj, = 0.

Definition 2. A parametrization (x(t),y(t)) is called simple if there are only finitely
many A— equivalent classes in a deformation of (x(t),y(t)).

Remark 1. As an immediate consequence we obtain:

Given two parametrizations (x(t),y(t)) (resp.(ZT(t),7(t)) and (x(t),y(t)) not simple.
If (x(t),y(t)) is A—equivalent to a parametrization in a deformation of (Z(t),y(t))
then (Z(t),y(t)) is not simple.

The classification is based on the following idea:

(1) Find special classes of non-simple parametrizations such that all non-simple
parametrizations have one of them represented in a suitable deformation.

(2) Especially parametrizations with n > 5 or n = 4 and m > 9 are not simple.

(3) Find normal forms depending on the semigroup for the remaining cases.

(4) The candidates for simple parametrizations have semigroups generated by
at most 3 elements. These semigroups behave semicontinously ' in a defor-
mation.

In characteristic 0 we obtain the following list of simple parametrizations (cf.[4],

12)):

et T' =< fo,...,5 > and T =< By,..., B, > two semigroups given by the minimal set of
generators. We define I' < T iff ' =T or there exists ¢ < min(l, k) such that Sy = By, -, Bi—1 =
B;_1 and B; < B;.
In a deformation of a parametrization with semigroup I' the semigroup is smaller or equal to I'.
2



Characteristic p = 0
r Normal Form
<1l> (t,0)
<2,2k+1> (¢2, 2R 1)
<33k+1> | (B, B33 1 <k<l<2k-—1
(t?’,tngl)
<3,3k+2> | (B2 83N 1<k<i<2k—1
(t3,t3k+2)
<4,5> (t*, 65 +t7)
(t*, %)
<4,6,2k + 7> (t4 16 + 2+ k>3
<4,7> (417 +19)
(4,47 + 13)
(t",¢7)

The main result of this paper is the following Theorem:

Theorem 3. If the characteristic of K is greater than 0, we obtain in the following
two tables the classification of simple parametrizations.

Characteristic p = 2
r Normal Form
<1> (t,0)
<2,2k+1> (t2, 12k 1)
(82 + 2L 2 0<m < k
<3,4> (3, 14)
(3,14 + %)
<3,5> (13, %)
<3,7> (3,t7)
(3,7 + %)
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Characteristic p > 3

r Normal Form
<1> (¢,0)
<2,2k+1> (t2, 12k 1)
<3,3k+1> | (B34 1<k<I<2k—1
(13, ¢35+1)

kg%withc:pmod3,0§c§2
<3,3k+2> | (B3R 1<k<I<2k-1
(13, 135+2)
kg%withc:meodii,Ogch
additionally (¢3 +¢*,¢°)if p=3
<4,5> (t*, 5 + 1)
(t47t5>
additionally (t*,¢> +t%)if p=>5
<4,6,2k+7 > (4,10 + 2H 1) k> 3 and p # 13
k=3ifp=3orp=>5
E<6ifp=7
12ifp=11
e if p > 17
<4,7> p#T
('t + 1)
(t4, 67+ t13)
(t4,47)

k<
k<

2. SOME CLASSES OF NON SIMPLE CURVES

In this section we will prove that in any characteristic parametrizations with
n>5orn=4and m > 9 are not simple. We will also see that in characteristic 3
parametrizations with semigroup < 3,7 > and in characteristic 7 parametrizations
with semigroup < 4,7 > are not simple.

Lemma 1.

(1) (587 + 70 4+ 3 sy ait’) ~a (0487 + 10 4+ 37,01, bit') implies ayy = byy.

(2) (7,80 + 83+ D gaqt’) ~a (80,80 + 1% + D7, bit") implies ag = by.
Proof. Assume that ¢ : K|[t]] — K][[t]] is an automorphism defined by ¢(t) =
t4+ > spct’, H/L € Kl[z,y]] with H = Hyx + Hay + Hsa®> + Hyay + ... L =

Lix + Loy + Lsx?® + Lyxy + ... such that
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(i) () = H(t" £ + 10+ 30, g ait’)
(i) (1) + () + 3 0i 10 bip (1) = L(ELE + 80+ 37, 1 ait’).

From (i) obtain H; = 1 and ¢; = ¢3 = 0 comparing the coefficients of #*,¢5 and
t%. From (ii) we obtain aj; = by; looking at the coefficient of ¢''. This proves (1).
Similarly (2) can be proved. O

Lemma 2. Let K be a field of characteristic 3 then the parametrizations with semi-
group < 3,7 > and < 5,6 > are not simple.

Proof. 1t is not difficult to see that
(1) (B +t*+ Y agait’ t7) ~a (83 + 2+ 3,05 bit', t7) implies ag = by
(2) (B, 104+ Y ugait’) ~a (8,85 + >, o bit') and ag = by = 1
implies ag = bs.
The proof is similar to the proof of the previous lemma. O

Corollary 1. Parametrizations with semigroup < 4,9 > and < 5,6 > are not
simple.

Proof. The corollary is a consequence of the lemma 1 and 2, since

7+ s ait’) ~a (U487 10+ S L) if agg # 0 and (82,8°+ 30, ait’) ~4
(15,10 + ¢8 4 Bu—Odarastas g |y if 1940 4 1302 £ 0 and p # 3.

27(12a5+13a2)?
If p = 3 we use lemma 2. O

Lemma 3. Let K be a field of characteristic 7 then the parametrizations with semi-
group < 4,7 > are not simple.

Proof. Tt is not difficult to see that (t*,¢"+17+ 3. g ait’) ~a (#8717 +30, 1, bit")
implies aig = blO- ]

3. CURVES WITH SEMIGROUP < 3,3k +1> OR < 3,3k + 2 >

In this section we assume that the characteristic p > 3. The aim of this section
is to find depending on the characteristic p a minimal ky such that (83, 361
Zz>3k+2 a;t") (with semigroup < 3,3k 4+ 1 >) resp. (3,72 + 3., ~a;t") (with
semigroup < 3,3k + 2 >) is not simple for all & > ky. We will see that in case
of semigroup < 3,3k + 1 > we obtain ky = IiS if p =1 mod 3 and ky = 2p+8 if
p =2 mod 3. If the semigroup is < 3,3k + 2 > We obtain the minimal ky such that
(3,672 + 37 gpys ait?) is not simple for all k > kg as kg = 225 if p =1 mod 3 and
ko = % if p =2 mod 3.

We ﬁrst consider parametrizations with semigroup < 3,3k + 1 >. Let (z(t),y(t))
be a primitive parametrization with ord;z(t) = 3,ordyy(t) = 3k + 1,k > 0. As in
characteristic 0 we obtain
(x(t),y(t)) ~a (7, 87"1) or
((t),y(t)) ~a (B 38 4 302 1 55 a3 TT2) |k <1< 2k — 1.
We can compute the semigroup I' of K[[z(t),y(t)]] and obtain
5



[ =<3,3k+1>=1{0,3,6,...,3k,3k + 1, ..., 6k — 2,6k, ...} with conductor ? 6k.

Lemma 4. Ifp{3(l — k) + 1 then
(13, 4301 312 L S B HOHR) (g3 3R 3142),

Proof. Let s be minimal with as # 0 and consider ¢(t) =t + at>*T!. We have

(t + at3s+1)3 — t3 + 3(1/t3s+3 + 3a2t68+3 + O[3t98+3.
(t+at3s+l)3k+l — t3k+1+Oé(3]€+1)t3(k+s)+l+a2 (3k;1)t3(k+2s)+1+...+O{3k+1t(3k+1)(38+1).

Since all exponents of (¢t + at?*!)3 are divisible by 3 there exist H € K[[x]] such
that H((t + at®71)3) = 3. Since all exponents of (t + at3T1)3*+1 are congruent to
1 modulo 3 there exist L € K|[[x,y]] such that L((t + at®T1)3 (t + at3sT1)3kH1) =
t3F L =y — a(3k + 1)z°y + ... .We obtain

L(o(1)?, @(t)*F+1 + o(£)342 4 Sazp(t)3+0+2) =
3R 32 4 (31— k) + 1) 4 a,)t30F)+2

Now choose a = —ﬁ to obtain
(t37 t3k+1 4 t3l+2 T Zi>3l+2 ait?)(l-i-i)—‘rQ) ~ 4 (tS, t3k+1 4 t3l+2 + Zi>s bitB(H-i)-i-Z).
The lemma follows using induction. UJ

Lemma 5. Ifp|3(l — k) + 1 and | < 2k — 3 then (3,31 +3%2) s not simple.

Proof. Assume that ¢(t) = t+ >...,a;t’, H,L €< z,y > K|[[z,y]] are given such

that det(5222(0,0)) # 0 and

Sp(t)i% — H(t37 t3/€+1 4 t3l+2 + Gt3l+5)
gD(t)Bk:Jrl _|_ S0<2l:>3l+2 + b@<t>3l+5 — L(t3’ t3k+1 + t3l+2 + at3l+5).

The first equation implies as = a3 = a5 = -+ = asp—4 = azx—3 = 0. This implies
that ¢(t) =t +aut* +--- and the first possible term with exponent not congruent 1
mod 3 is 371, This implies that the first possible term with exponent in (¢)%*+1
not congruent to 1 mod 3 is %=1, Now o(t)3+2 = #3142 4 4, (31 + 2)#31+5 4 .. .. This
implies that the coefficient of 375 in (£)3 1 + p(¢)3F2 4+ b ()34 is b+ ay (31 + 2)
and the coefficient of #3**4 is (3k + 1)as. Now consider the coefficient of #3*° in
L #3940 4 43102 4 qt¥45) . Obviously L = y + 3,y @’ + 2 yny bo’y 4+ y° Ly
since L(3, 3%+ 4 #3142 4 q¢31+5) has order k + 1. Now

L(tB, t3k+1 + t3l+2 + at3l+5) —
t3k+1 + t3l+2 + at3l+5 + Zy2k+1 avt3v + Zy21 bvt3v (t3k+1 + t3l+2 + at3l+5) mod t6k‘

This implies that by is the coefficient of ¢t3*** and a + b, is the coefficient of #3+°.
Therefore by = (3k + 1)ay and b+ (31 +2)ay = a + (3k + 1)ay. But 3l +2 =3k +1
in K implies a = b. Now obviously

2The conductor of a semigroup is the minimum of all ¢ in the semigroup such that all integers
greater than c are in the semigroup.
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(13, 43K 1 g g3R2 4 35 o (43 431 4 B2 g g i)
for r € K,r30=M+1 = 1 induced by t — rt. This implies
(t3’ t3k+1 + t3l+2 + at3l+5) ~ 4 (t3, t3k+1 + t3l+2 + bt3l+5>

if and only if a = r*b for r € K, r3(=®)+1 = 1 ie. the parametrization (¢3,#3*+! +
31+2) is not simple. O

Lemma 6. If | > 2k — 3 then (83,3 372 £ 57 o o aqt?) ~q (83,8357 4-13042),

Proof. If pt3(l—k)+1 then the lemma is consequence of lemma 4. If [ = 2k —1 the
lemma follows from Theorem 1 (2) and the fact that 3] + 3 = 6k is the conductor
of the semigroup. Assume now that [ =2k —2 and p | 3(l — k) + 1 = 3k — 5. First
of all

(tS, t3/€+1 4 t3l+2 + Zi>3l+2 altz) ~4 <t3, t3k;+1 + t6k_4 + a6k71t6k_1)

since ¢ is in the semigroup for ¢« > 3l + 2 and ¢ # 6k — 1. Now consider the
automorphism o(t) =t + at**~1. We obtain

()3 = 3 + 3at3 L + 30255 Imod (%),
QO(t)ngrl — t3k+1 + Oé(?)k’ + 1)t6k‘71m0d (t6k>, g0(t)3[+2 — t3l+2 mOd (t6k)

This implies
(T 187 age  #971) = 3 4 1% 4 (a(3k + 1) + )t mod ().

Since p | 3k — 5 and p > 3 we have p 1 3k + 1 and we can choose o = — and

obtain

<t3, t3k+1 + tﬁk_4 + Zi>6k,4 altz) ~ (t3 + 3Oét3k+1 + 3a2t6k_1, t3k+1 + tﬁk—4) ~
<t3 . 3Oét6k_4 + 3a2t6k—1 t3k+1 + tﬁk_4).

Now consider the map ¥(t) =t + t576 + 53, We obtain
Y(t? — 3at = + 32t 1) = 3 mod (1), (L3 4 19571) = 131 4 1% mod ().

This proves the lemma. U

_a
3k+1

Remark 2. Using same arguments as in proof of lemma 6 we can prove that
(tB,t3k+1 + atGk*l) ~ (tB,t3k+1) ,pr ,f 3]€ + 1.

Corollary 2. The parametrizations (t3, 1770 +t?P19) resp. (¢3, 12719 + 279 are not
simple if p =1 mod 3 resp. p =2 mod 3.

Proof. In the first case k = 1%8 and [ = QPT” :2k—3and3(@—]%8)+1:p,
the results follows from lemma 5. Similarly in the second case k = @,l = @

and 3(l — k) +1 = 2p. O

Corollary 3.
(1) For p =1 mod 3 the parametrizations (t*,t**1 + 3. a;t") are simple if
and only if k < 7%5.
(2) For p =2 mod 3 the parametrizations (t*,t***1 + 3. a;t") are simple if
and only if k < %.
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Proof. We will proof the first case, the second case is similar. If 3k — 8 > p then
(3, P9 + t?19) is in a deformation of (z(t),y(t)) and therefore not simple. If
3k —8 < pthenpt3(l—h)+1foralll, kK <l < 2k—2. The corollary is a

consequence of lemma 6. O

Similarly we can treat the case of the semigroup < 3,3k + 2 >. The conductor of
the semigroup is 6k + 2. We obtain the following lemmas.

Lemma 7. Let 1 < k <1 <2k—1. Ifpt3(l—k)—1 then (3, t3F+2 4 3141 ¢
Zait3(l+i)+1> ~4 (tS,t3k+2 + t3l+1>.

Lemma 8. Ifp|3(l — k) — 1 and | < 2k — 2 then (3, ¢3%2 + 3F1) is not simple.

Corollary 4. The parametrizations (t3,1P70 +2P19) resp. (¢3, 12719 + %9 qre not
simple if p =2 mod 3 resp. p =1 mod 3.

Corollary 5.
(1) For p =1 mod 3 the parametrizations (t3,¢3*12 + 3. 5 a;t") are simple if
and only if k < %.
(2) For p =2 mod 3 the parametrizations (t3,t3¥+2 + 3
and only if k < ’%4.

isaps0 Gil") are simple if

4. PARAMETRIZATIONS WITH SEMIGROUP < 4,6,2k + 7 >

In this section we assume that the characteristic p > 3. Let (x(t),y(t)) be a
parametrization such that

dimg K[[t]]/K[[z(t),y(t)]] < oo and ordiz(t) = 4, ordy(t) = 6.
Assume that the semigroup I' =< 4,6,2k + 7 >.

The aim of this section is to ﬁnd' depending on the characteristic a minimal kg such
that (¢, 2% + "1 + 37, o 5 ait’) is not simple for all & > k.

Lemma 9. If p{ 2k + 7 then (x(t),y(t)) ~a (¢, 16 + 21,
Proof. First of all it is not difficult to see that

(2(t), y(0)) ~a (#8525 3 ait),
1>2k+3

Since 2k+ 10 is the conductor of I, the even integers > 4 are in I and 2k+9+4—6 =
2k + 7 € I', we obtain using Theorem 1 (2)

(@(t),y(t)) ~a (40 + 1257 + agp st + a9 5t°7F0).
Consider the map ¢(t) =t + a(t® + t**-2). we obtain

(,D(t)4 — t4 + 40[(t6 + t2/€+1 + a2k+3t2k+3) _|_ 6a2(t8 _|_ 2t2k+3) + 4a3t10 + Oé4t12m0d t2k+4
o(t)® =10 4+ 6 (t® + 12*13) + 1502110 + 200312 + 1501t + 6a5t1° + aSt'¥mod ¢2++4
@(t)2k+1 — t2k+1 + a(2k + 1)t2k+3mod t2k+4.

This implies that



(t4,t6 + t2k+1 + a2k+3t2k+3 + a2k+5t2k+5) ~
(410 + 22 (2K + 7) + agpys)t?F T3 + t21p) b e K[[t]].

_ Q2k+43

ST and obtain

Since p 1 2k + 7 we can choose o =
(t4, tG 4 t2k‘+1 + a2k+3t2k+3 + a2k+5t2k’+5) ~ 4 <t4, tﬁ 4 t2k+1 + 62k+5t2k+5>.
Now we consider the map v (t) = t + 3t and obtain similarly

(E4 80 + 29 4 T 5t F0) oy (81,80 + 2R 4 (B(2k + T) + G572 + 1715¢),
¢ € K[[t]].

Again we choose § = —Zi’“j; and obtain (x(t),y(t)) ~4 (14,15 4+ t2k+1), O

Lemma 10. If p | 2k + 7 and (t',¢° + 41 + 37, ait’) ~a (84,80 + 24 4
> isonsr Dit'), then agpis = bays. Especially (t*, 16 + **71) is not simple.

Proof. We may assume that aggio = bagyo = 0. Let () =t + Y .o, ¢it" € K[[t]]
and H,L €< z,y > K[z, y]], H =3, Hijz'y’ and L =37, . Lija'y’ such that

(i) o) = H(t, 60 + 25 + 37 o g ait?).

(i) p(t)° + p(t)* ! + D isanra bip(t) = Lt ¢° + 2 iz Git!).

We obtain from (i) Hyg = 1, Hyy = 4c3 and ¢, = 0. (ii) implies that Ly = 0,
Lo1 = 1 and Loy = 6¢3. Moreover we obtain ¢; = 0 for all even ¢ < 2k — 3. This
implies that
@)% + ()" 4 3oy bip(8)" = 0+ o+ (2 + 1)ez + Geap—a + bapr) 2 4.
and
Lt 10 + 22 1 37 s ait’) = 10 4+ agppst®™ P 4
We obtain aggrs = borys + (2k + 1)cg + 6eop—2. Now we use again (i) looking
at the coefficients of t?**1 to see that 4cy,_o = Hy. This implies that ags =
bok+s + (2k + T)c3 = boys since the characteristic p | 2k + 7. O

The following corollary gives the minimal value of k such that (#*,¢6 + t**1) is
not simple.

Corollary 6. The minimal ko such that (t*,t° + 1+ 37 s ait') is not simple
for k > ko depends as follows on the characteristic p.

(1) If p=3 or p=>5 then ko = 4.
(2) If p="T then ko =T.
(3) If p=11 then ko = 13.
(4) If p > 13 then ko = ’%7.
Proof. According to lemma 10 we have to find the minimal & > 3 such that p | 2k+7.
Obviously k is minimal if p = 2k + 7. This is possible for p > 13. The remaining

cases can be checked easily. O
9



5. CHARACTERISTIC 2

In this section we assume that the characteristic of K is p = 2. We will prove that
parametrizations with n > 4 or n = 3 and m > 8 are not simple and give normal
forms for the remaining cases.

Lemma 11. Let z(t),y(t) € K|[t]] such that dimgK[[t]]/K[[z(t),y(t)] < co. As-
sume ordyz(t) = 2, ordyy(t) = m,m > 2 odd. Then (x(t),y(t)) ~a (t*,t™) or there
exist k, 2 < k <m and k odd such that (z(t),y(t)) ~a (> + 5, t™).

Proof. 1f x(t) € K[[t*]], we obtain (z(t),y(t)) ~4 (t*,7(t)) and ord;y(t) = m. Then
obviously (z(t),y(t)) ~4 (t*,t™). We may assume now that (t) = t*+3_,_, a;t" and
k odd and minimal such that a, # 0. If k > m, we obtain (x(t),y(t)) ~a (t*,t™).
If k < m, we obtain (z(t),y(t)) ~a (£* + >, cven Qi '+ t* t™). Now there is a
power series H(z) such that H(t* + Y, .., ait' + t*) = t2 + t* and we obtain
(z(t),y(t)) ~a (£ + 5, 87). 0

Corollary 7. Parametrization (z(t),y(t)) with ord;x(t) = 2 and semigroup < 2,m >,
m odd, are simple with normal form (t2,t™) or (2 +t*,t™), 3 <k <m, k odd.

Lemma 12. Parametrizations with semigroup < 3,8 > or semigroup < 4,5 > are
not simple.
Proof. We have to prove that
(1) (82, 834410437 gy ait’) ~a (8, 834810430, bit") implies ayy4-a13 = b +big
(2) (4,10 4+ > ,urait’) ~a (84,85 + >0, b;t?) implies a7 = br.
This can be proved_similarly to the corres_ponding cases before. 0

As an example we show how (2) in lemma 12 could also checked by a computer.
Consider the following SINGULAR code (cf. [5], [9]):

ring R=(2,a,b,c,d,e,f,g,H1,H2,H3,H4,H5,H6,H7 ,H8,H9,L1,L2,L3,
L4,L5,L6,L7,L8,L9,u,v),(x,y,t),ds;

poly p=t+axt2+b*t3+c*td+d*tb+ext6;

poly H=H1*x+H2xy+H3*x2+H4*xy+H5*y2+H6*x3+H7*x2y+H8*xy2+HO%*x4;

poly L=L1x*x+L2%y+L3*x2+L4*xy+L5*y2+L6%x3+L7*x2y+L8*xy2+L9%*x4;

jet(p~4+p~6+v*p~7-subst (H,x,t4+t6+u*xt7,y,t5),7);
(H1+1) %t~ 4+ (H2) ¥t "5+ (H1+1) ¥t "6+ (Hl*u+v) *t "7

This implies H1=-1 and u=v.

Lemma 13. Parametrizations with semigroup < 3,4 > , < 3,5 > or < 3,7 > have
normal forms (t3,t%), (3, ¢4 +5), (£3,°), (£3,¢7) or (£3,¢7 +19).

Proof. The proof is similar to the corresponding proof in section 3. U
10



Corollary 8. Parametrization (x(t),y(t)) with semigroup < 3,4 > , < 3,5 > or
< 3,7 > are simple.

6. PROOF OF THE CLASSIFICATION
In this section we will prove Theorem 3.

Lemma 14. Let (z(t),y(t)) be a parametrization with semigroup I' generated by
at most 3 elements. Then the semigroups of parametrizations in a deformation of
(x(t),y(t)) are smaller or equal to T.

Proof. Let x(t) =Y ., a;t' and y(t) = Y .o, bit', a, = by, = 1. Then n = ord,x(t)
and m = ord,y(t) are the first two elements® in the ordered set of minimal generators
of I'. If n and m are coprime then I' =< n,m >. If ¢ :== ged(n,m) > 1 then I is
generated by three elements. To find third generator we have to compute a minimal
sagbi basis of K{[x(t),y(t)]]. This sagbi basis has three elements, x(t), y(t), w(t)
and I' =< n,m,r > with r = ord,w(t). According to the algorithm to compute
sagbi bases (cf. [10]) we obtain w(t) as the final reduction * of x(t)c — y(t)= with
respect to x(t) and y(t). Let w(t) =Y .o, ¢;it’, ¢, # 0. The coefficients ¢; = ¢;(a, b)
are polynomials in the coefficients a = {a;} and b = {b;}.

Let (X(z,t),Y(2,t)) be a deformation of (z(t),y(t)), ie. X(z,t) = > ,o. Ait',
Y(z,t) = > 5, Bit' € C[[t]] with C' = K[z]/J an affine K-algebra, z = (z1,. .., 25),
such that X (0,¢) = z(¢t) and Y (0,t) = y(t). Let U C V(J) C K* be defined °
by A, # 0, Az # 0,B,, # 0, Bs # 0. Since A,(0) = 1 and B,,(0) = 1 we have
n < n and m < m. If one of the inequalities is strict choose a € U and consider
the parametrization (X (a,t),Y (a,t)) with semigroup I'. The semigroup I' of the
deformation is smaller than I', the semigroup of (x(¢),y(t)). We may assume now
that 7 = n and m = m. If n and m are coprime we are done since I' =< n,m >=T.
If n and m are not coprime we have to find as above a saghi basis to obtain gen-
erators of I'. As above we can compute the next element W(z,t) in the sagbi

basis by the normal form of B; X (z,t)c — A Y(2,t) with respect to X (z,t) and
Y (z,t). This can be done simultaneously over the localization of C' by A,,B,,. Let
W(z,t) = .., Cit", Cs # 0. We define U by A,, # 0, B,, # 0 and C; # 0. Choose
a € U and consider the parametrization (X (a,t),Y (a,t)) with semigroup I'. The
semigroup I' of the deformation will be smaller than T' since W (0,t) is either the
normal form of x(t) — y(t)c with respect to x(t) and y(t) or an element occuring
during the normal form computation. This implies that s = ord,W (a,t) < r and
proves the lemma. O

Proof. (of Theorem 3)
Let us first consider the case of characteristic 2. Lemma 12 implies that the candi-
dates for simple parametrizations must have semigroups smaller than < 3,8 > and

3We assume as always that n < m and n { m.
4also called sagbi normal form
SAccording to the definition of a deformation we are allowed to choose U with the property
0 € U as small as we need.
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< 4,5 >. Normal forms for these candidates are given in Corollary 7 and Lemma
13. Lemma 14 implies that those parametrizations are simple.

Now assume that the characteristic p > 3. Lemma 1 implies that the candi-
dates for simple parametrization must have semigroups smaller than < 4,9 > and
< 5,6 >. In case of semigroup < 2,2k + 1 > we may assume (Theorem 1 (1))
that the parametrization is of the form (¢2,y(¢)) and obtain the normal form of
the parametrization (¢2,¢2**1) similarly to Lemma 11. The cases of the semigroups
< 3,3k + 1> resp. < 3,3k + 2 > are consequences of Corollary 3 resp. Corollary 5
in case of characteristic p > 5. The case of characteristic p = 3 is a consequence of
Lemma 2. The case of the semigroup < 4, 6,2k + 7 > is a consequence of Corollary
6. The semigroups < 4,5 > resp. < 4,7 > behave in characteristic p # 5 resp. p # 7
as in charcteristic zero. The case of characteristic p = 7 is a consequence of Lemma
3. In case of characteristic p = 5 we obtain as expected an additional case. [
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