The Kernel of the Kodaira–Spencer Map of the Versal μ -Constant Deformation of an Irreducible Plane Curve Singularity with \mathbb{C}^r -action

BERND MARTIN AND GERHARD PFISTER

Humboldt-Universität zu Berlin, Sektion Mathematik, Unter den Linden 6, 1086 Berlin PSF 1297, DDR

(Received 15 May 1986)

An algorithm is described which gives a base of the kernel of the Kodaira–Spencer map of the versal μ -constant deformation of certain plane curve singularities. This is useful for computing the moduli of such singularities.

Let $\mathbb{C}[X, Y]$ be the polynomial ring over the field of complex numbers \mathbb{C} considered as a graded ring with deg X = b and deg Y = a, a and b being relatively prime. $f = X^a + Y^b$ is a homogeneous polynomial of degree d = ab with respect to this graduation.

Let $B = \{m_1, \ldots, m_\mu\}$ be a monomial basis of $\mathbb{C}[X, Y]/(\partial f/\partial X, \partial f/\partial Y)$ ordered by degree $(\deg X^{\alpha} Y^{\beta} := \alpha b + \beta a)$, such that $m_1 = 1$ and $m_{\mu} = X^{a-2} Y^{b-2}$, $\mu = (a-1)(b-1)$. Let $B_u = \{m_{\mu-r+1}, \ldots, m_{\mu}\}$ be the set of monomials of B of degree greater than d. Let

$$F := f + \sum_{i=1}^{r} T_i m_{\mu-r+1} \in \mathbb{C}[X, Y, \mathbf{T}], \quad \mathbf{T} := (T_1, \ldots, T_r),$$

and let $\Delta F := (\partial F / \partial X, \partial F / \partial Y)$ be the Jacobian ideal of F, then $R := \mathbb{C}[X, Y, T] / \Delta F$ is a free $\mathbb{C}[T]$ -module of rank μ generated by m_1, \ldots, m_{μ} .

The multiplication by F in R, $F: R \to R$ is a $\mathbb{C}[T]$ -linear map. Denote by $C(T) = (c_{ij})$ the matrix of F with respect to the basis B, i.e.

$$m_i F = \sum_j c_{ij} m_j \mod \Delta F.$$

In section 1 we explain why we are interested in the matrix $C(\mathbf{T})$. In section 2 we give an algorithm to compute $C(\mathbf{T})$, one which does not use elimination theory.

1. The kernel of the Kodaira-Spencer map

Denote by $X \subseteq \mathbb{C}^2 \times \mathbb{C}^r$ the hypersurface defined by F = 0 and let $\pi : X \to \mathbb{C}^r$ be the canonical projection. We may consider $\pi : X \to \mathbb{C}^r$ to be a family of curves: The fibres $\pi^{-1}(t) \subseteq \mathbb{C}^2$ are curves having an isolated singular point at 0. Because of the choice of the family (the monomials $m_{\mu-r+i}$ have degree greater than d) the topological type of the singularity of $\pi^{-1}(t)$ does not change (cf. Teissier, 1976; Zariski, 1976). Furthermore, the family is versal with this property, i.e. any deformation of the singularity of $\pi^{-1}(0)$ having fibres of the same topological type can be induced by the family $\pi : X \to \mathbb{C}^r$. But this family

0747-7171/89/060527+05 \$03.00

is not universal, i.e. it contains analytically trivial subfamilies. These subfamilies are given by the integral manifolds of the kernel of the Kodaira-Spencer map: The Kodaira-Spencer map for the family $\pi: X \to \mathbb{C}^r$ is the map

$$\rho: \operatorname{Der}_{\mathbb{C}}\mathbb{C}[\mathbf{T}] \to \mathbb{C}[X, Y, \mathbf{T}]/(F, \Delta F)$$
$$\rho(\delta) := \text{class of } \delta F.$$

(cf. Laudal, 1979; Laudal & Pfister, 1983; Laudal *et al.*, 1986). The kernel L of the Kodaira–Spencer map is a Lie-algebra, finitely generated as $\mathbb{C}[T]$ -module. Along the integral manifolds of L the family $\pi: X \to \mathbb{C}^r$ is analytically trivial, i.e. a product.

Consider the matrix $C(\mathbf{T}) = (c_{ij})$ of the multiplication $F: R \to R$ with respect to the basis B:

$$m_i F = \sum_{j=1}^{\infty} c_{ij} m_j \mod \Delta F \tag{I}$$

and let

$$\delta_i := \sum_{j=1}^r c_{i,\mu-r+j} \,\partial/\partial T_j \in \mathrm{Der}_{\mathbf{C}}\mathbb{C}[\mathbf{T}], \quad i = 1, \cdots, \mu$$

LEMMA: (1) $\delta_i \in L, \quad i = 1, \dots, \mu,$ (2) $\{\delta_i\}$ generate L as $\mathbb{C}[T]$ -module, (3) $\delta_i = 0$ if i > r.

PROOF: (1) $\delta_i F = \sum_{j=1}^r c_{i, \mu-r+j} \partial F / \partial T_j = \sum_{j=1}^\mu c_{ij} m_j$

because $c_{ij} = 0$ for $j < \mu - r + 1$ (compare the degrees in equation (I)). Hence we have $b_i F = m_i F \mod \Delta F$, i.e. $\delta_i \in L$.

(2) Let
$$\delta = \sum_{j=1}^{j} w_j \partial/\partial T_j \in L$$
, i.e.

$$\delta F = \sum_{j=1}^{r} w_j m_{\mu-r+j} \approx H \cdot F \mod \Delta F$$
 for suitable *H*.

Let $H = \sum_{j=1}^{\mu} H_j m_j \mod \Delta F$, $H_j \in \mathbb{C}[T]$, then $\delta = \sum_{j=1}^{\mu} H_j \delta_j$.

(3) Holds because deg $m_i F > \deg m_\mu$ if i > r.

$$\begin{split} & \text{Example. } f = X^6 + Y^7, \, d = 42, \, \mu = 30, \, m_\mu = X^4 Y^5, \, r = 6, \\ F = X^6 + Y^7 + T_1 X^2 Y^5 + T_2 X^3 Y^4 + T_3 X^4 Y^3 + T_4 X^3 Y^5 + T_5 X^4 Y^4 + T_6 X^4 Y^5. \\ & \delta_1 = -1/42 (2T_1 \partial/\partial T_1 + 3T_2 \partial/\partial T_2 + 4T_3 \partial/\partial T_3 + 9T_4 \partial/\partial T_4 + 10T_5 \partial/\partial T_5 + 16T_6 \partial/\partial T_6), \\ & \delta_2 = -1/42 (3T_2 \partial/\partial T_4 + (4T_3 - 10/7T_1^2) \partial/\partial T_5 + (10T_5 + 4/7T_3^2 T_1 - 10/49 T_3 T_1^3 - 92/147T_2^2 T_1^2) \partial/\partial T_6), \\ & \delta_3 = -1/42 (2T_1 \partial/\partial T_4 + 3T_2 \partial/\partial T_5 + (9T_4 + 46/21T_3 T_2 T_1) \partial/\partial T_6), \\ & \delta_4 = -1/42 (4T_3 - 10/7T_1^2) \partial/\partial T_6), \\ & \delta_5 = -3/42T_2 \partial/\partial T_6, \\ & \delta_6 = -2/42T_1 \partial/\partial T_6. \end{split}$$

Because of $c_{ij} = 0$ for $j < \mu - r + 1$ or i > r, it is enough to consider the multiplication by F on the submodule R_1 of R generated by $B_1 := \{m_1, \ldots, m_r\}$. For short let $n_i := m_{\mu - r + i}$, $i = 1, \ldots, r$. Let R_2 be the submodule generated by $B_u = \{n_1, \ldots, n_r\}$, then we have a map $F : R_1 \rightarrow R_2$. Let

$$m_i F = \sum_{j=1}^r \bar{c}_{ij} n_j \mod \Delta F.$$

Notice that $\bar{c}_{ij} = c_{i,\mu-r+j}$.

2. The algorithm

Choose u and v with the following properties:

(i) $1 \le u \le a-1$, $1 \le v \le b-1$, (ii) $bu \equiv 1 \mod a$, $av \equiv 1 \mod b$.

Let $e(n) \equiv nu \mod a$ and $e'(n) \equiv nv \mod b$.

Lemma

(1) deg
$$X^{e(n)}Y^{e'(n)} = \begin{cases} n & \text{if } e(n)b + e'(n)a < d, \\ n+d & else; \end{cases}$$

(2) if deg $m_i = n, 1 \le i \le r$, then $m_i = X^{e(n)} Y^{e'(n)}$;

(3) if deg $n_i = n + d$, $1 \le i \le r$, then $n_i = X^{e(n)} Y^{e'(n)}$;

(4) if $X^{e(n)}Y^{e'(n)} \notin B_1 \cup B_u$ for $n \le ab - 2(a+b)$, then e(n) = a - 1 or e'(n) = b - 1.

The proof is not difficult, we will omit it here.

The sequence $\{(e(n), e'(n))| 0 \le n \le ab - 2(a+b)\}$ provides an effective way to construct the ordered monomial bases B_1 and B_u . The information we need can be arranged in a string S.

PART (I) OF THE ALGORITHM

Compute u and v such that $bu \equiv 1 \mod a$, $av \equiv 1 \mod b$;

$$j := 1; i := e := e' := \emptyset; S(1) := 'l'; l(1) := \emptyset$$

FOR k := 1 TO d - 2(a+b) DO BEGIN $e := e+u \mod a; e' := e'+v \mod b;$ IF (e = a-1) OR (e' = b-1) THEN S(k+1) := 'I' ELSE IF (eb+e'a) > d THEN BEGIN i := i+1; l(i) := k; S(k+1) := 'I' END {characterises monomials of B_1 , l(i) is the degree of m_i } ELSE BEGIN j := j+1; u(j) := k; S(k+1) := 'u' END {characterises monomials of B_u , u(j)+d is the degree of n_j } END

EXAMPLE. $f = X^5 + Y^{14}$, u = 4, v = 3

S = 'louuulouullouullouolloullouolloullou'

Notice that S(n) = 'u' iff S(N+1-n) = 'l', N := length of the string S, i.e. it is sufficient to compute only half the string. Now a monomial $T_{q(1)} \cdot \ldots \cdot T_{q(s)}$ occurs in \vec{c}_{ij} of the matrix iff

(i) $m_i n_{q(1)} \dots n_{q(s)} \equiv n_j$ (ii) $m_i n_{q(1)} \dots n_{q(t)} \notin B_u$ for $t = 1, \dots, s-1$. (the exponents of X, resp. Y, are taken modulo a, resp. b).

This is equivalent (in the language of our string) to

(i') $l(i) + u(q(1)) + \ldots + u(q(s)) = u(j)$ (ii') $S(l(1) + u(q(1)) + \ldots + u(q(t))) \neq 'u'$ for $t = 1, \ldots, s - 1$.

PART (II) OF THE ALGORITHM

Computing the monomials of \bar{c}_{ii} **PROCEDURE** bracket (r, s); BEGIN b := s - r; F := F + '(';REPEAT $q := \max i: u(i) \le b;$ WHILE $q > \emptyset$ DO BEGIN b := u(q) - 1; IF u(q) = s - r THEN $F := F + T_q + T_$ ELSE IF $S(1 + r + u(q)) \neq 'u'$ THEN BEGIN $F := F + T_q'$; bracket (r + u(q), s) END; $q := \max i: u(i) \le b \text{ END};$ IF (last character of $F \neq '+'$) THEN (delete last two char) UNTIL $b = \emptyset$; Replace last character of F by ')+' END: BEGIN $u(\emptyset) := \emptyset; F := ";$ bracket (l(i), u(j));delete last character of FEND.

Example. $f = X^5 + Y^{14}$, i = 2, j = 9

$$F = (T_7 + T_3(T_4(T_1) + T_1(T_4 + T_3(T_2) + T_2(T_3 + T_1(T_1)))))'$$

To finish this part of the algorithm we have to "solve" the brackets. In this example we get:

$$F = T_7 + T_3 T_4 T_1 + T_3 T_1 T_4 + T_3 T_1 T_3 T_2 + T_3 T_1 T_2 T_3 + T_3 T_1 T_2 T_1 T_1$$

Now we have to compute the coefficients of the corresponding monomials. If c is the coefficient of the monomial $T_{q(1)}
dots T_{q(s)}$ occurring in F, then $c = c_1
dots c_s$ and $c_1 = 1 - \deg n_{q(1)}/d$, c_i is one of the exponents of $n_{q(i)}$ divided by a or b depending on whether $\partial F/\partial X$, resp. $\partial F/\partial Y$ was involved in the reduction modulo ΔF in this step.

PART (III) OF THE ALGORITHM

Computing a coefficient

 $c := (-1)^{s} u(q(1))/d; n := l(i);$

FOR k := 2 TO s DO BEGIN e := e(n) + e(u(q(k-1))); e' := e'(n) + e'(u(q(k-1))); n := n + q(k-1);IF $e \ge a - 1$ THEN $c := c^*e(u(q(k)))/a;$ IF $e' \ge b - 1$ THEN $c := c^*e'(u(q(k)))/b$ END

EXAMPLE:
$$f = X^5 + Y^{14}$$
, $i = 2$, $j = 9$, $T_3 T_1 T_2 T_1 T_1$
 $c = -(\frac{4}{70})(\frac{6}{14})(\frac{2}{5})(\frac{6}{14})(\frac{3}{5}) = -\frac{108}{42875}$

PART (IV) OF THE ALGORITHM

Finally, we have to order the variables in the monomials, to order the monomials in F lexicographically and to identify monomials of the same type by adding their coefficients.

EXAMPLE.
$$f = X^5 + Y^{14}$$

 $\bar{c}_{2,9} = -13/70T_7 - 39/1225T_4T_3T_1 + 99/8575T_3^2T_2T_1 - 108/42875T_3T_2T_1^3$

REMARK. The algorithm can be modified for more than two variables and without the restriction that the exponents are to be relatively prime. For instance, if $f = X_1^{a_1} + \cdots + X_n^{a_n}$, $d := a_1 \cdots a_n$, $b_i := d/a_i$ then choose u_i such that $u_i b_i \equiv 1 \mod a_i$ and let $e_i(n) := nu_i$. If the a_i are not relatively prime add a small perturbation to each e_i and you will get similar results.

REMARK. The way of computing the \bar{c}_{ij} by using the strings S and F allows one to compute fairly complicated examples on a 64K-computer in a short time (for instance, $\bar{c}_{57,157}$ of $X^{19} + Y^{29}$ in less than two seconds).

References

Laudal, O. A. (1979). Formal moduli of algebraic structures, Lecture Notes in Math. 754.

- Laudal, O. A., Pfister, G. (1983). The moduli problem: Applications to the classification of isolated hypersurface singularities. Univ. of Oslo, Preprint Series No 11.
- Laudal, O. A., Martin, B., Pfister, G. (1986). Moduli of irreducible plane curve singularities with the semi-group (a,b), Proc. Conf. on Algebraic Geometry, (Berlin 1985), Teubner-Texte zur Mathematik, Bd.92, pp. 236– 258. Leipzig: Teubner.

Teissier, B. (1976). Appendice au cours de O. Zariski, Le problème des modules pour les branches planes. Paris: Publ. du Centre de Mathématiques de l'Ecole Polytechnique.

Zariski, O. (1976). Le problème des modules pour les branches planes. Paris: Publ. du Centre de Mathématiques de l'Ecole Polytechnique.