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Abstract. Let K be an algebraically closed field of characteristic p > 0. The
aim of the article is to give a classification of simple parametrized plane curve
singularities over K. The idea is to give explicitly a class of families of singularities
which are not simple such that almost all singularities deform to one of those and
show that remaining singularities are simple.
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1. Introduction

The study and the classification of singularities have a long history. Very impor-
tant contributions go back to Zariski (cf. [13]) and Arnold (cf. [1]). Most of the
results were obtained over the complex numbers. Greuel and his students started
a classification for hypersurface singularities in characteristic p (cf. [2],[3],[7], [8]).
Bruce and Gaffney (cf. [4]) classified the simple parametrized plane curve singular-
ities over the complex numbers (for space curves cf. [6]). The aim of this paper is
to give a similar classification in positive characteristic.
LetK be an algebraically closed field of characteristic p. A parametrization of a germ
of a plane curve singularity is given by a pair (x(t), y(t)) of power series, x(t), y(t) ∈
K[[t]]. Two parametrizations (x(t), y(t)) and (x(t), y(t)) are A−equivalent (we write
(x(t), y(t)) ∼A (x(t), y(t))) if there exist automorphisms

ψ : K[[t]]→ K[[t]] and ϕ = (ϕ1, ϕ2) : K[[x, y]]→ K[[x, y]]

such that
(x(ψ(t)), y(ψ(t))) = (ϕ1(x(t), y(t)), ϕ2(x(t), y(t))).

We will always assume that a given parametrization (x(t), y(t)) is primitive, i.e.
dimKK[[t]]/K[[x(t), y(t)]] =: δ <∞. Furthermore we may assume that ordtx(t) =:
n < ordty(t) =: m and n - m.
Given a parametrization f = (x(t), y(t)) we denote by Γf (or just Γ if f is fixed )
the semigroup

Γf = {ordt(h)|h ∈ K[[x(t), y(t)]]}.
Generators of the semigroup can be computed using a sagbi basis (cf. [10]) for
K[[x(t), y(t)]].

The authors would like to thank very much the referee for his helpful comments.
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As in characteristic 0 it is easy to see ([11], [13]) that the following hold.

Theorem 1. (Zariski)

(1) In case p - n (resp. p - m) the parametrization is A−equivalent to

(tn, y(t)) (resp. (x(t), tm)) for suitable y(t) (resp. x(t))

with ordty(t) = m (resp. ordtx(t) = n).
(2) Assume that k ∈ Γ then

(tn, tm +
∑

i>m ait
i) ∼A (tn, tm +

∑
i>m a

′
it
i)

with ai = a′i if i < k and a′k = 0.
(3) Assume that p - m and k + n−m ∈ Γ then

(tn, tm +
∑

i>m ait
i) ∼A (tn, tm +

∑
i>m a

′
it
i)

with ai = a′i if i < k and a′k = 0.

Definition 2. A parametrization (x(t), y(t)) is called simple if there are only finitely
many A− equivalent classes in a deformation of (x(t), y(t)).

Remark 1. As an immediate consequence we obtain:
Given two parametrizations (x(t), y(t)) (resp.(x(t), y(t)) and (x(t), y(t)) not simple.
If (x(t), y(t)) is A−equivalent to a parametrization in a deformation of (x(t), y(t))
then (x(t), y(t)) is not simple.

The classification is based on the following idea:

(1) Find special classes of non-simple parametrizations such that all non-simple
parametrizations have one of them represented in a suitable deformation.

(2) Especially parametrizations with n ≥ 5 or n = 4 and m ≥ 9 are not simple.
(3) Find normal forms depending on the semigroup for the remaining cases.
(4) The candidates for simple parametrizations have semigroups generated by

at most 3 elements. These semigroups behave semicontinously 1 in a defor-
mation.

In characteristic 0 we obtain the following list of simple parametrizations (cf.[4],
[12]):

1Let Γ =< β0, . . . , βl > and Γ =< β0, . . . , βk > two semigroups given by the minimal set of
generators. We define Γ ≤ Γ iff Γ = Γ or there exists i ≤ min(l, k) such that β0 = β0, · · · , βi−1 =
βi−1 and βi < βi.

In a deformation of a parametrization with semigroup Γ the semigroup is smaller or equal to Γ.
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Characteristic p = 0

Γ Normal Form

< 1 > (t, 0)

< 2, 2k + 1 > (t2, t2k+1)

< 3, 3k + 1 > (t3, t3k+1 + t3l+2), 1 ≤ k ≤ l < 2k − 1

(t3, t3k+1)

< 3, 3k + 2 > (t3, t3k+2 + t3l+1), 1 ≤ k < l ≤ 2k − 1

(t3, t3k+2)

< 4, 5 > (t4, t5 + t7)

(t4, t5)

< 4, 6, 2k + 7 > (t4, t6 + t2k+1), k ≥ 3

< 4, 7 > (t4, t7 + t9)

(t4, t7 + t13)

(t4, t7)

The main result of this paper is the following Theorem:

Theorem 3. If the characteristic of K is greater than 0, we obtain in the following
two tables the classification of simple parametrizations.

Characteristic p = 2

Γ Normal Form

< 1 > (t, 0)

< 2, 2k + 1 > (t2, t2k+1)

(t2 + t2m+1, t2k+1), 0< m < k

< 3, 4 > (t3, t4)

(t3, t4 + t5)

< 3, 5 > (t3, t5)

< 3, 7 > (t3, t7)

(t3, t7 + t8)
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Characteristic p ≥ 3

Γ Normal Form

< 1 > (t, 0)

< 2, 2k + 1 > (t2, t2k+1)

< 3, 3k + 1 > (t3, t3k+1 + t3l+2), 1 ≤ k ≤ l < 2k − 1

(t3, t3k+1)

k ≤ cp+5
3

with c = p mod 3 , 0 ≤ c ≤ 2

< 3, 3k + 2 > (t3, t3k+2 + t3l+1), 1 ≤ k < l ≤ 2k − 1

(t3, t3k+2)

k ≤ cp+4
3

with c = 2p mod 3 , 0 ≤ c ≤ 2

additionally (t3 + t4, t5) if p = 3

< 4, 5 > (t4, t5 + t7)

(t4, t5)

additionally (t4, t5 + t6) if p = 5

< 4, 6, 2k + 7 > (t4, t6 + t2k+1), k ≥ 3 and p 6= 13

k = 3 if p = 3 or p = 5

k ≤ 6 if p = 7

k ≤ 12 if p = 11

k ≤ p−9
2

if p ≥ 17

< 4, 7 > p 6= 7

(t4, t7 + t9)

(t4, t7 + t13)

(t4, t7)

2. Some Classes of non Simple Curves

In this section we will prove that in any characteristic parametrizations with
n ≥ 5 or n = 4 and m ≥ 9 are not simple. We will also see that in characteristic 3
parametrizations with semigroup < 3, 7 > and in characteristic 7 parametrizations
with semigroup < 4, 7 > are not simple.

Lemma 1.
(1) (t4, t9 + t10 +

∑
i≥11 ait

i) ∼A (t4, t9 + t10 +
∑

i≥11 bit
i) implies a11 = b11.

(2) (t5, t6 + t8 +
∑

i>8 ait
i) ∼A (t5, t6 + t8 +

∑
i>8 bit

i) implies a9 = b9.

Proof. Assume that ϕ : K[[t]] → K[[t]] is an automorphism defined by ϕ(t) =
t +

∑
i≥2 cit

i, H,L ∈ K[[x, y]] with H = H1x + H2y + H3x
2 + H4xy + ... L =

L1x+ L2y + L3x
2 + L4xy + ... such that
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(i) ϕ(t)4 = H(t4, t9 + t10 +
∑

i>10 ait
i)

(ii) ϕ(t)9 + ϕ(t)10 +
∑

i>10 biϕ(t)i = L(t4, t9 + t10 +
∑

i>10 ait
i).

From (i) obtain H1 = 1 and c2 = c3 = 0 comparing the coefficients of t4, t5 and
t6. From (ii) we obtain a11 = b11 looking at the coefficient of t11. This proves (1).
Similarly (2) can be proved. �

Lemma 2. Let K be a field of characteristic 3 then the parametrizations with semi-
group < 3, 7 > and < 5, 6 > are not simple.

Proof. It is not difficult to see that

(1) (t3 + t4 +
∑

i≥5 ait
i, t7) ∼A (t3 + t4 +

∑
i≥5 bit

i, t7) implies a5 = b5

(2) (t5, t6 +
∑

i≥8 ait
i) ∼A (t5, t6 +

∑
i≥8 bit

i) and a9 = b9 = 1
implies a8 = b8.

The proof is similar to the proof of the previous lemma. �

Corollary 1. Parametrizations with semigroup < 4, 9 > and < 5, 6 > are not
simple.

Proof. The corollary is a consequence of the lemma 1 and 2, since
(t4, t9 +

∑
i≥10 ait

i) ∼A (t4, t9 + t10 + a11
a10
t11 + ...) if a10 6= 0 and (t5, t6 +

∑
i≥7 ait

i) ∼A
(t5, t6 + t8 +

35a37−63a7a8+27a9
27(12a8+13a27)2

t9 + ...) if 12a8 + 13a2
7 6= 0 and p 6= 3.

If p = 3 we use lemma 2. �

Lemma 3. Let K be a field of characteristic 7 then the parametrizations with semi-
group < 4, 7 > are not simple.

Proof. It is not difficult to see that (t4, t7 +t9 +
∑

i≥10 ait
i) ∼A (t4, t7 +t9 +

∑
i≥10 bit

i)
implies a10 = b10. �

3. Curves with Semigroup < 3, 3k + 1 > or < 3, 3k + 2 >

In this section we assume that the characteristic p > 3. The aim of this section
is to find depending on the characteristic p a minimal k0 such that (t3, t3k+1 +∑

i≥3k+2 ait
i) (with semigroup < 3, 3k + 1 >) resp. (t3, t3k+2 +

∑
i≥3k+3 ait

i) (with
semigroup < 3, 3k + 2 >) is not simple for all k ≥ k0. We will see that in case
of semigroup < 3, 3k + 1 > we obtain k0 = p+8

3
if p ≡1 mod 3 and k0 = 2p+8

3
if

p ≡2 mod 3. If the semigroup is < 3, 3k + 2 > we obtain the minimal k0 such that
(t3, t3k+2 +

∑
i≥3k+3 ait

i) is not simple for all k ≥ k0 as k0 = 2p+7
3

if p ≡1 mod 3 and

k0 = p+7
3

if p ≡2 mod 3.
We first consider parametrizations with semigroup < 3, 3k + 1 >. Let (x(t), y(t))
be a primitive parametrization with ordtx(t) = 3, ordty(t) = 3k + 1, k > 0. As in
characteristic 0 we obtain

(x(t), y(t)) ∼A (t3, t3k+1) or
(x(t), y(t)) ∼A (t3, t3k+1 + t3l+2 +

∑
i>3l+2 ait

3(l+i)+2), k ≤ l < 2k − 1.

We can compute the semigroup Γ of K[[x(t), y(t)]] and obtain
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Γ =< 3, 3k + 1 >= {0, 3, 6, ..., 3k, 3k + 1, ..., 6k − 2, 6k, ...} with conductor 2 6k.

Lemma 4. If p - 3(l − k) + 1 then

(t3, t3k+1 + t3l+2 +
∑

i>3l+2 ait
3(l+i)+2) ∼A (t3, t3k+1 + t3l+2).

Proof. Let s be minimal with as 6= 0 and consider ϕ(t) = t+ αt3s+1. We have

(t+ αt3s+1)3 = t3 + 3αt3s+3 + 3α2t6s+3 + α3t9s+3.
(t+αt3s+1)3k+1 = t3k+1+α(3k+1)t3(k+s)+1+α2

(
3k+1

2

)
t3(k+2s)+1+...+α3k+1t(3k+1)(3s+1).

(t+ αt3s+1)3l+2 = t3l+2 + α(3l + 2)t3l+3s+2 + ... .

Since all exponents of (t + αt3s+1)3 are divisible by 3 there exist H ∈ K[[x]] such
that H((t+ αt3s+1)3) = t3. Since all exponents of (t+ αt3s+1)3k+1 are congruent to
1 modulo 3 there exist L ∈ K[[x, y]] such that L((t + αt3s+1)3, (t + αt3s+1)3k+1) =
t3k+1, L = y − α(3k + 1)xsy + ... .We obtain

L(ϕ(t)3, ϕ(t)3k+1 + ϕ(t)3l+2 + Σaiϕ(t)3(l+i)+2) =
t3k+1 + t3l+2 + (α(3(l − k) + 1) + as)t

3(l+s)+2 + ... .

Now choose α = − as
3(l−k)+1

to obtain

(t3, t3k+1 + t3l+2 +
∑

i>3l+2 ait
3(l+i)+2) ∼A (t3, t3k+1 + t3l+2 +

∑
i>s bit

3(l+i)+2).

The lemma follows using induction. �

Lemma 5. If p | 3(l − k) + 1 and l ≤ 2k − 3 then (t3, t3k+1 + t3l+2) is not simple.

Proof. Assume that ϕ(t) = t +
∑

i>1 ait
i, H,L ∈< x, y > K[[x, y]] are given such

that det(∂(H,L)
∂(x,y)

(0, 0)) 6= 0 and

ϕ(t)3 = H(t3, t3k+1 + t3l+2 + at3l+5)
ϕ(t)3k+1 + ϕ(t)3l+2 + bϕ(t)3l+5 = L(t3, t3k+1 + t3l+2 + at3l+5).

The first equation implies a2 = a3 = a5 = · · · = a3k−4 = a3k−3 = 0. This implies
that ϕ(t) = t+ a4t

4 + · · · and the first possible term with exponent not congruent 1
mod 3 is t3k−1. This implies that the first possible term with exponent in ϕ(t)2k+1

not congruent to 1 mod 3 is t6k−1. Now ϕ(t)3l+2 = t3l+2 + a4(3l+ 2)t3l+5 + · · · . This
implies that the coefficient of t3l+5 in ϕ(t)3k+1 +ϕ(t)3l+2 + bϕ(t)3l+5 is b+ a4(3l+ 2)
and the coefficient of t3k+4 is (3k + 1)a4. Now consider the coefficient of t3l+5 in
L(t3, t3k+1 + t3l+2 + at3l+5). Obviously L = y +

∑
v≥k+1 avx

v +
∑

v≥1 bvx
vy + y2L2

since L(t3, t3k+1 + t3l+2 + at3l+5) has order k + 1. Now

L(t3, t3k+1 + t3l+2 + at3l+5) =
t3k+1 + t3l+2 + at3l+5 +

∑
v≥k+1 avt

3v +
∑

v≥1 bvt
3v(t3k+1 + t3l+2 + at3l+5) mod t6k.

This implies that b1 is the coefficient of t3k+4 and a + b1 is the coefficient of t3l+5.
Therefore b1 = (3k + 1)a4 and b+ (3l + 2)a4 = a+ (3k + 1)a4. But 3l + 2 = 3k + 1
in K implies a = b. Now obviously

2The conductor of a semigroup is the minimum of all c in the semigroup such that all integers
greater than c are in the semigroup.
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(t3, t3k+1 + t3l+2 + at3l+5) ∼A (t3, t3k+1 + t3l+2 + r4at3l+5)

for r ∈ K, r3(l−h)+1 = 1 induced by t→ rt. This implies

(t3, t3k+1 + t3l+2 + at3l+5) ∼A (t3, t3k+1 + t3l+2 + bt3l+5)

if and only if a = r4b for r ∈ K, r3(l−k)+1 = 1, i.e. the parametrization (t3, t3k+1 +
t3l+2) is not simple. �

Lemma 6. If l > 2k − 3 then (t3, t3k+1 + t3l+2 +
∑

i>3l+2 ait
i) ∼A (t3, t3k+1 + t3l+2).

Proof. If p - 3(l−k)+1 then the lemma is consequence of lemma 4. If l = 2k−1 the
lemma follows from Theorem 1 (2) and the fact that 3l + 3 = 6k is the conductor
of the semigroup. Assume now that l = 2k − 2 and p | 3(l − k) + 1 = 3k − 5. First
of all

(t3, t3k+1 + t3l+2 +
∑

i>3l+2 ait
i) ∼A (t3, t3k+1 + t6k−4 + a6k−1t

6k−1)

since i is in the semigroup for i > 3l + 2 and i 6= 6k − 1. Now consider the
automorphism ϕ(t) = t+ αt3k−1. We obtain

ϕ(t)3 = t3 + 3αt3k+1 + 3α2t6k−1mod (t6k),
ϕ(t)3k+1 = t3k+1 + α(3k + 1)t6k−1mod (t6k), ϕ(t)3l+2 = t3l+2 mod (t6k).

This implies

ϕ(t3k+1 + t6k−4 + a6k−1t
6k−1) = t3k+1 + t6k−4 + (α(3k + 1) + a)t6k−1 mod (t6k).

Since p | 3k − 5 and p > 3 we have p - 3k + 1 and we can choose α = − a
3k+1

and
obtain

(t3, t3k+1 + t6k−4 +
∑

i>6k−4 ait
i) ∼A (t3 + 3αt3k+1 + 3α2t6k−1, t3k+1 + t6k−4) ∼A

(t3 − 3αt6k−4 + 3α2t6k−1, t3k+1 + t6k−4).

Now consider the map ψ(t) = t+ t6k−6 + αt6k−3. We obtain

ψ(t3− 3αt6k−4 + 3α2t6k−1) = t3 mod (t6k), ψ(t3k+1 + t6k−4) = t3k+1 + t6k−4mod (t6k).

This proves the lemma. �

Remark 2. Using same arguments as in proof of lemma 6 we can prove that
(t3, t3k+1 + at6k−1) ∼A (t3, t3k+1) if p - 3k + 1.

Corollary 2. The parametrizations (t3, tp+9 + t2p+9) resp. (t3, t2p+9 + t4p+9) are not
simple if p ≡1 mod 3 resp. p ≡2 mod 3.

Proof. In the first case k = p+8
3

and l = 2p+7
3

= 2k − 3 and 3(2p+7
3
− p+8

3
) + 1 = p,

the results follows from lemma 5. Similarly in the second case k = 2p+8
3
, l = 4p+7

3
and 3(l − k) + 1 = 2p. �

Corollary 3.
(1) For p ≡1 mod 3 the parametrizations (t3, t3k+1 +

∑
i>3k+1 ait

i) are simple if

and only if k ≤ p+5
3

.

(2) For p ≡2 mod 3 the parametrizations (t3, t3k+1 +
∑

i>3k+1 ait
i) are simple if

and only if k ≤ 2p+5
3

.
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Proof. We will proof the first case, the second case is similar. If 3k − 8 ≥ p then
(t3, tp+9 + t2p+9) is in a deformation of (x(t), y(t)) and therefore not simple. If
3k − 8 < p then p - 3(l − h) + 1 for all l, k ≤ l < 2k − 2. The corollary is a
consequence of lemma 6. �

Similarly we can treat the case of the semigroup < 3, 3k+ 2 >. The conductor of
the semigroup is 6k + 2. We obtain the following lemmas.

Lemma 7. Let 1 ≤ k < l ≤ 2k − 1. If p - 3(l − k) − 1 then (t3, t3k+2 + t3l+1 +∑
ait

3(l+i)+1) ∼A (t3, t3k+2 + t3l+1).

Lemma 8. If p | 3(l − k)− 1 and l ≤ 2k − 2 then (t3, t3k+2 + t3l+1) is not simple.

Corollary 4. The parametrizations (t3, tp+9 + t2p+9) resp. (t3, t2p+9 + t4p+9) are not
simple if p ≡2 mod 3 resp. p ≡1 mod 3.

Corollary 5.
(1) For p ≡1 mod 3 the parametrizations (t3, t3k+2 +

∑
i>3k+2 ait

i) are simple if

and only if k ≤ 2p+4
3

.

(2) For p ≡2 mod 3 the parametrizations (t3, t3k+2 +
∑

i>3k+2 ait
i) are simple if

and only if k ≤ p+4
3

.

4. Parametrizations with semigroup < 4, 6, 2k + 7 >

In this section we assume that the characteristic p ≥ 3. Let (x(t), y(t)) be a
parametrization such that

dimKK[[t]]/K[[x(t), y(t)]] <∞ and ordtx(t) = 4, ordty(t) = 6.

Assume that the semigroup Γ =< 4, 6, 2k + 7 >.
The aim of this section is to find depending on the characteristic a minimal k0 such
that (t4, t6 + t2k+1 +

∑
i≥2k+3 ait

i) is not simple for all k ≥ k0.

Lemma 9. If p - 2k + 7 then (x(t), y(t)) ∼A (t4, t6 + t2k+1).

Proof. First of all it is not difficult to see that

(x(t), y(t)) ∼A (t4, t6 + t2k+1 +
∑

i≥2k+3

ait
i).

Since 2k+10 is the conductor of Γ, the even integers ≥ 4 are in Γ and 2k+9+4−6 =
2k + 7 ∈ Γ, we obtain using Theorem 1 (2)

(x(t), y(t)) ∼A (t4, t6 + t2k+1 + a2k+3t
2k+3 + a2k+5t

2k+5).

Consider the map ϕ(t) = t+ α(t3 + t2k−2). we obtain

ϕ(t)4 = t4 + 4α(t6 + t2k+1 + a2k+3t
2k+3) + 6α2(t8 + 2t2k+3) + 4α3t10 +α4t12mod t2k+4

ϕ(t)6 = t6 + 6α(t8 + t2k+3) + 15α2t10 + 20α3t12 + 15α4t14 + 6α5t16 + α6t18mod t2k+4

ϕ(t)2k+1 = t2k+1 + α(2k + 1)t2k+3mod t2k+4.

This implies that
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(t4, t6 + t2k+1 + a2k+3t
2k+3 + a2k+5t

2k+5) ∼A
(t4, t6 + t2k+1 + (α(2k + 7) + a2k+3)t2k+3 + t2k+4b), b ∈ K[[t]].

Since p - 2k + 7 we can choose α = −a2k+3

2k+7
and obtain

(t4, t6 + t2k+1 + a2k+3t
2k+3 + a2k+5t

2k+5) ∼A (t4, t6 + t2k+1 + a2k+5t
2k+5).

Now we consider the map ψ(t) = t+ βt5 and obtain similarly

(t4, t6 + t2k+1 + a2k+5t
2k+5) ∼A (t4, t6 + t2k+1 + (β(2k + 7) + a2k+5)t2k+5 + t2k+6c),

c ∈ K[[t]].

Again we choose β = −a2k+5

2k+7
and obtain (x(t), y(t)) ∼A (t4, t6 + t2k+1). �

Lemma 10. If p | 2k + 7 and (t4, t6 + t2k+1 +
∑

i>2k+1 ait
i) ∼A (t4, t6 + t2k+1 +∑

i>2k+1 bit
i), then a2k+3 = b2k+3. Especially (t4, t6 + t2k+1) is not simple.

Proof. We may assume that a2k+2 = b2k+2 = 0. Let ϕ(t) = t +
∑

i≥2 cit
i ∈ K[[t]]

and H,L ∈< x, y > K[[x, y]], H =
∑

i,j Hijx
iyj and L =

∑
i,j Lijx

iyj such that

(i) ϕ(t)4 = H(t4, t6 + t2k+1 +
∑

i≥2k+3 ait
i).

(ii) ϕ(t)6 + ϕ(t)2k+1 +
∑

i≥2k+3 biϕ(t)i = L(t4, t6 + t2k+1 +
∑

i≥2k+3 ait
i).

We obtain from (i) H10 = 1, H01 = 4c3 and c2 = 0. (ii) implies that L10 = 0,
L01 = 1 and L20 = 6c3. Moreover we obtain ci = 0 for all even i ≤ 2k − 3. This
implies that
ϕ(t)6 + ϕ(t)2k+1 +

∑
i≥2k+3 biϕ(t)i = t6 + ...+ ((2k + 1)c3 + 6c2k−2 + b2k+3)t2k+3 + ...

and
L(t4, t6 + t2k+1 +

∑
i≥2k+3 ait

i) = t6 + ...+ a2k+3t
2k+3 + ...

We obtain a2k+3 = b2k+3 + (2k + 1)c3 + 6c2k−2. Now we use again (i) looking
at the coefficients of t2k+1 to see that 4c2k−2 = H01. This implies that a2k+3 =
b2k+3 + (2k + 7)c3 = b2k+3 since the characteristic p | 2k + 7. �

The following corollary gives the minimal value of k such that (t4, t6 + t2k+1) is
not simple.

Corollary 6. The minimal k0 such that (t4, t6 + t2k+1 +
∑

i≥2k+3 ait
i) is not simple

for k ≥ k0 depends as follows on the characteristic p.

(1) If p = 3 or p = 5 then k0 = 4.
(2) If p = 7 then k0 = 7.
(3) If p = 11 then k0 = 13.
(4) If p ≥ 13 then k0 = p−7

2
.

Proof. According to lemma 10 we have to find the minimal k ≥ 3 such that p | 2k+7.
Obviously k is minimal if p = 2k + 7. This is possible for p ≥ 13. The remaining
cases can be checked easily. �
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5. Characteristic 2

In this section we assume that the characteristic of K is p = 2. We will prove that
parametrizations with n ≥ 4 or n = 3 and m ≥ 8 are not simple and give normal
forms for the remaining cases.

Lemma 11. Let x(t), y(t) ∈ K[[t]] such that dimKK[[t]]/K[[x(t), y(t)]] < ∞. As-
sume ordtx(t) = 2, ordty(t) = m,m > 2 odd. Then (x(t), y(t)) ∼A (t2, tm) or there
exist k, 2 < k < m and k odd such that (x(t), y(t)) ∼A (t2 + tk, tm).

Proof. If x(t) ∈ K[[t2]], we obtain (x(t), y(t)) ∼A (t2, y(t)) and ordty(t) = m. Then
obviously (x(t), y(t)) ∼A (t2, tm). We may assume now that x(t) = t2+

∑
i>2 ait

i and
k odd and minimal such that ak 6= 0. If k ≥ m, we obtain (x(t), y(t)) ∼A (t2, tm).
If k < m, we obtain (x(t), y(t)) ∼A (t2 +

∑
i even ait

i + tk, tm). Now there is a
power series H(x) such that H(t2 +

∑
i even ait

i + tk) = t2 + tk and we obtain
(x(t), y(t)) ∼A (t2 + tk, tm). �

Corollary 7. Parametrization (x(t), y(t)) with ordtx(t) = 2 and semigroup < 2,m >,
m odd, are simple with normal form (t2, tm) or (t2 + tk, tm), 3 ≤ k < m, k odd.

Lemma 12. Parametrizations with semigroup < 3, 8 > or semigroup < 4, 5 > are
not simple.

Proof. We have to prove that

(1) (t3, t8+t10+
∑

i≥11 ait
i) ∼A (t3, t8+t10+

∑
i≥11 bit

i) implies a11+a13 = b11+b13

(2) (t4, t6 +
∑

i≥7 ait
i) ∼A (t4, t6 +

∑
i≥7 bit

i) implies a7 = b7.

This can be proved similarly to the corresponding cases before. �

As an example we show how (2) in lemma 12 could also checked by a computer.
Consider the following Singular code (cf. [5], [9]):

ring R=(2,a,b,c,d,e,f,g,H1,H2,H3,H4,H5,H6,H7,H8,H9,L1,L2,L3,

L4,L5,L6,L7,L8,L9,u,v),(x,y,t),ds;

poly p=t+a*t2+b*t3+c*t4+d*t5+e*t6;

poly H=H1*x+H2*y+H3*x2+H4*xy+H5*y2+H6*x3+H7*x2y+H8*xy2+H9*x4;

poly L=L1*x+L2*y+L3*x2+L4*xy+L5*y2+L6*x3+L7*x2y+L8*xy2+L9*x4;

jet(p^4+p^6+v*p^7-subst(H,x,t4+t6+u*t7,y,t5),7);

(H1+1)*t^4+(H2)*t^5+(H1+1)*t^6+(H1*u+v)*t^7

This implies H1=-1 and u=v.

Lemma 13. Parametrizations with semigroup < 3, 4 > , < 3, 5 > or < 3, 7 > have
normal forms (t3, t4), (t3, t4 + t5), (t3, t5), (t3, t7) or (t3, t7 + t8).

Proof. The proof is similar to the corresponding proof in section 3. �
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Corollary 8. Parametrization (x(t), y(t)) with semigroup < 3, 4 > , < 3, 5 > or
< 3, 7 > are simple.

6. Proof of the Classification

In this section we will prove Theorem 3.

Lemma 14. Let (x(t), y(t)) be a parametrization with semigroup Γ generated by
at most 3 elements. Then the semigroups of parametrizations in a deformation of
(x(t), y(t)) are smaller or equal to Γ.

Proof. Let x(t) =
∑

i≥n ait
i and y(t) =

∑
i≥m bit

i, an = bm = 1. Then n = ordtx(t)

and m = ordty(t) are the first two elements3 in the ordered set of minimal generators
of Γ. If n and m are coprime then Γ =< n,m >. If c := gcd(n,m) > 1 then Γ is
generated by three elements. To find third generator we have to compute a minimal
sagbi basis of K[[x(t), y(t)]]. This sagbi basis has three elements, x(t), y(t), w(t)
and Γ =< n,m, r > with r = ordtw(t). According to the algorithm to compute
sagbi bases (cf. [10]) we obtain w(t) as the final reduction 4 of x(t)

m
c − y(t)

n
c with

respect to x(t) and y(t). Let w(t) =
∑

i≥r cit
i, cr 6= 0. The coefficients ci = ci(a, b)

are polynomials in the coefficients a = {ai} and b = {bj}.
Let (X(z, t), Y (z, t)) be a deformation of (x(t), y(t)), i.e. X(z, t) =

∑
i≥n̄Ait

i,

Y (z, t) =
∑

i≥m̄Bit
i ∈ C[[t]] with C = K[z]/J an affine K-algebra, z = (z1, . . . , zs),

such that X(0, t) = x(t) and Y (0, t) = y(t). Let U ⊂ V (J) ⊂ Ks be defined 5

by An 6= 0, An̄ 6= 0,Bm 6= 0, Bm̄ 6= 0. Since An(0) = 1 and Bm(0) = 1 we have
n̄ ≤ n and m̄ ≤ m. If one of the inequalities is strict choose a ∈ U and consider
the parametrization (X(a, t), Y (a, t)) with semigroup Γ̄. The semigroup Γ̄ of the
deformation is smaller than Γ, the semigroup of (x(t), y(t)). We may assume now
that n̄ = n and m̄ = m. If n and m are coprime we are done since Γ =< n,m >= Γ̄.
If n and m are not coprime we have to find as above a sagbi basis to obtain gen-
erators of Γ̄. As above we can compute the next element W (z, t) in the sagbi

basis by the normal form of B
n
c
mX(z, t)

m
c − A

m
c
n Y (z, t)

n
c with respect to X(z, t) and

Y (z, t). This can be done simultaneously over the localization of C by AnBm. Let
W (z, t) =

∑
i≥sCit

i, Cs 6= 0. We define U by An 6= 0, Bm 6= 0 and Cs 6= 0. Choose

a ∈ U and consider the parametrization (X(a, t), Y (a, t)) with semigroup Γ̄. The
semigroup Γ̄ of the deformation will be smaller than Γ since W (0, t) is either the
normal form of x(t)

m
c − y(t)

n
c with respect to x(t) and y(t) or an element occuring

during the normal form computation. This implies that s = ordtW (a, t) ≤ r and
proves the lemma. �

Proof. (of Theorem 3)
Let us first consider the case of characteristic 2. Lemma 12 implies that the candi-
dates for simple parametrizations must have semigroups smaller than < 3, 8 > and

3We assume as always that n < m and n - m.
4also called sagbi normal form
5According to the definition of a deformation we are allowed to choose U with the property

0 ∈ U as small as we need.
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< 4, 5 >. Normal forms for these candidates are given in Corollary 7 and Lemma
13. Lemma 14 implies that those parametrizations are simple.
Now assume that the characteristic p ≥ 3. Lemma 1 implies that the candi-
dates for simple parametrization must have semigroups smaller than < 4, 9 > and
< 5, 6 >. In case of semigroup < 2, 2k + 1 > we may assume (Theorem 1 (1))
that the parametrization is of the form (t2, y(t)) and obtain the normal form of
the parametrization (t2, t2k+1) similarly to Lemma 11. The cases of the semigroups
< 3, 3k + 1 > resp. < 3, 3k + 2 > are consequences of Corollary 3 resp. Corollary 5
in case of characteristic p ≥ 5. The case of characteristic p = 3 is a consequence of
Lemma 2. The case of the semigroup < 4, 6, 2k + 7 > is a consequence of Corollary
6. The semigroups < 4, 5 > resp. < 4, 7 > behave in characteristic p 6= 5 resp. p 6= 7
as in charcteristic zero. The case of characteristic p = 7 is a consequence of Lemma
3. In case of characteristic p = 5 we obtain as expected an additional case. �
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