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An algorithm is described which gives a base of the kerne] of the Kodaira~-Spencer map of the
versal g-constant deformation of certain plane curve singularities. This is useful for computing
the moduli of such singularities.

Let C[X, Y] be the polynomial ring over the field of complex numbers C considered as a
graded ring with deg X = b and deg Y = a, a and b being relatively prime. f = X*+ Y’ isa
homogeneous polynomial of degree d = ab with respect to this graduation.

Let B = {my,..., m,} be a monomial basis of C[ X, Y]/(9f/0X, 3f/0Y) ordered by degree
(deg X*Y? := ab+ fa), such that m;, = 1 and m, = X" ?Y*"2, y = (a—1)(b—1). Let B, =
{m,_ . 1,...,m,} be the set of monomials of B of degree greater than d.

Let

Fi=f+Y Tm,_, . eCX, YT, T:=(Ty,...,T)
i=1

and let AF := (0F/9X, 0F/0Y) be the Jacobian ideal of F, then R:=C[X, Y, T)/AF is a
free C[T]-module of rank y generated by m,,..., m, _

The multiplication by F in R, F: R — R is a C[T]-linear map. Denote by C(T) = (¢;;) the
matrix of F with respect to the basis B, i.e.

mF =Y c;m;mod AF.
J

In section 1 we explain why we are interested in the matrix C(T). In section 2 we give an
algorithm to compute C(T), one which does not use elimination theory.

1. The kernel of the Kodaira—Spencer map

Denote by X < C?xC" the hypersurface defined by F=0 and let z: X — C" be the
canonical projection. We may consider 7: X — C" to be a family of curves: The fibres
n~1(t) = C? are curves having an isolated singular point at 0. Because of the choice of the
family (the monomials m,_, ; have degree greater than d) the topological type of the
singularity of n~'(f) does not change (cf. Teissier, 1976, Zariski, 1976). Furthermore, the
family is versal with this property, i.e. any deformation of the singularity of #=*(0) having
fibres of the same topological type can be induced by the family n: X — C”, But this family
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is not universal, i.e. it contains analytically trivial subfamilies: These subfamilies are given
by the integral manifolds of the kernel of the Kodaira~Spencer map: The Kodaira—
Spencer map for the family = : X — C" is the map

p : Der.C[T] — C[X, Y,T]/(F, AF)
p(8) := class of §F.

(cf. Laudal, 1979; Laudal & Pfister, 1983; Laudal er al., 1986). The kernel L of the
Kodaira—Spencer map is a Lie-algebra, finitely generated as C[T]}-module. Along the
integral manifolds of L the family = : X — C” is analytically trivial, i.e. a product.

Consider the matrix C(T) = (c;;) of the muitiplication F:R — R with respect to the
basis B:

m,-F = Z Cijmjmod AF
j=1 @
and let

= 3 Ciu-rs; /0T, € DercCIT], i=1,--,p
i=1
LemMa: (1) d;e L, i=1,.-p,
(2) {4} generate L as C[T]-module,
3)6;,=0ifi>r

Lo I

Proor: (1) 5,F = Z Cipmraj aF/aT} = Ciymj,

because ¢;; =0 for j < p—r-+1 (compare the degrees in equation (I)). Hence we have
biF = miF mOd AF, i.e. 5i € L.

@ Letd =73 w, /0T e L, ie.

j=1

OF =Y w;m,_,.; = H-Fmod AF for suitable H.
j=1

I
Let H = Z Hjm; mod AF, H; € C[T], then 6 = }i H;é;

i=1 =1

(3) Holds because deg m;F > deg m,, if i > r.

EXAMPLE. f= X®+ Y7, d =42, u = 30, m, = X*Y>, r=6,
F = X%+ Y7+71X2Y5+T X3y4+ T3X‘*Y3+74X3Y5+T XY+ T, X4Y5.
0, = —1/A22T 9[0T, +3T,0/0T; +4T, /0Ty + 9T, 0/0T, + 10T, 8/0Ts + 16T, 0/0Ty),
6y = —1/82BT,0/0T, + (4T, — 10/1T?)3/0T,
+ (10T +4/TT3 T, — 10/49T, T2 — 92/147 T2 T)8/0T,),
63 = —1/422T,0/0 T, +3T,8/0Ts +(9T, + 46/21 T3 T, T,)8/0Ty),
84 = — 1/42(4 T3 —10/7T2)9/0T,),
65 = —3/42T, /0T,
S = —2/42T, 83T,
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Because of ¢;; = 0 for j < g—r+ 1 or i > r, it is enough to consider the multiplication by
F on the submodule R, of R generated by B, := {m,,...,m,}. For short let n;:=m,_,,
i=1,...,r Let R, be the submodule generated by B, = {n,, ..., n,}, then we have a map
F:R;, >R, Let

miF"—' Z Eijnj l’nOd AF.
J=1

Notice that Eij =Ciprsj

2. The algorithm
Choose u and v with the following properties:
(i) lgsu<a—1, 1gv<h—1,
(ii) bu = 1moda, av=1lmodb.

Let e(n) =numoda and ¢'(n) = nvmod b.

LEMMA

(1) deg X@yen - {n if e(n)b+¢'(n)a < d,

n+d else;

(2) ifdegm;,=n, 1 <i<r, then m; = X°®y=®,
() if degn,=n+d, L <i<r, then n, = XOye®;
4) if XWy*®™ ¢ B, uB, for n<ab—2(a+h), thene(m)=a—1 or ¢(n)=b—1.

The proof is not difficult, we will omit it here.

The sequence {(e(n), ¢'(M)|0 < n < ab—2(a+b)} provides an effective way to construct
the ordered monomial bases B, and B, The information we need can be arranged in a
string S.

PART (I) OF THE ALGORITHM
Compute u and v such that bu = 1 mod a, av = 1 mod b;
ji=Li=er=e =0 S(1):="I; (1) := @

FOR k:=1TO d—-2(a+b) DO BEGIN
e:=e+umodag; ¢ := ¢ +vmod b;
IF (e =a—1) OR (¢' = b—1) THEN 8(k+1):="'l' ELSE
IF (eb+e€'a) > d THEN BEGIN
ir=i+110):=k; S(k+1):="l END
{characterises monomials of By, I(i) is the degree of m;}
ELSE BEGIN j:=j+1; u(j) :=k; S(k+1):="v' END
{characterises monomials of By, u(j)+4d is the degree of n;}
END

EXAMPLE. f= X+ Y% u=4,p=3
S = 'Nunullunl Buulbuulliul Hlwiily’
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Notice that S(n) = v iff S(N+1—n) ="I', N := length of the string S, i.. it is sufficient to
compute only half the string. Now a monomial T,-. .. Ty, occurs in &; of the matrix iff

Q) m[nqu) e nq(s) = n}
(i) mnyyy ... ny€B, for t=1,...,5s~1
{the exponents of X, resp. Y, are taken modulo q, resp. b).

This is equivalent (in the language of our string) to

(i) 16+ ug)+ ... +ulg(s)) = u(j)
(i) SO +ulg())+ ... +u@@)) #'w for t=1,..,s—1.

PART (1) OF THE ALGORITHM

Computing the monomials of ¢;;
PROCEDURE bracket (r, s);
BEGIN b:=s5—r; F:= F+'(}
REPEAT ¢ := max i: u(i) < b,
WHILE ¢ > ¢ DO BEGIN b := u(q)—1;
IF u(g) = s—r THEN F:= F+'T, +’
ELSE IF S(1+r+u(g) # ‘v’ THEN
BEGIN F := F+'T); bracket (r+u(q), s) END;
q:=max i u(i) < b END;
IF (last character of F # '+') THEN (delete last two char)

UNTIL b = §
Replace last character of F by ')+’
END;

BEGIN u(ff):=@; F:=";

bracket (1), u(y));

delete last character of F
END.
ExaMPLE, f= X*+ Y% i=2j=9

F ="(T,+ T(T(T)) + T(Ty + () + (T + T(TL))Y
To finish this part of the algorithm we have to “solve” the brackets. In this example we get:
F=T+LLT+LNTL+LTLLL+ LT L L+ LI LT T

Now we have to compute the coefficients of the corresponding monomials. If ¢ is the
coefficient of the monomial Tyy-...* Ty occurring in F, then ¢ =¢;-...-¢; and ¢, =
1—deg nyy)/d, c; is one of the exponents of n, divided by a or b depending on whether
OF/8X, resp. OF/0Y was involved in the reduction modulo AF in this step.

PART (11I) OF THE ALGORITHM

Computing a coefficient
¢:=(—1ulg(D))/d; n:= L)
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FOR k:=2 TO s DO BEGIN
e:=e(n)+e(u(gtk—1)); € := €'(n)+e'(ulglk—1)));
ni=n+qk-1);

IF ¢ =2 a—1 THEN ¢ := c*e(u(q(k)))/a;
IF ¢ 2 b—1 THEN ¢ : = c*¢'(u(q(k)))/b
END

S LT TLTT,

EXAMPLE: f= X3+ Y% i=2,j=09,
_ 108
= —17873

¢ =—(F)@EAEA)

PART (IV) OF THE ALGORITHM

Finally, we have to order the variables in the monomials, to order the monomials in F
lexicographically and to identify monomials of the same type by adding their coefficients.

EXAMPLE. = X5+ Y14
2, o = —13/10T, —39/1225T, T, T, + 99/8575 T2 T, T, — 108/42875 T, T, T

ReMArk. The algorithm can be modified for more than two variables and without the
restriction that the exponents are to be relatively prime. For instance, if = X§'+ -
+ Xy, d:=a, -+ a, b; := d/a; then choose y; such that u;b; = 1 mod g; and let ¢,(n) : = nu,.
If the a; are not relatively prime add a small perturbation to each ¢; and you will get
similar results.

REMARK. The way of computing the &;; by using the strings S and F allows one to compute
fairly complicated examples on a 64K-computer in a short time (for instance, 57,157 of
X'+ 7Y?° in less than two seconds).
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