The Kernel of the Kodaira-Spencer Map of the Versal μ-Constant Deformation of an Irreducible Plane Curve Singularity with \mathbb{C}^{r}-action

BERND MARTIN AND GERHARD PFISTER
Humboldt-Universität zu Berlin, Sektion Mathematik, Unter den Linden 6 , 1086 Berlin PSF 1297, DDR

(Received 15 May 1986)

> An algorithm is described which gives a base of the kernel of the Kodaira-Spencer map of the versal μ-constant deformation of certain plane curve singularities. This is useful for computing the moduli of such singularities.

Let $\mathbb{C}[X, Y]$ be the polynomial ring over the field of complex numbers \mathbb{C} considered as a graded ring with $\operatorname{deg} X=b$ and $\operatorname{deg} Y=a, a$ and b being relatively prime. $f=X^{a}+Y^{b}$ is a homogeneous polynomial of degree $d=a b$ with respect to this graduation.
Let $B=\left\{m_{1}, \ldots, m_{\mu}\right\}$ be a monomial basis of $\mathbb{C}[X, Y] /(\partial f / \partial X, \partial f / \partial Y)$ ordered by degree $\left(\operatorname{deg} X^{\alpha} Y^{\beta}:=\alpha b+\beta a\right)$, such that $m_{1}=1$ and $m_{\mu}=X^{a-2} Y^{b-2}, \mu=(a-1)(b-1)$. Let $B_{u}=$ $\left\{m_{\mu-r+1}, \ldots, m_{\mu}\right\}$ be the set of monomials of B of degree greater than d.

Let

$$
F:=f+\sum_{i=1}^{r} T_{i} m_{\mu-r+1} \in \mathbb{C}[X, Y, \mathbf{T}], \quad \mathbf{T}:=\left(T_{1}, \ldots, T_{r}\right)
$$

and let $\Delta F:=(\partial F / \partial X, \partial F / \partial Y)$ be the Jacobian ideal of F, then $R:=\mathbb{C}[X, Y, \mathbf{T}) / \Delta F$ is a free $\mathbb{C}[\mathrm{T}]$-module of rank μ generated by m_{1}, \ldots, m_{μ}.

The multiplication by F in $R, F: R \rightarrow R$ is a $\mathbb{C}[\mathbf{T}]$-linear map. Denote by $C(\mathbf{T})=\left(c_{i j}\right)$ the matrix of F with respect to the basis B, i.e.

$$
m_{\mathrm{i}} F=\sum_{j} c_{i j} m_{j} \bmod \Delta F
$$

In section 1 we explain why we are interested in the matrix $C(T)$. In section 2 we give an algorithm to compute $C(\mathbf{T})$, one which does not use elimination theory.

1. The kernel of the Kodaira-Spencer map

Denote by $X \subseteq \mathbb{C}^{2} \times \mathbb{C}^{r}$ the hypersurface defined by $F=0$ and let $\pi: X \rightarrow \mathbb{C}^{r}$ be the canonical projection. We may consider $\pi: X \rightarrow \mathbb{C}^{r}$ to be a family of curves: The fibres $\pi^{-1}(t) \subseteq \mathbb{C}^{2}$ are curves having an isolated singular point at 0 . Because of the choice of the family (the monomials $m_{\mu+r+i}$ have degree greater than d) the topological type of the singularity of $\pi^{-1}(t)$ does not change (cf. Teissier, 1976; Zariski, 1976). Furthermore, the family is versal with this property, i.e. any deformation of the singularity of $\pi^{-1}(0)$ having fibres of the same topological type can be induced by the family $\pi: X \rightarrow \mathbb{C}^{r}$. But this family
is not universal, i.e., it contains analytically trivial subfamilies: These subfamilies are given by the integral manifolds of the kernel of the Kodaira-Spencer map: The KodairaSpencer map for the family $\pi: X \rightarrow \mathbb{C}^{r}$ is the map

$$
\begin{aligned}
\rho: \operatorname{Der}_{\mathrm{C}} \mathbb{C}[\mathrm{~T}] & \rightarrow \mathbb{C}[X, Y, \mathrm{~T}] /(F, \Delta F) \\
\rho(\delta): & =\text { class of } \delta F .
\end{aligned}
$$

(cf. Laudal, 1979; Laudal \& Pfister, 1983; Laudal et al., 1986). The kernel L of the Kodaira-Spencer map is a Lie-algebra, finitely generated as $\mathbb{C}[T]$-module. Along the integral manifolds of L the family $\pi: X \rightarrow \mathbb{C}^{r}$ is analytically trivial, i.e. a product.

Consider the matrix $C(T)=\left(c_{i j}\right)$ of the multiplication $F: R \rightarrow R$ with respect to the basis B:

$$
\begin{equation*}
m_{i} F=\sum_{j=1} c_{i j} m_{j} \bmod \Delta F \tag{I}
\end{equation*}
$$

and let

$$
\delta_{i}:=\sum_{j=1}^{r} c_{i, \mu-r+j} \partial / \partial T_{j} \in \operatorname{Der}_{\mathbb{C}} \mathbb{C}[\mathbf{T}], \quad i=1, \cdots, \mu
$$

Lemma: (1) $\delta_{i} \in L, \quad i=1, \cdots, \mu$,
(2) $\left\{\delta_{i}\right\}$ generate L as $\mathbb{C}[T]$-module,
(3) $\delta_{i}=0$ if $i>r$.

PROOF: (1) $\delta_{i} F=\sum_{j=1}^{r} c_{i, \mu-r+j} \partial F / \partial T_{j}=\sum_{j=1}^{\mu} c_{i j} m_{j}$,
because $c_{i j}=0$ for $j<\mu-r+1$ (compare the degrees in equation (I)). Hence we have $\mathrm{b}_{\mathrm{i}} F=m_{i} F \bmod \Delta F$, i.e. $\delta_{i} \in L$.
(2) Let $\delta=\sum_{j=1}^{r} w_{j} \partial / \partial T_{j} \in L$, i.e.

$$
\delta F=\sum_{j=1}^{r} w_{j} m_{\mu-r+j}=H \cdot F \bmod \Delta F \text { for suitable } H
$$

Let $H=\sum_{j=1}^{\mu} H_{j} m_{j} \bmod \Delta F, H_{j} \in \mathbb{C}[\mathrm{~T}]$, then $\delta=\sum_{j=1}^{\mu} H_{j} \delta_{j}$.
(3) Holds because $\operatorname{deg} m_{i} F>\operatorname{deg} m_{\mu}$ if $i>r$.

EXAMPLE. $f=X^{6}+Y^{7}, d=42, \mu=30, m_{\mu}=X^{4} Y^{5}, r=6$,

$$
\begin{aligned}
F= & X^{6}+Y^{7}+T_{1} X^{2} Y^{5}+T_{2} X^{3} Y^{4}+T_{3} X^{4} Y^{3}+T_{4} X^{3} Y^{5}+T_{5} X^{4} Y^{4}+T_{6} X^{4} Y^{5} . \\
\delta_{1}= & -1 / 42\left(2 T_{1} \partial / \partial T_{1}+3 T_{2} \partial / \partial T_{2}+4 T_{3} \partial / \partial T_{3}+9 T_{4} \partial / \partial T_{4}+10 T_{5} \partial / \partial T_{5}+16 T_{6} \partial / \partial T_{6}\right), \\
\delta_{2}= & -1 / 42\left(3 T_{2} \partial / \partial T_{4}+\left(4 T_{3}-10 / 7 T_{1}^{2}\right) \partial / \partial T_{5}\right. \\
& \left.+\left(10 T_{5}+4 / 7 T_{3}^{2} T_{1}-10 / 49 T_{3} T_{1}^{3}-92 / 147 T_{2}^{2} T_{1}^{2}\right) \partial / \partial T_{6}\right) \\
\delta_{3}= & -1 / 42\left(2 T_{1} \partial / \partial T_{4}+3 T_{2} \partial / \partial T_{5}+\left(9 T_{4}+46 / 21 T_{3} T_{2} T_{1}\right) \partial / \partial T_{6}\right), \\
\delta_{4}= & \left.-1 / 42\left(4 T_{3}-10 / 7 T_{1}^{2}\right) \partial / \partial T_{6}\right), \\
\delta_{5}= & -3 / 42 T_{2} \partial / \partial T_{6} \\
\delta_{6}= & -2 / 42 T_{1} \partial / \partial T_{6} .
\end{aligned}
$$

Because of $c_{i j}=0$ for $j<\mu-r+1$ or $i>r$, it is enough to consider the multiplication by F on the submodule R_{1} of R generated by $B_{1}:=\left\{m_{1}, \ldots, m_{r}\right\}$. For short let $n_{i}:=m_{p-r+i}$, $i=1, \ldots, r$. Let R_{2} be the submodule generated by $B_{u}=\left\{n_{1}, \ldots, n_{r}\right\}$, then we have a map $F: R_{1} \rightarrow R_{2}$. Let

$$
m_{i} F=\sum_{j=1}^{r} \bar{c}_{i j} n_{j} \bmod \Delta \mathrm{~F}
$$

Notice that $\bar{c}_{i j}=c_{i, \mu-r+j}$.

2. The algorithm

Choose u and v with the following properties:
(i) $1 \leq u \leq a-1, \quad 1 \leq v \leq b-1$,
(ii) $b u \equiv 1 \bmod a, \quad a v \equiv 1 \bmod b$.

Let $e(n) \equiv n u \bmod a \quad$ and $\quad e^{\prime}(n) \equiv n v \bmod b$.

Lemma

(1) $\operatorname{deg} X^{e(n)} Y^{e(n)}= \begin{cases}n & \text { if } e(n) b+e^{\prime}(n) a<d, \\ n+d & \text { else; }\end{cases}$
(2) if deg $m_{i}=n, 1 \leq i \leq r$, then $m_{l}=X^{e(n)} Y^{e(n)}$;
(3) if $\operatorname{deg} n_{i}=n+d, 1 \leq i \leq r$, then $n_{i}=X^{e(n)} Y^{e(n)}$;
(4) if $X^{e(n)} Y^{e(n)} \notin B_{1} \cup B_{u}$ for $n \leq a b-2(a+b)$, then $e(n)=a-1$ or $e^{\prime}(n)=b-1$.

The proof is not difficult, we will omit it here.
The sequence $\left\{\left(e(n), e^{\prime}(n)\right) \mid 0 \leq n \leq a b-2(a+b)\right\}$ provides an effective way to construct the ordered monomial bases B_{1} and B_{u}. The information we need can be arranged in a string S.

Part (I) OF THE ALGORITHM

Compute u and v such that $b u \equiv 1 \bmod a, a v \equiv 1 \bmod b$;

$$
j:=1 ; i:=e:=e^{\prime}:=\emptyset ; S(1):=l^{\prime} ; l(1):=\emptyset ;
$$

FOR $k:=1$ TO $d-2(a+b)$ DO BEGIN
$e:=e+u \bmod a ; e^{\prime}:=e^{\prime}+v \bmod b ;$ IF $(e=a-1)$ OR $\left(e^{\prime}=b-1\right)$ THEN $S(k+1):={ }^{\prime} 0^{\prime}$ ELSE

$$
\text { IF }\left(e b+e^{\prime} a\right)>d \text { THEN BEGIN }
$$

$$
i:=i+1 ; l(i):=k ; S(k+1):=l^{\prime} \text { END }
$$

\{characterises monomials of $B_{1}, l(i)$ is the degree of m_{i} \}
ELSE BEGIN $j:=j+1 ; u(j):=k ; S(k+1):=' u$ ' END
\{characterises monomials of $B_{\mathrm{u}}, u(j)+d$ is the degree of n_{j} \} END

Example. $f=X^{5}+Y^{14}, u=4, v=3$

$$
S=\text { 'Thuull }
$$

Notice that $S(n)={ }^{\prime} u^{\prime}$ iff $S(N+1-n)={ }^{\prime} l^{\prime}, N:=$ length of the string S, i.e. it is sufficient to compute only half the string. Now a monomial $T_{q(1)} \cdot \ldots \cdot T_{q(s)}$ occurs in $\overline{\mathrm{c}}_{i j}$ of the matrix iff
(i) $m_{l} n_{q(1)} \ldots n_{q(s)} \equiv n_{j}$
(ii) $m_{i} n_{q(1)} \ldots n_{q(t)} \notin B_{u}$ for $t=1, \ldots, s-1$.
(the exponents of X, resp. Y, are taken modulo a, resp. b).
This is equivalent (in the language of our string) to
(i') $l(i)+u(q(1))+\ldots+u(q(s))=u(j)$
(ii') $S(l(1)+u(q(1))+\ldots+u(q(t))) \neq{ }^{\prime} u^{\prime} \quad$ for $\quad t=1, \ldots, s-1$.

PART (II) OF THE ALGORITHM

Computing the monomials of $\bar{c}_{i j}$
PROCEDURE bracket (r, s);
BEGIN $b:=s-r ; F:=F+{ }^{\prime}($;
REPEAT $q:=\max i: u(i) \leq b$;
WHILE $q>\emptyset$ DO BEGIN $b:=u(q)-1$;
IF $u(q)=s-r$ THEN $F:=F+{ }^{\prime} T_{q}+^{\prime}$
ELSE IF $S(1+r+u(q)) \neq{ }^{\prime} u^{\prime}$ THEN
BEGIN $F:=F+{ }^{\prime} T_{q}^{\prime} ;$ bracket $(r+u(q), s)$ END;
$q:=\max i: u(i) \leq b \mathrm{END}$;
IF (last character of $F \not \boldsymbol{\prime}^{\prime}+^{\prime}$) THEN (delete last two char)
UNTIL $b=\emptyset$;
Replace last character of F by ')+'

END;

BEGIN $u(\emptyset):=\emptyset ; F:={ }^{\prime \prime} ;$
bracket (li(i), $u(j))$;
delete last character of F
END.
EXAMPLE. $f=X^{5}+Y^{14}, i=2, j=9$

$$
F={ }^{\prime}\left(T_{7}+T_{3}\left(T_{4}\left(T_{1}\right)+T_{1}\left(T_{4}+T_{3}\left(T_{2}\right)+T_{2}\left(T_{3}+T_{1}\left(T_{1}\right)\right)\right)\right)\right)^{\prime}
$$

To finish this part of the algorithm we have to "solve" the brackets. In this example we get:

$$
F={ }^{\prime} T_{7}+T_{3} T_{4} T_{1}+T_{3} T_{1} T_{4}+T_{3} T_{1} T_{3} T_{2}+T_{3} T_{1} T_{2} T_{3}+T_{3} T_{1} T_{2} T_{1} T_{1}^{\prime}
$$

Now we have to compute the coefficients of the corresponding monomials. If c is the coefficient of the monomial $T_{q(1)} \cdot \ldots \cdot T_{q(s)}$ occurring in F, then $c=c_{1} \cdot \ldots \cdot c_{s}$ and $c_{1}=$ 1 - $\operatorname{deg} n_{q(1)} / d, c_{i}$ is one of the exponents of $n_{q(i)}$ divided by a or b depending on whether $\partial F / \partial X$, resp. $\partial F / \partial Y$ was involved in the reduction modulo ΔF in this step.

PART (III) OF THE ALGORITHM
Computing a coefficient
$c:=(-1)^{s} u(q(1)) / d ; n:=l(i) ;$

FOR $k:=2$ TO s DO BEGIN
$e:=e(n)+e(u(q(k-1))) ; e^{\prime}:=e^{\prime}(n)+e^{\prime}(u(q(k-1))) ;$
$n:=n+q(k-1)$;
IF $e \geq a-1$ THEN $c:=c^{*} e(u(q(k))) / a$;
IF $e^{\prime} \geq b-1$ THEN $c:=c^{*} e^{\prime}(u(q(k))) / b$
END
Example: $f=X^{5}+Y^{14}, i=2, j=9, T_{3} T_{1} T_{2} T_{1} T_{1}$

$$
c=-\left(\frac{4}{70}\right)\left(\frac{6}{14}\right)\left(\frac{2}{5}\right)\left(\frac{6}{14}\right)\left(\frac{3}{5}\right)=-\frac{108}{42875}
$$

PART (IV) OF THE ALGORITHM

Finally, we have to order the variables in the monomials, to order the monomials in F lexicographically and to identify monomials of the same type by adding their coefficients.

EXAMPLE. $f=X^{5}+Y^{14}$

$$
\bar{c}_{2,9}=-13 / 70 T_{7}-39 / 1225 T_{4} T_{3} T_{1}+99 / 8575 T_{3}^{2} T_{2} T_{1}-108 / 42875 T_{3} T_{2} T_{1}^{3}
$$

Remark. The algorithm can be modified for more than two variables and without the restriction that the exponents are to be relatively prime. For instance, if $f=X_{1}^{a_{1}}+\cdots$ $+X_{n}^{a_{n}, d},=a_{1} \cdots a_{m}, b_{i}:=d / a_{i}$ then choose u_{i} such that $u_{i} b_{i} \equiv 1 \bmod a_{i}$ and let $e_{i}(n):=n u_{i}$. If the a_{i} are not relatively prime add a small perturbation to each e_{i} and you will get similar results.

Remark. The way of computing the $\bar{c}_{i j}$ by using the strings S and F allows one to compute fairly complicated examples on a 64 K -computer in a short time (for instance, $\bar{c}_{57,157}$ of $X^{19}+Y^{29}$ in less than two seconds).

References

Laudal, O. A. (1979). Formal moduli of algebraic structures, Lecture Notes in Math. 754.
Laudal, O. A., Pfister, G. (1983). The moduli problem: Applications to the classification of isolated hypersurface singularities. Univ. of Oslo, Preprint Series No 11.
Laudal, O. A., Martin, B., Pfister, G. (1986). Moduli of irreducible plane curve singularities with the semi-group $\langle a, b\rangle$, Proc. Conf. on Algebraic Geometry, (Berlin 1985), Teubner-Texte zur Mathematik, Bd.92, pp. 236258. Leipzig: Teubner.

Teissier, B. (1976). Appendice au cours de O. Zariski, Le problème des modules pour les branches planes. Paris: Publ. du Centre de Mathématiques de l'Ecole Polytechnique.
Zariski, O. (1976). Le problème des modules pour les branches planes. Paris: Publ. du Centre de Mathématiques de I'Ecole Polytechnique.

