
the
abdus salam
international centre for theoretical physics

strada costiera, 11 - 34014 trieste italy - tel. +39 040 2240111 fax +39 040 224163 - sci_info@ictp.trieste.it - www.ictp.trieste.it

united nations
educational, scientific

and cultural
organization

international atomic
energy agency

These are preliminary lecture notes, intended only for distribution to participants

SMR1576/3

Advanced School and Conference on
Non-commutative Geometry

(9 - 27 August 2004)

An Introduction to the Commutative and
Non-commutative Computer Algebra:

Gröbner bases as a Tool
for Homological Algebra

V. Levandovskyy, G. Pfister
Center for Computer Algebra

Fachbereich Mathematik
Universität Kaiserslautern
D-67653 Kaiserslautern

Germany

An Introduction to the Commutative and
Non–commutative Computer Algebra:

Gröbner bases as a Tool
for Homological Algebra

Viktor Levandovskyy, Gerhard Pfister
Center for Computer Algebra

Fachbereich Mathematik
Universität Kaiserslautern

D-67653 Germany

1 Introducing Gröbner-ready Algebras

1.1 Ordering on Monomials and Exponents

Let N = (Nn,+) be an additive monoid with the neutral element 0 =
(0, . . . , 0).

Let K be a field and R = (K[x1, . . . , xn],+, ·) be a commutative polynomial
ring in n variables.

As aK–vectorspace, R is infinite–dimensional with theK–basis {xα1
1 x

α2
2 . . . xαnn |

αk ≥ 0}. Let us call an element of such K–basis a monomial and use a
shortcut xα := xα1

1 x
α2
2 . . . xαnn for α = (α1, . . . , αn) ∈ Nn. We call such α an

exponent vector of a monomial xα.

Indeed, the set of monomials Mon(R) is in one–to–one correspondence with
the set of n–tuples of natural numbers via

Mon(R) 3 xα = xα1
1 x

α2
2 . . . xαnn 7−→ (α1, α2, . . . , αn) = α ∈ Nn.

We can write every f ∈ R conveniently via f =
∑

α∈Λ cαx
α, where cα ∈ K

and Λ ⊂ Nn is finite.

Now we have to order monomials, and we’ll do it via their exponent vectors.

1

Definition 1.1. Let ≺ be a total ordering on Nn.

1. An ordering ≺ is called a well–ordering, if ∀α ∈ Nn there exist finitely
many β ∈ Nn, such that b ≺ a. Then, 0 is the smallest element in Nn

with respect to any well–ordering ≺.

2. An ordering ≺ on Nn induces an ordering < on Mon(R) by

∀ α, β ∈ Nn, α ≺ β ⇒ xα < xβ.

< is called a monomial ordering on R, if it is compatible with the
multiplicative structure of R, that is

∀ α, β, γ ∈ Nn such that xα ≺ xβ we have xα+γ < xβ+γ.

One of the most known orderings is the lexicographical ordering, which
we denote by lp:

xβ <lp x
α def⇐⇒ the first non–zero entry of α− β is positive.

For any monomial ordering< there exists a (non–unique) matrixA ∈ GL(n,R)
such that β < α if and only if A · β <lp A · α.

In the sequel, we will give matrices for all ordering we mention.

lp ∼


1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

 , Dp ∼


1 . . . 1 1
1 . . . 0 0
...
. . .

...
...

0 . . . 1 0

 , Wp ∼


ω1 . . . ωn−1 ωn
1 . . . 0 0
...

. . .
...

...
0 . . . 1 0



dp ∼


1 1 . . 1
0 0 . . −1
...

... . .
. ...

0 −1 . . 0

 , wp ∼


ω1 ω2 . . ωn
0 0 . . −1
...

... . .
. ...

0 −1 . . 0

 .

Here, dp denotes a degree reverse lexicographical ordering, which could
be also defined as

xβ <dp x
α def⇐⇒ deg xβ < deg xα or deg xα = deg xβ and the last non–zero

entry of α− β is negative.

2

Definition 1.2. Let < be a monomial ordering. Then, any f ∈ R \ {0} can
be written uniquely as f = cαx

α + f ′, with cα ∈ K \ {0} and xα
′
< xα for

any non–zero term cα′x
α′ of f ′. We define

lm(f) = xα, the leading monomial of f ,
lc(f) = cα, the leading coefficient of f ,
le(f) = α, the leading exponent of f .

The mapping le : R −→ N
n, f 7→ le(f) = α, has the following property:

∀ f, g ∈ R le(f · g) = le(f) + le(g). Equivalently, in form of monomials,
∀ f, g ∈ R lm(f · g) = lm(f) · lm(g). This property hold trivially for any
commutative ring R, but what are the other structures, behaving like this?

1.2 (Almost Commutative) Non–commutative Struc-
tures

Let us take the same vectorspace as of R, {xα | α ∈ Nn}, and think about
an algebra A with this vectorspace as its K–basis but with a different multi-
plication.

How different this multiplication could be?

Suppose the property le(f ·g) = le(f)+le(g) holds for all f, g ∈ A. Especially,
it holds on the generators xi, that is le(xjxi) = le(xi) + le(xj) = le(xixj) for
any j 6= i. So, the relation between xj and xi becomes xjxi = cij · xixj + dij
for some nonzero constant cij and polynomial dij, such that le(dij) ≺ le(xi)+
le(xj).

We have fixed our K–basis and hence we have declared elements xα =
xα1

1 x
α2
2 . . . xαnn to be monomials. Hence, an element x2x1 is not a mono-

mial anymore, since, due to non-commutative relations, it could be written
in terms of monomials, that is x2x1 = c12x1x2 + d12.

So, we can proceed with the non-commutativity as follows: ∀1 ≤ i < j ≤ n,
xjxi = cijxixj + dij. Note, that there are relations, which cij and dij should
satisfy: these relations ensure that {xα | α ∈ Nn} is the K–basis of A.

Definition 1.3. Let K be a field and R = K[x1, . . . , xn] be a commutative
polynomial ring in n variables. Suppose there is a well–ordering < on R
and two sets of data: C = {cij} ⊂ K \ {0} and D = {dij} ⊂ R (here
1 ≤ i < j ≤ n).

We can associate to the data (R,<,C,D) a non–commutative algebra

A = K〈x1, . . . , xn | ∀ i < j xjxi = cijxixj + dij〉.

3

A is called a G–algebra (in n variables), if the following conditions hold:

• ∀ i < j lm(dij(x)) < xixj,

• ∀ 1 ≤ i < j < k ≤ n,

cikcjk · dijxk − xkdij + cjk · xjdik − cij · dikxj + djkxi − cijcik · xidjk = 0

If all dij = 0, we call an algebra quasi–commutative.

If all cij = 1, we are dealing with an algebra of Lie type.

If all cij = 1 and dij = 0, algebra is commutative.

Theorem 1.4. Let A be a G–algebra. Then

1) A is left and right Noetherian,

2) A is an integral domain.

We regard a G–algebra (in n variables) as a generalization of a commutative
polynomial ring in n variables. For any proper two–sided ideal J ⊂ A, we
define a factor–algebra B = A/J . Algebras of this type are called GR–
algebras, that is, Gröbner–ready algebras.

1.3 Properties of Leading Functions

AlthoughR andA have similar properties (in particular, Mon(R) = Mon(A)),
there are several crucial differences.

Multiplicativity of lm:

In the commutative ring R, lm enjoys the following property:

∀ f, g ∈ R lm(f · g) = lm(f) · lm(g).

In a G–algebra A, a product of two monomials is, in general, a polynomial.
But nevertheless, the weaker property holds:

∀ f, g ∈ A lm(f · g) = lm(lm(f) · lm(g)) = lm(g · f).

Meanwhile, in terms of exponents both properties mean

∀ f, g ∈ A, ∀ f, g ∈ R, le(f · g) = le(f) + le(g).

4

So, we are going to work rather with exponents than with monomials.

Non–additivity of lm:

If lm(g) = lm(f), lc(f) = − lc(g), lm(f + g) < max<(lm(f), lm(g)).

For all other f, g ∈ A, lm(f + g) = max<(lm(f), lm(g)).

Properties of lc:

For all f, g ∈ A lc(f · g) = lc
(
lm(f) · lm(g)

)
· lc(f) · lc(g).

However, in algebras of Lie type (cij = 1,∀j > i), we have

lc(f · g) = lc(f) · lc(g).

2 Why Do We Need Non–commutative Al-

gebras?

Let us illustrate the ubiquity of non–commutativity, say, in differential equa-
tions.

Let t be a variable and ∂ denotes the operator of a differentiation wrt t, ∂
∂t

or d
dt

, depending on the context.

For any function f ∈ C∞(t), we introduce an operator F , F (t) = f · t, that
is F is an operator of left multiplication by f . We call f a representative
of F . In general, operators F and ∂ do not commute, but still there is a
relation between two actions.

Lemma 2.1. ∂ ◦ F = F ◦ ∂ + ∂(f).

Proof. ∀ h ∈ C∞(t), we have the following:

(∂ ◦ F)(h) = ∂(f · h) = f · ∂(h) + ∂(f) · h = (F ◦ ∂)(h) + ∂(f) · (h),

hence ∂ ◦ F = F ◦ ∂ + ∂(f).

In the sequel, we will denote both operator and its representative by the
same letter.

5

Example 2.2.

1. Taking t and d = d
dt

as variables, we obtain the algebra

A1 = K〈t, d | dt = td + 1〉, a first Weyl algebra — a very famous ob-
ject in mathematics. Note, that n–th Weyl algebra is defined to be An =
K〈x1, . . . , xn, ∂1, . . . , ∂n | ∂ixj = xj∂i + δij〉, where δij is the Kronecker sym-
bol (δjj = 1 and δij = 0, ∀ i 6= j). Here, ∂i could be viewed as an operator
of partial differentiation ∂

∂xi
.

2. Let e denotes the operator eλt, where λ considered as a parameter. Then
there is an exponential algebra

E = K(λ)〈e, ∂ | ∂ · e = e · ∂ + λe〉.

Both examples 1 and 2 are G–algebras for any degree well–ordering.

3. Let sin denotes the operator with the representative sin(t), then ∂ ·sin =
sin·∂+cos and hence we need the variable cos, corresponding to the operator
cos(t). Then, ∂ · cos = cos · ∂ − sin and there is an algebra

T 0 = K〈sin, cos, ∂ | ∂·cos = cos·∂−sin, ∂·sin = sin·∂+cos, cos·sin = sin·cos〉.

A direct computation shows that the element c = sin2 + cos2 commutes with
∂ (even more, it generates the center of T 0). Hence, we should take the
factor–algebra by the the ideal, generated by sin2 + cos2 − 1. In such a way
we obtain

a trigonometric algebra T = T 0/〈sin2 + cos2 − 1〉.
This algebra is a GR–algebra for any degree well–ordering.

4. Consider the operator ln, assigned to the natural logarithm ln(t). Then,
∂ · ln = ln · ∂ + t−1. Adding s := t−1 as a variable, we obtain

a logarithmic algebra:

L = K〈s, ln, ∂ | ∂ · s = s · ∂ − s2, ∂ · ln = ln · ∂ + s, ln · s = s · ln〉.

Note, that in order to be a G–algebra, the monomial ordering < should
satisfy the property s2 < s∂ ⇔ s < ∂.

3 Gröbner bases

Since a commutative ring R is a special case of a G–algebra A, we will say,
when talking about R, ”the case when A is commutative”.

6

We will write all the multiplications from the algebra from the left, since
it makes no difference in the commutative case, and we will work with left
ideals in A. The whole theory could be also formulated for the right side just
changing sides in the text below.

3.1 From Divisibility to Normal Form

Let A be a G–algebra in n variables.

Let us start with the divisibility of monomials.

Definition 3.1. Let m1 = xα and m2 = xβ be two monomials from A. We
say that m1 divides m2 (and denote it by m1 | m2), if αi ≤ βi ∀i = 1 . . . n.

When A is commutative, there is p ∈ Mon(A) such that m2 = p ·m1. Oth-
erwise, it means that m2 is reducible by m1, i.e. there exist c ∈ K \ {0},
p ∈ Mon(A) and r ∈ A such that lm(r) < m1 and m2 = c · p ·m1 + r.

Example 3.2. Let us take two exponent vectors α = (1, 1) and β = (1, 2)
from N

2. Then in any algebra in two generators, say, {x, ∂}, we have m1 :=
x∂ | x∂2 =: m2, but the division of one by another gives quite different
answers in different algebras.

In the commutative polynomial ring R = K[x, ∂], we have m2 = ∂m1.

In the first quantized Weyl algebra Aq = K(q)〈x, ∂ | ∂x = q2x∂ + 1〉, we
obtain m2 = q−2 · ∂ ·m1 − q−2∂.

Definition 3.3. Let xα and xβ be two monomials from A. For ∀1 ≤ i ≤ n,
set µi = max(αi, βi) and µ := µ(α, β) = (µ1, . . . , µn) ∈ Nn.

The (pseudo-)lcm of xα and xβ is defined to be lcm(xα, xβ) := xµ(α,β).

It enjoys a nice property: xα | xµ(α,β) and xβ | xµ(α,β).

Why we use the name pseudo–lcm? Using the latter property, define an
element f(c) = xµ(α,β)−α · xα − c · xµ(α,β)−β · xβ for some c ∈ K.

Let c0 := lc(xµ(α,β)−αxβ)

lc(xµ(α,β)−βxα)
. Then, we see that c0 is the unique number, such that

lm(f(c0)) < xµ (otherwise, for c 6= c0, lm(f(c0)) = xµ).

In the commutative case, c0 = 1, f(c0) = 0 and hence xµ(α,β) is regarded as
the generalization of the classical lcm function.

However, in the non–commutative case f(c0) 6= 0 in general, but we will
make a big use of the property lm(f(c0)) < xµ.

If A is a G–algebra of Lie type, c0 = 1 and, in general, f(c0) 6= 0.

If A is quasi–commutative, f(c0) = 0 but, in general, c0 6= 1.

7

Definition 3.4. Our main objects are ideals in A and monoideals in Nn.

• A subset S ⊆ N = (Nn,+) is called a (additive) monoideal, if

∀ α ∈ S, ∀ β ∈ Nn we have α + β ∈ S.

• A subset I ⊆ A = (A,+, ·) is called a left ideal, if

∀f, g ∈ I we have f + g ∈ I and ∀f ∈ I, ∀a ∈ A we have a · f ∈ I.

Noetherian property of A ensures that every ideal of A is finitely generated.
Indeed, any monoideal of Nn is finitely generated, too, as famous Dixon’s
Lemma says.

Definition 3.5. Let S be any subset of A.

• We define L(S) ⊆ N
n to be a monoideal, generated by the leading

exponents of elements of S, that is L(S) = Nn〈α | ∃s ∈ S, le(s) = α〉.
We call L(S) a monoideal of leading exponents.

By Dixon’s Lemma, L(S) is finitely generated, that is there exist
α1, . . . , αm ∈ Nn, such that L(S) = Nn〈α1, . . . , αm〉.

• A set of leading monomials of S is defined to be

L(S) := {xα | α ∈ L(S)} ⊆ Mon(A).

Definition 3.6. Let < be a monomial ordering on A, I ⊂ A be a left ideal
and G ⊂ I be a finite subset.

G is called a Gröbner basis of I if and only if L(G) = L(I),
that is, for any f ∈ I r {0} there exists a g ∈ G satisfying lm(g) | lm(f).

In terms of exponents we can write it like this:

Nn〈L(G)〉 = L
(
A〈G〉

)
.

Remark 3.7. When A = R is commutative, L(I) = {xα | α ∈ L(I)} =
{lm(f) | f ∈ I} becomes a leading ideal of I. And the Gröbner ba-
sis property could be rewritten in a form L(R〈G〉) =R 〈L(G)〉, or just
L(R〈g1, . . . , gm〉) =R 〈lm(g1), . . . , lm(gm)〉.
Note, that this direct approach does not work within the non–commutative
case. Take the Weyl algebra A = K〈x, ∂|∂x = x∂ + 1〉 and the ideal I =A

〈x∂ + 1, x〉. I is a proper ideal, equal to A〈x〉, hence L(I) =A 〈x〉, but

A〈L(G)〉 =A 〈{x∂, x}〉 = A · 1.

8

A subset S ⊂ A is called minimal, if 0 6∈ S and lm(s) 6∈ L(S r {s}) for all
s ∈ S.

We say that f ∈ A reduced with respect to S ⊂ A, if no monomial of f
is contained in L(S).

A subset S ⊂ A is called reduced, if 0 6∈ S, and if for each s ∈ S, s is
reduced with respect to S r {s}, and, moreover, s − lc(s) lm(s) is reduced
with respect to S. It means that for each s ∈ S ⊂ A, lm(s) does not divide
any monomial of every element of S except itself.

Definition 3.8. Let G denote the set of all finite ordered subsets G ⊂ A.

1. A map NF : A× G → A, (f,G) 7→ NF(f | G),

is called a (left) normal form on A if, for all f ∈ A and any G ∈ G,

(i) NF(0 | G) = 0,

(ii) NF(f | G) 6= 0 ⇒ lm
(
NF(f |G)

)
6∈ L(G),

(iii) f − NF(f | G) ∈A 〈G〉.

NF is called a reduced normal form if NF(f |G) is reduced with
respect to G.

2. Let G = {g1, . . . , gs} ∈ G. A representation of f ∈A 〈G〉

f =
s∑
i=1

aigi, ai ∈ A,

satisfying lm(f) ≥ lm(aigi) for all i = 1 . . . s such that aigi 6= 0 is called
a standard (left) representation of f (with respect to G).

Lemma 3.9. Let I ⊂ A be a left ideal, G ⊂ I be a Gröbner basis of I and
NF(· | G) be a normal form on A with respect to G.

1. For any f ∈ A we have f ∈ I ⇔ NF(f | G) = 0.

2. If J ⊂ A is a left ideal with I ⊂ J , then L(I) = L(J) implies I = J .
In particular, G generates I as a left ideal.

3. If NF(· | G) is a reduced normal form, then it is unique.

Proof. 1. If NF(f |G) = 0 then f ∈ I. If NF(f |G) 6= 0, then lm
(
NF(f |G)

)
6∈

L(G) = L(I), hence NF(f |G) 6∈ I, which implies f 6∈ I.

9

2. Let f ∈ J and assume NF(f |G) 6= 0. Then lm
(
NF(f |G)

)
6∈ L(G) =

L(I) = L(J), which is a contradiction since NF(f |G) ∈ J . Hence,
f ∈ I by 1).

3. Let f ∈ A and assume that h, h′ are two reduced normal forms of f
with respect to G. Then h − h′ ∈ A〈G〉 = I. If h − h′ 6= 0, then
lm(h − h′) ∈ L(I) = L(G), which contradicts the fact that lm(h − h′)
is a monomial of either h or h′.

3.2 Main Algorithms

Definition 3.10. Let f, g ∈ A r {0} with lm(f) = xα and lm(g) = xβ

respectively. Set γ := µ(α, β) and define the (left) s–polynomial of f and
g to be

LeftSpoly(f, g) := xγ−αf − lc(xγ−αf)

lc(xγ−βg)
xγ−βg.

Remark 3.11. It is easy to see that lm(LeftSpoly(f, g)) < lm(f · g) holds. If
lm(g)| lm(f), say lm(g) = xβ, lm(f) = xα, then the s–polynomial is especially
simple,

LeftSpoly(f, g) = f − lc(f)

lc(xα−βg)
xα−βg,

and lm
(
LeftSpoly(f, g)

)
< lm(f).

If A is a G–algebra of Lie type, then

LeftSpolyLie(f, g) := xγ−αf − lc(f)

lc(g)
xγ−βg,

and the formula coincides with the commutative one.

Now we write down both normal form algorithms. For any algorithm we
will prove that its termination and correctness. For all algorithms below we
assume that < is a fixed monomial well–ordering on a G–algebra A.

Proof. (of 3.1) First of all, note that every specific choice of ”any” in the
algorithm may give us a different normal form function.

Let h0 := f , and in the i–th step of the while loop we compute hi =
spoly(hi−1, g). Since lm(hi) = lm(spoly(hi−1, g)) < lm(hi−1) (by the property

10

Algorithm 3.1 LeftNF

Input : f ∈ A, G ∈ G;
Output: h ∈ A, a left normal form of f with respect to G.

h := f ;
while ((h 6= 0) and (Gh = {g ∈ G : lm(g) | lm(h)} 6= ∅)) do

choose any g ∈ Gh;
h := LeftSpoly(h, g);

end while
return h;

of spoly), we obtain a set {lm(hi)} of leading monomials of hi, where ∀i hi+1

has strictly smaller leading monomial than hi. Since < is a well–ordering,
this set has a minimum, hence the algorithm terminates.

Suppose this minimum is reached at the step m. Let h = hm, ai are terms
(monomials times coefficients) and gi ∈ G. Making substitutions backwards,
we obtain the following presentation

h = f −
m−1∑
i=1

aigi,

satisfying lm(f) = lm(a1g1) > lm(aigi) > lm(hm), ∀ 1 ≤ i ≤ m. By the
construction, h is either zero or, if h 6= 0, then lm(h) 6∈ L(G). Hence the
correctness follows.

Algorithm 3.2 redLeftNF

Input : f ∈ A, G ∈ G;
Output: h ∈ A, a reduced left normal form of f with respect to G.

h := 0, g := f ;
while (g 6= 0) do

g := LeftNF(g | G);
h := h+ lc(g) lm(g);
g := g − lc(g) lm(g);

end while
return h;

Proof. (of 3.2) Since the tail of g, g− lc(g) lm(g), has strictly smaller leading
monomial than g and < is a well–ordering, the algorithm terminates. The
correctness of the algorithm follows from the correctness of LeftNF.

11

Algorithm 3.3 LeftGröbnerBasis

Input : G ∈ G;
Output : S ∈ G, a left Gröbner basis of the left ideal I = A〈G〉 ⊂ A.

S := G;
P := {(f, g) | f, g ∈ S} ⊂ S × S;
while (P 6= ∅) do

choose (f, g) ∈ P ;
P := P \ {(f, g)};
h := LeftNF

(
LeftSpoly(f, g) | S

)
;

if (h 6= 0) then
P := P ∪ {(h, f) | f ∈ S};
S := S ∪ h;

end if
end while
return S;

Proof. (of 3.3) Termination: By the property 3.9,1) we know that if h 6= 0
then lm(h) 6∈ L(S). Then, A〈S〉 ⊂ A〈{S, h}〉 and we obtain a strictly increas-
ing sequence of ideals of A. Since A is Noetherian, this sequence stabilizes. It
means that, after finitely many steps, we always have LeftNF

(
LeftSpoly(f, g) |

S)
)

= 0 for all (f, g) ∈ P and, after several more steps, the set P of pairs
will become empty. Thus LeftGröbnerBasis terminates.

If LeftNF is a reduced normal form and if G is a reduced set, then S will be a
reduced Gröbner basis. If G is not reduced, we may apply LeftNF afterwards
to (f, S \ {f}) for all f ∈ S in order to obtain a reduced Gröbner basis.

The correctness is proved with the Left Buchberger’s Criterion below.

Theorem 3.12. Let I ⊂ A be a left ideal and G = {g1, . . . , gs} ⊂ I. Let
LeftNF(· | G) be a left normal form on A with respect to G. Then the
following are equivalent:

1. G is a left Gröbner basis of I,

2. LeftNF(f | G) = 0 for all f ∈ I,

3. each f ∈ I has a left standard representation with respect to G,

4. LeftNF
(
LeftSpoly(gi, gj) | G

)
= 0 for 1 ≤ i, j ≤ s.

12

Proof. The implication (1⇒ 2) follows from Lemma 3.9, (2⇒ 3) follows from
the corresponding definitions. As for implication (3 ⇒ 1), we see that if f
has a left standard representation with respect to G, then lm(f) must occur
as the leading monomial of aigi for some i. It means that lm(gi) | lm(f),
hence G is a left Gröbner basis of I.

To prove (3 ⇒ 4), we note first that h = LeftNF
(
LeftSpoly(fi, fj) | G) ∈ I

and hence, by 3, if h 6= 0, we have lm(h) ∈ L(G), what contradicts the
property (iii) of NF. In the Lemma 3.9 we have already shown, that G
generates I.

The implication (4⇒ 1) is an important criterion which allows checking and
construction of Gröbner bases in a finite number of steps. This implication
follows from the more general Theorem, which requires more technical details
and therefore is omitted here.

Definition 3.13. (Elimination ordering) Let A be a G–algebra in n vari-
ables, generated by {x1, . . . , xn} such that {xr+1, . . . , xn} generate an admis-
sible sub–G–algebra B ⊂ A. A monomial ordering < on A is an elimination
ordering for x1, . . . , xr, if for f ∈ A, lm(f) ∈ B implies f ∈ B.

Note, that only with respect to the elimination ordering like in the definition
we have lm(f) ∈ B ⇔ f ∈ B.

Example 3.14. The classical elimination ordering in the commutative case
is lp (lexicographical ordering). Since for many non–commutativeG–algebras
it is not an admissible ordering, an usual elimination ordering in the non–
commutative setting is the block ordering of the form (dp(1..r),dp(r+1..n)),
or the ordering with extra weights (a(w1, . . . , wr),<).

Let A,B be two ordering matrices. Then the block ordering (<A, <B) is

given by the matrix

(
A 0
0 B

)
.

A matrix for an ordering with extra weights look like follows:

(a(ω̄),Dp) ∼


ω1 . . . ωr 0 . . . 0 0 0
1 . . . 1 1 . . . 1 1 1
1 . . . 0 0 . . . 0 0 0
...

. . .
...

...
. . .

...
...

...
0 0 0 0 . . . 1 0 0

 .

However, for some algebras, like Weyl algebras, lexicographical ordering is
admissible.

13

Lemma 3.15. Let I ⊆ A be an ideal, B = 〈xr+1, . . . , xn | xjxi = cijxixj +
dij〉 be an admissible subalgebra of A, and < an elimination ordering for
x1, . . . , xr on A . If S = {f1, . . . , fm} is a Gröbner basis of I, then S ∩ B is
a Gröbner basis of I ∩B.

Proof. Take any xα ∈ L(I), then there exists such f ∈ I, that lm(f) = xα.
Since < is an elimination ordering for x1, . . . , xr, from lm(f) ∈ B follows
that f ∈ B. Hence,

L(I) ∩B = {xα | ∃f ∈ I, lm(f) = xα} ∩B = {xα | ∃f ∈ I ∩B, lm(f) = xα},

and the latter is just L(I ∩ B). Then, L(S) ∩ B = L(I) ∩ B = L(I ∩ B) =
L(S ∩B), hence S ∩B is a Gröbner basis of I ∩B by the definition.

4 Examples

Consider the system of differential equations in some differential operator ∂,
variable x and parameters a, b, written in the operator form:

x2∂ + a · x = 0,

x∂2 + b · ∂ = 0.

We are going to see which role the parameters play, elaborate different cases
and solve the system. We will use Gröbner bases and elimination for finding
hidden equations (so-called integrability conditions) in the system and for
simplifying systems of equations. Note, that Gröbner bases are useful for
pre-processing of such systems of equations; we nevertheless need DE solvers
for post-processing and solving.

1. PDE with constant coefficients.

If we consider this equation as the one in variables x, t with ∂ = ∂
∂t

, the under-
lying algebra is commutative and is equal to K[x, ∂]. The system corresponds
to the ideal I = 〈x2∂ + ax, x∂2 + b∂〉 ⊂ K[x, ∂].

For this, we are computing the reduced minimal Gröbner basis of the ideal
I with respect to the ordering Dp.

option(redSB); // compute minimal basis

option(redTail); // compute reduced basis

14

ring A = (0,a,b),(x,d),Dp; // a,b are parameters

ideal I = x^2*d + a*x ,x*d^2 + b*d;

I = std(I);

I;

I[1]=d

I[2]=x

So, declaring a, b as parameters, we have assumed that they are generic, that
is nonzero and algebraically independent. In this situation, we see that in
this situation, the answer corresponds to the system of PDE’s ∂f

∂t
= 0, xf = 0,

which has only zero solution.

Now we would like to investigate the solutions of the system in the case of
arbitrary a, b, declaring them as commutative variables.

ring V = 0,(x,d,a,b),Dp; // a,b are variables

ideal I = x^2*d + a*x ,x*d^2 + b*d;

I = std(I);

I;

I[1]=dab-db2

I[2]=xa2-xab

I[3]=xda-xdb

I[4]=xd2+db

I[5]=x2d+xa

So, the condensed form of the answer is

{x∂2 + b∂, x2∂ + ax, (a− b)b∂, a(a− b)x, (a− b)x∂}.
As we can see, there are three possible relations between a, b:

1.1. a = 0, b 6= 0. Then, we get just 〈∂〉, that is an initial system is equivalent
to the only one equation ∂f

∂t
= 0. Then, of course, each f ∈ K[x] is a solution.

1.2. a 6= 0, b = 0. Then, we get just 〈x〉, that is xf = 0, what is only
satisfied by f = 0.

1.3. a = b. Then, we get ideal, which describes the system

x∂
2f
∂t2

+ a∂f
∂t

= 0

x2 ∂f
∂t

+ axf = 0.

15

From the second equation follows, that x∂f
∂t

+af = 0 and the first equation is
just a differentiation of it. So, all the solutions f satisfy this single equation,

hence f = ce−
a
x
t, c ∈ K.

2. ODE with polynomial coefficients.

Let us treat the equation as the one in variable x with ∂ = d
dx

. Then, the
underlying algebra becomes a non–commutative algebra A = K〈x, ∂ | ∂x =
x∂ + 1〉 (the first Weyl algebra). The system corresponds to the left ideal
I = 〈x2∂ + ax, x∂2 + b∂〉 ⊂ A.

At first, we computing the reduced minimal Gröbner basis of the ideal I as
before, treating a, b as generic parameters.

option(redSB); // compute minimal basis

option(redTail); // compute reduced basis

ring Ap = (0,a,b),(x,d),Dp; // a,b are parameters

ncalgebra(1,1); // non-comm. initialization for Weyl algebra

ideal I = x^2*d + a*x ,x*d^2 + b*d;

I = std(I);

I;

I[1]=1

Since this basis is just 1 (hence, the ideal coincide with the whole algebra), we
conclude that for generic a, b the system is inconsistent and has no solutions.
Moreover, there should be algebraic relations between a, b.

In order to find them, we declare a, b as variables, thus moving to the algebra
A ⊗K K[a, b]. Then, we compute the reduced Gröbner basis with respect to
the elimination ordering for x, ∂ (see 3.13) using the command eliminate.

ring A = 0,(x,d),Dp;

ncalgebra(1,1); // non-comm. initialization for Weyl algebra

ring X = 0,(a,b),Dp; // a,b are variables

def V = A + X; // V = A tensor X as algebra

setring V;

ideal I = x^2*d + a*x ,x*d^2 + b*d;

ideal Rel = eliminate(I,x*d); //

Rel;

Rel[1]=a2b-ab2-2a2+3ab-2a

16

Hence, the desired relation is a(b− 2)(a− b+ 1) = 0. Now we proceed with
computations for each specific case.

2.1. b = a + 1. We get just 〈x∂ + a〉, that corresponds to the equation
x∂f
∂x

+ af = 0, which parametric solutions are {cx−a, c ∈ K}.

2.2. a = 0, b = 2. We get a system x∂
2f
∂t2

+ 2∂f
∂t

= 0, x2 ∂f
∂t

= 0, whose only
solutions are constants K.

2.3. a = 0, b 6∈ {1, 2}. The ideal equals 〈∂〉, hence there are only constant
solutions.

2.4. b = 2, a 6∈ {0, 1}. The ideal equals 〈x〉, the only solution is zero.

3. ODE with rational coefficients.

As in the previous case, let ∂ = d
dx

, but let x be a rational function rather
than polynomial. Then, we are dealing with the differential field K(x) and
a non–commutative Ore algebra B = K(x)〈∂ | ∂x = x∂ + 1〉. The system
corresponds to the ideal I = 〈x2∂ + ax, x∂2 + b∂〉 ⊂ B.

Unfortunately, computations in such Ore algebras are not yet implemented
in Singular:Plural, so we will do computations by hand. Note, that the
whole Gröbner bases theory could be generalized for such a case.

f1 = x2∂ + ax, f2 = x∂2 + b∂. Since x is constant, we replace f1 with
f ′1 = x∂ + a. Then, f2 could be reduced with f ′1 to f3 = a(b − a + 1)x.
In order for system to be consistent, f3 should be zero, what provides a
condition on parameters: a(b− a+ 1) = 0.

3.1. a = 0. Then x∂f
∂x

= 0 have only scalar solutions from K.

3.2. b = a− 1, a 6= 0. We have one equation, x∂f
∂x

+ af = 0, whose solutions
are f ∈ {cx−a, c ∈ K}.

5 Applications to Homological Algebra

5.1 Gröbner Bases for Modules

We are going to show, that all the results and algorithms could be easily
transferred from the case of ideals to the submodules of free A–modules of
finite rank (which appear either as themselves or as presentation matrices
for finitely presented modules).

17

Let

ei = (0, . . . , 1i, . . . , 0) and Ar = Ae1 ⊕ . . .⊕ Aer

be a free A–module of rank r. We extend the notion of a monomial ordering
from A to Ar. First of all, Mon(Ar) := {xαei | α ∈ Nn, 1 ≤ i ≤ r} and
xαei ∈ Ar is called a monomial (involving component i).

Definition 5.1. Let< be a monomial ordering onA. A monomial (module)
ordering on Ar is a total ordering <m on the set of monomials Mon(Ar),
satisfying for all α, β, γ ∈ Nn, 1 ≤ i, j ≤ r

1. xαei <m xβej ⇒ xα+γei <m xβ+γej,

2. xα < xβ ⇒ xαei <m xβei.

In addition to obvious generalizations of leading monomial/coefficient/exponent
functions, for f , such that lm(f) = xαei, we define i to be the leading com-
ponent of f .

Every monomial ordering could be extended to the monomial module or-
dering in at least two following ways. We can order components either in
ascending or in descending way (which we are going use below). Then,

<m is a position over term (POT) ordering, if

xαei <POT x
βej

def⇔ i < j or, if i = j, xα < xβ.

<m is a term over position (TOP) ordering, if

xαei <TOP x
βej

def⇔ xα < xβ or, if α = β, i < j.

Let f, g ∈ Ar r {0} with lm(f) = xαei and lm(g) = xβej. Setting γ :=
µ(α, β), we define the left s–polynomial of f and g to be 0, if i 6= j and

xγ−αf − lc(xγ−αf)

lc(xγ−βg)
xγ−βg, if i = j.

Now the notions of normal form (3.8), Gröbner basis (3.6) and corresponding
algorithms 3.1, 3.3 follow almost immediately together with lemma 3.9 and
theorem 3.12.

In order to illustrate the principles of computing Gröbner bases and syzygies
for submodules, we draw two matrices.

18

Suppose we are given I = {f̄1, . . . , f̄k} ⊂ Ar and let F be a matrix with f̄i
as columns. We append a k × k unit matrix to F , obtaining a matrix F ′.

We put the result of the Gröbner basis computation of F ′ as of left module
in the second matrix, sorting the columns in such a way, that the elements,
having first r components zero, are moved to the left. (We denote 0̄ =
(0, . . . , 0)T ∈ Ar).

f̄1 . . . f̄k
1 0

. . .

0 1

 GB−−→


0̄ . . . 0̄ h̄1 . . . h̄t

S T


Then,

{h̄1, . . . , h̄t} is a Gröbner basis of I (let H be a matrix with columns h̄i),

columns of S form a Gröbner basis of Syz(f1, . . . , fk),

T is a left transition matrix between two bases of F , i.e. H t = TtF t.

Note, that the last equality is equivalent to H = FT only in the commutative
case.

5.2 Maps induced by Hom

In the following three chapters we will describe how to compute Hom and
Ext. For more details see [GP, BTV]. Let A be a K–algebra and M , N be
left A–modules. The HomA(M,N) has a canonical structure of right (resp.
left) A–module if N (resp. M) is an A–bimodule. An A-bimodule M is said
to be centralizing, if M is generated as a left A–module by its centralizer
CenA(M) = {m ∈M | am = ma, a ∈ A}.
Next we want to compute HomA(ϕ, 1As) for a map ϕ : An → Am. We consider
An and Am as left modules and identify them with the corresponding row-
spaces. Let ϕ : An → Am be the left A–linear map defined by the m× n–
matrix M = (Mij) with entries in A, ϕ(x) = x ·M t. We want to compute
the induced map

ϕ∗ : HomA(Am, As)→ HomA(An, As)

of right A–modules. To do so, we identify right modules HomA(An, As) = Asn

and HomA(Am, As) = Ams, considered as column-spaces now. Let {e1, . . . , en},
{f1, . . . , fm}, {h1, . . . , hs} denote the canonical bases of left A–modules An,
Am, and bimodule As, respectively. Then ϕ(ei) =

∑m
j=1 Mjifj. Moreover,

19

if {σij}, {κij} are the bases of left modules HomA(Am, As), respectively
HomA(An, As), defined by σij(f`) = δj`hi,

1 respectively κij(e`) = δj`hi, then,
since As is a centralizing bimodule,

ϕ∗(σij)(ek) = σij ◦ ϕ(ek) = σij

(
m∑̀
=1

M`kf`

)
=

m∑̀
=1

M`kδj`hi

= Mjkhi =
n∑̀
=1

δ`khiMj` =
n∑̀
=1

κi`(ek)Mj` .

This implies ϕ∗(σab) =
∑n

c=1 κacMbc. To obtain the sn× sm–matrix R defin-
ing ϕ∗, we order the basis elements σij and κij as follows

{σ11, σ12, . . . , σ1m, σ21 , σ22, , σs1, σs2, . . . , σsm} ,
{κ11, κ12, . . . , κ1n, κ21, κ22, , κs1, κs2, . . . , κsn} ,

and set, for a, d = 1, . . . , s, b = 1, . . . ,m, c = 1, . . . , n,

i := (d− 1)n+ c, j := (a− 1)m+ b .

Then

Rij =

{
0, d 6= a,

Mbc d = a .

We program this in a short procedure: given a matrix M , defining a left ho-
momorphism An → Am, and an integer s, the procedure contraHom returns a
matrix defining a right homomorphism R : HomA(Am, As)→ HomA(An, As).

proc contraHom(matrix M,int s)

{

int n,m=ncols(M),nrows(M);

int a,b,c;

matrix R[s*n][s*m];

for(b=1;b<=m;b++)

{

for(a=1;a<=s;a++)

{

for(c=1;c<=n;c++)

{

R[(a-1)*n+c,(a-1)*m+b]=M[b,c];

1Here δj` is the Kronecker symbol (δj` = 0 if j 6= ` and δjj = 1).

20

}

}

}

return(R);

}

Let us try an example.

ring A=0,(x,y,z),dp;

matrix M[3][3]=1,2,3,

4,5,6,

7,8,9;

print(contraHom(M,2));

//-> 1,4,7,0,0,0,

//-> 2,5,8,0,0,0,

//-> 3,6,9,0,0,0,

//-> 0,0,0,1,4,7,

//-> 0,0,0,2,5,8,

//-> 0,0,0,3,6,9

Note that for s = 1, the dual map, that is, the transposed matrix, is com-
puted.

Similarly, we can compute the map of right A–modules

ϕ∗ : HomA(As, An)→ HomA(As, Am).

If {σij} and {κij} are defined as before as bases of HomA(As, An), respectively
HomA(As, Am), then one checks that ϕ∗(σab) =

∑m
c=1 Mcaκcb.

We obtain the following procedure: given a right homomorphismM : An → Am

and s, coHom returns a right homomorphismR : HomA(As, An)→ HomA(As, Am).

proc coHom(matrix M,int s)

{

int n,m=ncols(M),nrows(M);

int a,b,c;

matrix R[s*m][s*n];

for(b=1;b<=s;b++)

{

for(a=1;a<=m;a++)

21

{

for(c=1;c<=n;c++)

{

R[(a-1)*s+b,(c-1)*s+b]=M[a,c];

}

}

}

return(R);

}

As an example, we use the matrix defined above.

print(coHom(M,2));

//-> 1,0,2,0,3,0,

//-> 0,1,0,2,0,3,

//-> 4,0,5,0,6,0,

//-> 0,4,0,5,0,6,

//-> 7,0,8,0,9,0,

//-> 0,7,0,8,0,9

5.3 Computation of Hom

Let M be a finitely generated left A–module with the presentation
Am

ϕ−→An −→M → 0.

Let N be a finitely generated centralizing A–module N = As/L for a suitable

subbimodule L ⊂ As. Let Ar
ψ−→ As −→N → 0 be a presentation of N .

We obtain the following commutative diagram of right modules with exact
rows and columns:

HomA(M,N) // HomA(An, N)
ϕ∗N // HomA(Am, N)

HomA(An, As)

OO

ϕ∗ // HomA(Am, As)

OO

HomA(An, Ar)

j

OO

// HomA(Am, Ar) ,

i

OO

In particular, ϕ∗N(σ) = σ ◦ ϕ, ϕ∗(σ) = σ ◦ ϕ, i(σ) = ψ ◦ σ, and j(σ) = ψ ◦ σ.
It is easy to see that

HomA(M,N) = Ker(ϕ∗N) ∼= ϕ∗−1
(
Im(i)

)/
Im(j) .

22

Using the Singular built–in command modulo, which is explained below, we
have (identifying, as before, HomA(An, As) = Asn and HomA(Am, As) = Ams)

D := ϕ∗−1
(
Im(i)

)
= Ker

(
Ans

ϕ∗−→ Ams/ Im(i)
)

= modulo (ϕ∗, i) ,

which is given by a ns× k–matrix with entries in A, and we can compute
HomA(M,N) as

ϕ∗−1
(
Im(i)

)
/ Im(j) = Ak

/
Ker
(
Ak

D−→ Ans/ Im(j)
)

= Ak
/
modulo (D, j) .

Finally, we obtain the following procedure with F = ϕ∗, B = i, C = j.

proc Hom(matrix M, matrix N)

{

matrix F = contraHom(M,nrows(N));

matrix B = coHom(N,ncols(M));

matrix C = coHom(N,nrows(M));

matrix D = modulo(F,B);

matrix E = modulo(D,C);

return(E);

}

Here is an example.

ring A=0,(x,y,z),dp;

matrix M[3][3]=1,2,3,

4,5,6,

7,8,9;

matrix N[2][2]=x,y,

z,0;

print(Hom(M,N)); //a 6x6 matrix

//-> 0,0,0,0,y,x,

//-> 0,0,0,0,0,z,

//-> 1,0,0,0,0,0,

//-> 0,1,0,0,0,0,

//-> 0,0,1,0,0,0,

//-> 0,0,0,1,0,0

23

We explain the modulo command: let the matrices M ∈Mat(m× n,A),
respectively N ∈Mat(m× s, A), represent linear maps

An
M // Am

As .

N

OO

Then modulo(M,N) = Ker
(
An

M−→ Am/ Im(N)
)
, where M is the map in-

duced by M ; more precisely, modulo(M,N) returns a set of vectors in An

which generate Ker(M) 2. Hence, matrix(modulo(M,N)) is a presentation
matrix for the quotient (Im(M) + Im(N))/ Im(N).

5.4 Computation of Ext

The following lemma is the basis for computing ExtiA(M,N). Let M be a
finitely generated left A–module and N a finitely generated centralizing A–
module. Let
. . . −→ Fi+1

ϕi+1−→ Fi
ϕi−→ . . .

ϕ1−→ F0
ϕ0−→ M −→ 0 be a free resolution of M

and
G1

ψ−→ G0
π−→ N −→ 0

a presentation of N such that ψ(G1) is a bimodule. Then we obtain the
following commutative diagram with exact columns and second and third
row:

0 0 0

. . . // HomA(Fi−1, N)

OO

// HomA(Fi, N)

OO

// HomA(Fi+1, N)

OO

// . . .

. . . // HomA(Fi−1, G0)

OO

ϕ∗i // HomA(Fi, G0)

OO

ϕ∗i+1
// HomA(Fi+1, G0)

OO

// . . .

. . . // HomA(Fi−1, G1)

OO

// HomA(Fi, G1)

HomA(1Fi ,ψ)

OO

// HomA(Fi+1, G1)

HomA(1Fi+1
,ψ)

OO

// . . .

Here we denote ϕ∗i = HomA(ϕi, 1G0).

2Using automatic type conversion, we can apply the modulo–command to modules as
well as to matrices.

24

Lemma 5.2. With the above notations

ExtiA(M,N) = (ϕ∗i+1)−1 Im(HomA(1Fi+1
, ψ))

/(
Im(HomA(1Fi , ψ)) + Im(ϕ∗i)

)
.

Proof. The columns, the second and third row of the above diagram are
exact. By definition,

ExtiA(M,N) = Ker(HomA(ϕi+1, 1N)/ Im(HomA(ϕi, 1N) .

Now HomA(1Fi , π) maps (ϕ∗i+1)−1
(
Im(HomA(1Fi+1

, ψ))
)

surjectively to
Ker(HomA(ϕi+1, 1M)). Therefore, we have a surjection

(ϕ∗i+1)−1
(
Im(HomA(1Fi+1

, ψ))
)
−→ ExtiA(M,N) .

Obviously, Im(HomA(1Fi , ψ)) + Im(ϕ∗i) is contained in the kernel of this sur-
jection. An easy diagram chase shows that this is already the kernel.

Using the lemma we write a procedure Ext to compute ExtiA(M,N) for
finitely generated A–modules M and N , presented by the matrices Ps and
Ph. We compute Im := Im(HomA(1Fi+1

, ψ)), f := Im(ϕ∗i+1), Im2 := Im(ϕ∗i),
Im1 := Im(HomA(1Fi , ψ)), and obtain

ExtiA(M,N) = Ker

(
HomA(Fi, G0)

ϕ∗i+1−−→ HomA(Fi+1, G0)
/
Im

)/(
Im1 + Im2

)
= modulo(f,Im)/(Im1 + Im2) .

proc Ext(int i, matrix Ps, matrix Ph)

{

if(i==0) { return(module(Hom(Ps,Ph))); }

list Phi = mres(Ps,i+1);

module Im = coHom(Ph,ncols(Phi[i+1]));

module f = contraHom(matrix(Phi[i+1]),nrows(Ph));

module Im1 = coHom(Ph,ncols(Phi[i]));

module Im2 = contraHom(matrix(Phi[i]),nrows(Ph));

module ker = modulo(f,Im);

module ext = modulo(ker,Im1+Im2);

ext = prune(ext);

return(ext);

}

Let us try an example:

25

ring R = 0,(x,y),dp;

ideal I = x2-y3;

qring S = std(I);

module M = [-x,y],[-y2,x];

module E1 = Ext(1,M,M);

print(E1);

y,0,x,0,

0,y,0,x

5.5 Computation of Tor

With the technology, elaborated in previous sections, we are able to compute
also Tor.

The following proposition is the basis for computing TorAi (M,N). Let

. . . −→ Fi+1
ϕi+1−→ Fi

ϕi−→ . . .
ϕ1−→ F0

ϕ0−→ N −→ 0

be a free resolution of the left A–module N and

G1
ψ−→ G0

π−→M −→ 0

a presentation of the left A–module M . Then we obtain the following com-
mutative diagram:

0 0 0

. . . // Fi+1 ⊗AM

OO

// Fi ⊗AM

OO

// Fi−1 ⊗AM

OO

// . . .

. . . // Fi+1 ⊗A G0

OO

ϕi+1⊗1G0 // Fi ⊗A G0

OO

ϕi⊗1G0 // Fi−1 ⊗A G0

OO

// . . .

. . . // Fi+1 ⊗A G1

OO

// Fi ⊗A G1

1Fi⊗ψ
OO

// Fi−1 ⊗A G1

1Fi−1
⊗ψ

OO

// . . .

Proposition 5.3. With the above notations

TorAi (M,N) = (ϕi ⊗ 1G0)−1 Im(1Fi−1
⊗ ψ)

/(
Im(1Fi ⊗ ψ) + Im(ϕi+1⊗ 1G0)

)
.

Now we can write a procedure Tor to compute TorAi (M,N) for finitely
generated left A–modules M and N , presented by the matrices Ps and

26

Ph. We compute Im := Im(1Fi−1
⊗ ψ), f := Im(ϕi⊗ 1G0), Im1 := Im(1Fi⊗ ψ),

Im2 := Im(ϕi+1 ⊗ 1G0), and obtain

TorAi (M,N) = Ker

(
Fi ⊗A G0

ϕi⊗1G0−−−−→ (Fi−1 ⊗A G0)
/
Im

)/(
Im1 + Im2

)
= modulo(f,Im)/(Im1 + Im2) .

proc tensorMaps(matrix M, matrix N)

{

int r=ncols(M);

int s=nrows(M);

int p=ncols(N);

int q=nrows(N);

int a,b,c,d;

matrix R[s*q][r*p];

for(b=1;b<=p;b++)

{

for(d=1;d<=q;d++)

{

for(a=1;a<=r;a++)

{

for(c=1;c<=s;c++)

{

R[(c-1)*q+d,(a-1)*p+b]=M[c,a]*N[d,b];

}

}

}

}

return(R);

}

LIB "matrix.lib";

proc tensorMod(matrix Phi, matrix Psi)

{

int s = nrows(Phi);

int q = nrows(Psi);

matrix A = tensorMaps(unitmat(s),Psi); //I_s tensor Psi

matrix B = tensorMaps(Phi,unitmat(q)); //Phi tensor I_q

matrix R = concat(A,B); //sum of A and B

return(R);

27

}

proc Tor(int i, matrix Ps, matrix Ph)

{

if(i==0){ return(module(tensorMod(Ps,Ph))); }

// the tensor product

list Phi = mres(Ph,i+1); // a resolution of Ph

module Im = tensorMaps(unitmat(nrows(Phi[i])),Ps);

module f = tensorMaps(matrix(Phi[i]),unitmat(nrows(Ps)));

module Im1 = tensorMaps(unitmat(ncols(Phi[i])),Ps);

module Im2 = tensorMaps(matrix(Phi[i+1]),unitmat(nrows(Ps)));

module ker = modulo(f,Im);

module tor = modulo(ker,Im1+Im2);

tor = prune(tor);

return(tor);

}

Now, let us consider an example.

ring A=0,(x,y),dp;

matrix Ps[1][2]=x2,y;

matrix Ph[1][1]=x;

print(Tor(1,Ps,Ph));

y,x

5.6 Hochschild cohomology

As an application we are able now to compute the Hochschild cohomology
(for definitions and details cf. [C, CE]). Let A be a K–algebra and M an
A-bimodule. Let Ae = A ⊗K Ao be the enveloping algebra (note that Ao is
the opposite algebra to A, i.e. A as K–vectorspace and the multiplication
a ∗ b = ba).Then M has the structure of an left Ae–module.

A itself is considered as bimodule over Ae in the canonical way ((a⊗ b∗)x =
axb∗ and x(a⊗ b∗) = b∗xa).

The Hochschild cohomology Hn(A,M) is defined to be ExtnAe(A,M).

Recall, that the Hochschild cohomology Hn(A,M) can also be characterized
as the cohomology of the following complex:
Let Cn(A,M) = {n-linear maps :A→M} with the differential ∂ defined

28

as follows. For φ ∈ Cn(A,M) define ∂(φ)(a1, . . . , an+1) = a1φ(a2, . . . , an+1)+∑
1≤i≤n(−1)iφ(a1, . . . , aiai+1, . . . , an+1) + (−1)n+1φ(a1, . . . , an)an+1.

Let us consider the following example:

ring A = 0,(x,y),dp;

ideal I = x2-y3;

qring B = std(I);

ring C = 0,(x,y,z,w),dp;

ideal I = x2-y3,z3-w2;

qring Be = std(I); //the enveloping algebra

matrix AA[1][2] = x-z,y-w; //the presentation of B as Be-module

print(Ext(1,AA,AA)); //the presentation of the H^1(A,A)

y-w,0, x-z,0,

0, y-w,0, x-z

The Hochschild cohomology is quite important for non–commutative alge-
bras. Consider the universal enveloping algebra U(sl2) = K〈e, f, h | [e, f] =
h, [h, e] = 2e, [h, f] = −2f〉 over field K of char 0. The center Z of U(sl2)
is generated by the Casimir element z = 4ef + h2 − 2h. Let the two–sided
ideal I be generated by z, then we compute H i(U(sl2)/I).

ring A = 0, (e,f,h,H,F,E),Dp; // any degree ordering

matrix @D[6][6];

@D[1,2] = -h; @D[1,3] = 2*e; @D[2,3] = -2*f;

@D[4,5] = 2*F; @D[4,6] = -2*E; @D[5,6] = H;

ncalgebra(1,@D); // U(sl_2) * U(sl2)^o

poly z = 4*e*f+h^2-2*h; // generator of the center

poly zo = 4*F*E+H^2+2*H; // the same, opposed

ideal Qe = z,zo;

qring B = twostd(Qe); // (U/I)^e = (U/I) * (U/I)^o

matrix M[1][3] = E,F,H; // presentation of U/I as (U/I)^e - mod

module X0 = Ext(0,M,M); print(X0);

E,F,H

module X1 = Ext(1,M,M); print(X1);

0

29

module X2 = Ext(2,M,M); print(X2);

2HFE,2HE2,4E,2HF2,2HFE+2H2,4F,2H2F+4HF,2H2E-4HE,4H

print(std(ideal(X2))); // X2 simplified:

E,F,H

We organize obtained results in the following list:

H i(U(sl2)/I) =


K, i = 0,

0, i = 1,

K, i = 2.

Moreover, we know that H2(U(sl2)/I) ' TorZ1 (K,K) as Z/I–modules. We
can check it directly by computing the latter Tor:

ring Z = 0,(z),dp; // center of U(sl_2)

matrix I[1][1]=z;

module T = Tor(1,I,I);

print(T);

z

So, TorZ1 (K,K) = K in this situation.

5.7 Tate resolution

Here we want to describe how non-commutative algebra can be used to solve
problems in algebraic geometry (for details see [EGSS]).

Let V be an n + 1-dimensional K-vectorspace and W = V ∗ its dual. Let
{x0, . . . , xn} be a basis of W , S = Sym(W) = K[x0, . . . , xn] the symmetric
algebra and E = Λ(V) the exterior algebra.
Let M = ⊕Mi be a finitely generated S–module and define complexes

F (M) : · · · →Mi ⊗K E
φi−→Mi+1 ⊗K E → · · ·

φi(m⊗ 1) =
∑
xjm⊗ x∗j

R(M) : · · · → HomK(E,Mi)}
φ∗i−→ HomK(E,Mi+1)→ · · ·

φ∗i (α)(e) =
∑
j

xjα(x∗j ∧ e)

30

Recall, that the Castelnuovo–Mumford regularity is defined as follows: Let
S = K[x0, . . . , xn] andM = ⊕Mi be a finitely generated graded S–module.Then
M≥r = ⊕

i≥r
Mi is generated in degree r and has a linear free resolution for large

r. The least integer r with this property is the Castelnuovo–Mumford regu-
larity.

Theorem 5.4. (Eisenbud, Fløstad, Schreyer).R(M>r) is exact, r= Castelnuovo–
Mumford regularity of M .

The Tate resolution T (M) is defined by

T>r(M) = R(M>r)

and a minimal projective resolution of the kernel of

HomK(E,Mr+1)→ HomK(E,Mr+2).

Theorem 5.5. (Eisenbud, Fløstad, Schreyer). Let S = K[x0, . . . , xn] and
M be a finitely generated graded S–module. Then

T i(M) = ⊕
j
Hj(M̃(i− j))⊗ HomK(E,K)

Note: Each cohomology group of each twist of the sheaf M̃ occurs exactly
once in a term of T (M).

The following Singular procedures compute the sheaf cohomology:

LIB "matrix.lib";

proc jacobM(matrix M)

{

int n = nvars(basering);

int a = nrows(M);

int b = ncols(M);

matrix B = transpose(diff(M,var(1)));

int i,j;

for(i=2; i<=n; i++)

{

B = concat(B,transpose(diff(M,var(i))));

}

return(transpose(B));

31

}

proc max(int i,int j)

{

if(i>j) { return(i); }

return(j);

}

proc truncate(module M, int d, int r)

{

//---truncates the module (cokernel of the presentation M)

//---whith the gen(j) of degree d at degree r

//---computes the corresponding presentation matrix

int i;

int n = nrows(M);

module L;

for(i=1; i<=n; i++)

{

L = L + maxideal(r-d)*gen(i);

}

module Mstd = std(M);

L = reduce(L,Mstd);

L = modulo(L+Mstd,Mstd);

L = prune(L);

return(L);

}

proc sheafCoh(module M, int d, int l, int h)

{

//--- d is the degree of gen(j) for M

//--- l low degree

//--- h high degree

def R = basering;

int reg = regularity(mres(M,0))-1;

int bound = max(reg+1,h-1);

module MT = truncate(M,d,bound);

int m = nrows(MT);

MT = transpose(jacobM(MT));

MT = syz(MT);

32

int n = nvars(basering);

matrix ML[n][1]=maxideal(1);

matrix S = transpose(outer(ML,unitmat(m)));

matrix SS = transpose(S*MT);

//--- to the exterior algebra

execute("ring AR="+charstr(R)+",("+varstr(R)+"),dp;");

ncalgebra(-1,0); // now ring AR is anticommutative

int in = 1;

ideal aus;

for (in=1; in<=n; in++) { aus[in] = var(in)^2; }

aus = twostd(aus);

qring S = aus; // S is an exterior algebra

option(redSB);

option(redTail);

matrix EM = imap(R,SS);

//--- here we are with our matrix

int bound1 = max(1,bound-l+1);

resolution RE = mres(EM,bound1+1);

print(betti(RE),"betti");

setring R;

option(noredSB);

option(noredTail);

}

Let us consider the following example:

ring R=0,(x,y,z,u),dp;

resolution T1 = mres(maxideal(1),0);

module M = T1[3];

sheafCoh(M,1,-6,2);

0 1 2 3 4 5 6 7 8 9

0: 20 6 - - - - - - - -

1: - - 1 - - - - - - -

2: - - - - - - - - - -

3: - - - 4 15 36 70 120 189 280

total: 20 6 1 4 15 36 70 120 189 280

33

References

[MR] J.C. McConnell, J.C. Robson, Noncommutative Noetherian Rings,
Graduate Studies in Math. 30 AMS, 2000.

[H] Huishi Li, Noncommutative Groebner Bases and Filter-Graded Trans-
fer, Springer, SLN 1795.

[C] A. Connes, Non-commutative differential geometry, Publ. Math. IHES
62 (1985).

[BTV] J.L. Bueso, J.G. Torrecillas, A. Verschoren, Algorithmic methodes in
non-commutative Algebra, Kluwer Acad. Press 2003.

[EGSS] D. Eisenbud, D.R. Grayson, M. Stillman, B. Sturmfels, Computa-
tions in Algebraic Geometry with Macaulay 2, Springer, 2002.

[GP] G.-M. Greuel, G. Pfister,A SINGULAR Introduction to Commutative
Algebra, Springer, 2002.

[CE] H. Cartan, S. Eilenberg,Homological Algebra, London, 1956.

34

