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1. Introduction

Systems of polynomial equations arise throughout mathematics and its appli-
cation areas as a means of describing, restricting, encoding, or modeling various
aspects of a given problem. The areas where polynomial systems have been
utilized is incredibly diverse, touching nearly every branch of mathematics and
nearly every branch of science and engineering. One is typically interested in
understanding some feature of the common set of zeros of the system with the
level of detail required being very much dependent on the context and source
of the problem. At the most basic level, one would like to understand if the
system is consistent, i.e., whether the set of solutions is empty or non-empty. If
the solution set is non-empty, the next level is to decide whether the solution set
is finite and, if so, to determine the number of solutions and to represent each
solution (or each solution together with its multiplicity). If there are infinitely
many solutions to the polynomial system, then the solution set can be decom-
posed into equidimensional components which can be further decomposed into
irreducible components. At this level, the most basic questions range from de-
termining the dimension of the largest component to representing each reduced,
irreducible component together with a description of its degree, dimension, and
multiplicity.

The focus of this paper is to compare two fundamentally different approaches
to describing and representing the irreducible components of the common set
of zeros of a system of polynomial equations with rational coefficients. The
first approach, based on the method of homotopy continuation, is numerical
in nature and leads to a representation of each irreducible component with a
collection of “witness points” and basic discrete data. The witness points for
an irreducible component consist of a collection of numerical approximations
to generic points lying on the component while the discrete data includes the
dimension and degree, along with some information about the multiplicity. The
second approach, based on reduction to finite fields, is symbolic in nature and
leads to a representation of each irreducible component with an ideal and basic
discrete data. The ideal is described by a set of generators whose common
zeros correspond to points on the irreducible component while the discrete data
also includes the dimension and degree, along with some information about the
multiplicity. Beyond the dimension, degree, and multiplicity, there are many
other discrete and continuous invariants that can be considered useful as a
description of the features of (ensembles of) irreducible components of a system
of polynomial equations. While very interesting, these finer invariants go beyond
the scope of this paper.
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As described above, the aim of this paper is to compare two very different
approaches to decomposing a polynomial system and to explore their strengths
and weaknesses. In §2, we briefly discuss basic numerical algebraic geometry,
leading to an explanation of the numerical irreducible decomposition algorithm
in §3. In §4, we give a description of two algorithms that are used to symbolically
compute the minimal associated primes of an ideal. In §5, we compare the two
different approaches on a collection of benchmark examples. In particular, we
compare running times for homotopy-based numerical decomposition algorithms
over C with running times for finite field-based symbolic decomposition algo-
rithms over Q for systems of polynomial equations with rational coefficients.
For the numerical runs, we use the software package Bertini [BHSW06] on a
single processor and also on a multiprocessor system with 64 cores. The sym-
bolic, finite-field based runs are performed using the Singular software package
[DGPS10] on a single processor.

Our findings make it clear that both symbolic and numerical based decom-
position methods have strengths that can and should be combined to create
improved and more flexible decomposition algorithms. Strengths of numerical
based decomposition methods include parallelizability, parameter homotopies,
and the ability to extract meaningful information from systems presented with
floating point coefficients. Strengths of symbolic based decomposition methods
include exact output, the ability to exploit certain special structure in a poly-
nomial system, and the ability to obtain very fine invariants such as syzygies
and cohomology modules. A fully integrated system that can take advantage of
the strengths of each approach while avoiding the weaknesses is clearly a goal
that should be pursued. However, such a hybrid system and the development
of novel numeric-symbolic algorithms is beyond the scope of this paper and are
the topic of future work.

2. Numerical Algebraic Geometry

Fix a system

f(z) =

 f1(z)
...

fn(z)

 (1)

of n polynomials with z = (z1, . . . , zN ) ∈ CN .
The numerical methods of the field of numerical algebraic geometry may be

used to compute accurate approximations of the complex solution set of f(z).
This includes both the set of isolated solutions (points) and a numerical analogue
of the irreducible decomposition (positive-dimensional solution sets). Though
these numerical methods sacrifice the certainty intrinsic to symbolic methods,
they reliably produce useful solutions to problems that may be intractable with
symbolic methods.

The principal notion of the field is homotopy continuation, which will pro-
duce a superset of all isolated solutions of a given system f(z) = 0 with n = N .
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The idea is to construct an easy to solve system g(z) = 0 and then glue g(z) to
f(z) with a new parameter t, to form a homotopy function of N polynomials
H(z, t) in N + 1 variables, (z, t) = (z1, . . . , zN , t) ∈ CN+1, such that

1. H(z, 0) = f(z) and H(z, 1) = g(z);
2. for each solution z∗ of g(z) = 0 there is a real analytic path s : (0, 1]→ CN

such that H(s(t), t) = 0 for t ∈ (0, 1] and s(1) = z∗;
3. for each t∗ ∈ (0, 1], the Jacobian of H(z, t∗) is nonsingular; and
4. the finite set S of the limits limt→0 s(t) of all the paths includes all isolated

solutions of f(z) = 0.

There are many ways to construct the start systems g(z) and to follow the
solution paths to find the limits. See [Li03, SW05] for detailed developments
of this theory. Among the various start system options, the Bertini software
package provides total degree and multihomogeneous homotopies.

So far, we merely have existence of the path s(t), i.e., we do not know the
equations of s(t). Whereas the underlying theory relies heavily on ideas from
several complex variables and algebraic geometry, the computations primarily
involve numerical linear algebra. Tracking the path is an exercise in numerical
computation – primarily predictor-corrector methods – for which an extensive
literature exists. The article [BHS11] describes how to make best use of such
techniques in the context of polynomial homotopies.

Although item (3) above says that the path remains nonsingular for t ∈ (0, 1],
there is no guarantee that the conditioning of the Jacobian matrix (the matrix
used in the numerical linear algebra computations fundamental to homotopy
continuation) will be mild throughout the path. Ill-conditioned segments of
the paths are short-lived, but they do show up, especially in larger problems.
Thus, adaptive multiple-precision techniques [BHSW08, BHSW09] are essen-
tial. These methods are the key to Bertini’s reliability in this regard. In fact, by
using adaptive multiple precision arithmetic, the endpoint may be approximated
to any desired accuracy.

Upon this foundation of homotopy continuation was built a set of algorithms
to decompose the solution set of f(z) = 0 (with n not necessarily equal to N)
into irreducible components, a decomposition often used in algebraic geometry
that may be thought of as a natural refinement of a decomposition into con-
nected components. This numerical irreducible decomposition relies very heav-
ily on the repeated use of very similar homotopies and will be described in some
detail in the next section. Several software programs carry out the computation
of a set S containing the isolated solutions of f(z) = 0, e.g., Bertini [BHSW06],
HOM4PS [LLT08], and PHCpack [Ver99], though only Bertini automatically
computes the numerical irreducible decomposition with a single command.

3. A numerical algorithm for computing the components of an affine
algebraic variety

Let f(z) be a polynomial system of n polynomials on CN , as in (1), and
let V (f) denote the set of zeroes of f(z). The irreducible decomposition is the
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breakup of V (f) into irreducible components:

V (f) :=
dimV (f)⋃
i=0

Zi =
dimV (f)⋃
i=0

⋃
j∈Ii

Zi,j (2)

where the algebraic set Zi is the pure i-dimensional part of V (f), Ii is a finite
possibly empty set of indices for the irreducible components in dimension i,
and the Zi,j are irreducible algebraic sets with no Zi,j contained in any Zi′,j′

with (i, j) 6= (i′, j′). These irreducible components Zi,j are the closures of the
connected components of V (f) \ Sing(f), where Sing(f) is the set of singular
points of V (f). As will be explained in §4, there is a bijection between the set of
irreducible components of the (geometric) solution set and the set of (algebraic)
prime ideals in the prime decomposition of the radical of the ideal generated by
the polynomials of f(z).

For each i with Zi nonempty, we know that there is a nonempty Zariski open
subset U of the Grassmannian of (N − i)-dimensional affine linear subspaces of
CN , such that for each subspace Li ∈ U , Li ∩ Zi consists of degZi points;
similarly each Li ∩ Zi,j consists of degZi,j points.

Given a system of polynomials f(z), the numerical irreducible decomposition
of V (f) consists of a witness set Wi,j for each irreducible component Zi,j . A
witness set for an irreducible component is a tuple (f(z), Li,Wi,j) providing
exactly the polynomial system and linear subspace that were used to find the
witness point set Wi,j , which is simply the set of degZi,j points of Li ∩ Zi,j .

How is the computation of the numerical irreducible decomposition carried
out? In practice, there are several variations on a basic theme. Conceptually,
the main two steps are:

1. Computation of a witness set of each nonempty Zi, i.e., computation of
Li and the degZi points Zi = Zi ∩ Li.

2. Computation of the breakup of Zi into the sets Wi,j .

To carry out Step 1, we choose Li at random by forming a system of i linear
equations, Li, whose coefficients are chosen at random from C, so Li = V (Li).
Then we compute a finite set Ẑi ⊂ V (f) ∩ Li containing the set Zi. In the
case that system f has more than N − i equations, it is randomized down to a
system of N − i equations as

A · f(z),

where A is a random (N − i)×n matrix. Here it should be noted that if k ≤ N
equations vanish on a nonempty set, then all components of the set are at least
N − k dimensional. For sufficiently general A, all i-dimensional components of
V (f) are also components of V (A · f(z)), though the randomized system may
have new components as well (which can easily be recognized since the points
on these new components will not satisfy the original system).

The major task of Step 1 is to solve the system[
Li(z)
A · f(z)

]
= 0
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of N equations in N unknowns where Li are linear equations with V (Li) = Li.
Although this exact approach was done in [SW95], a more efficient algorithm,
known as the cascade approach, was introduced in [SV00]. A further improve-
ment is the regenerative cascade of [HSW11], though this technique will only
produce nonsingular solutions and witness sets for reduced positive-dimensional
components.

With the Ẑi sets in hand, Step 1 is completed by extracting Zi from Ẑi.
That is, we have Ẑi = Zi ∪ Ji, where the subset Ji (the ith junk set) needs to
be identified and culled out of Ẑi to yield Zi. The set Ji is contained in⋃

k>i

Zk.

From this is it clear that JdimV (f) = ∅, so a by-product of computing the Ẑi is
the determination of the dimension of V (f) as the largest i for which Ẑi is not
empty.

To see how we identify Ji, fix i, let z∗ be a point of Ẑi, and assume that
we have computed Zk for k > i. For each k > i find a family of general linear
spaces of codimension k starting at Lk and ending at a general linear space
containing z∗. If z∗ ∈ Zk, then the limits of the paths starting at the Zk will
contain the point z∗ in the limit. This was introduced in [SVW01]. A newer
approach for computing Ji, which is often more efficient (particularly if you are
only interested in the sets Zi for small i) is presented in [BHPS09].

Having computed the Zi, Step 2 consists of breaking these up according
to irreducible components. This step has developed over the past 20 years so
that the current two-phase approach is typically quite efficient. In the first
phase, the point on the Grassmannian corresponding to Li is moved in a loop
on the Grassmannian. Some such loops may pick up a monodromy action, i.e.,
the same points will be present before and after the loop, but their order may
change. Points of Zi only pass to one another if they lie on the same irreducible
component, so these monodromy loops will provide a partial decomposition of
the points of Zi into subsets corresponding to irreducible components.

It is typically not clear when or if the monodromy method is finished (since
these monodromy loops can result in no changes in the ordering of the points,
even if the decomposition is incomplete). Thus, it is necessary to rely on the
second phase of Step 2 to complete the equidimensional decomposition. This
second phase is called the trace test. We assign to each point of Zi a complex
number called the trace, denoted tk for point zk ∈ Zi, with the property that∑

k∈Λ

tk = 0

if and only if the points {zk, k ∈ Λ} form complete irreducible components.
Thus, the trace test may be used to certify whether the groupings produced by
monodromy are complete. Full details may be found in [SW05].

We need two final comments regarding the numerical irreducible decomposi-
tion of an algebraic set, since both deflation and regeneration play a role in the
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runs later in the article. When an irreducible component Zi,j has generic multi-
plicity greater than 1, then the corresponding points Wi,j in the witness set Zi
are singular. That is, the Jacobian matrix of partial derivatives of f evaluated
at such points has rank less than N − i. A preparatory step to computing the
break-up is to first regularize the singular points.

Singular points can be regularized through a process called deflation. De-
flation for isolated solutions was introduced in [OWM83, Oji87] with a proof
of termination provided in [LVZ06] (see also [DZ05, LVZ08, HSW10]). Defla-
tion was extended from isolated solutions to irreducible components in [SW05,
§13.3.2,§15.2.2]. Though deflation is generally quite expensive, it is a necessary
evil to allow for the numerical handling of singular solutions.

Finally, there are also equation-by-equation methods for solving polynomial
systems, i.e, we can compute the isolated solutions of f(z) as the intersection of
the solution sets of the sets V (fi). Regeneration [HSW10] is currently the most
efficient equation-by-equation algorithm, though it cannot be used to find singu-
lar solutions. For large systems, it is often more efficient than other algorithms
for finding all isolated nonsingular solutions.

4. Symbolic methods

Given a system f(z) of n polynomials

fi ∈ C[z] = C[z1, . . . , zN ]

as in (1), algebraic geometry allows us to study the set of zeros Z = V (f)
by algebraic means (we refer to [GP08] for details on what follows). On the
algebraic side, rather than considering a specific set of polynomials defining Z,
we consider the collection I(Z) of all polynomials vanishing on Z. This collection
contains the zero polynomial and is closed under taking linear combinations of
its elements, with polynomials in C[z] as coefficients. In the terminology of
commutative algebra, this means that I(Z) is an ideal. With regard to the ideal

I = 〈f1, . . . , fn〉 :=

{
n∑
i=1

gifi

∣∣∣∣∣ gi ∈ C[z]

}

generated by the original polynomials fi, Hilbert’s celebrated Nullstellensatz
tells us that I(Z) is obtained from I by taking the radical :

I(Z) =
√
I, where

√
I := {f ∈ C[z] | fm ∈ I for some m ≥ 1}.

Algebraic geometers make use of the fact that geometric properties of Z corre-
spond to algebraic properties of I(Z). For example, the dimension of Z equals
the Krull dimension of I(Z). Or, Z is irreducible if and only if I(Z) is a prime
ideal ; furthermore, if Z is reducible, its break-up into irreducible components
corresponds to a decomposition of I(Z) as an intersection of prime ideals. On
the algebraic side, solving the decomposition problem of a set of zeros hence
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means to solve the following problem: Given a proper ideal I of the polynomial
ring C[z], find prime ideals P1, . . . , Ps ∈ C[z] such that

√
I = P1 ∩ · · · ∩ Ps, with Pi 6⊂ Pj for i 6= j; (3)

here, the Pi are uniquely determined (up to order) and are called the minimal
associated primes of I. In addition to finding the Pi, we may wish to compute
their dimensions and degrees by algebraic means.

The decomposition (3) is called the prime decomposition of
√
I. More gen-

erally, rather then decomposing
√
I, we may write the ideal I as an intersection

of ideals which are not necessarily prime, but whose radical is prime: A primary
decomposition of I is a decomposition I = Q1 ∩ · · · ∩Qt into primary ideals Qi,
where Pi =

√
Qi 6= Pj =

√
Qj for all i 6= j, and such that no Qi can be omitted.

Then, though this is not necessarily true for the Qi, the Pi are uniquely deter-
mined and are called the associated primes of I. The minimal associated primes
of I are precisely the associated primes of I which are minimal with respect to
inclusion.

Algebraically, the workhorse behind almost every problem arising in compu-
tational algebraic geometry is Buchberger’s algorithm for computing Gröbner
bases. These bases are special sets of generators for ideals in polynomial rings
which depend on the choice of a well-ordering on the semigroup of monomials
in that ring, and which are well-suited for computational purposes. Note that
choosing a monomial ordering > such as the lexicographical ordering allows us
to speak of the leading monomial or leading coefficient of any given polyno-
mial, and of the leading ideal of any given ideal I. A Gröbner basis of I is a
finite set g1, . . . , gr of generators for I such that the leading monomials of the
gi generate the leading ideal of I. By considering leading ideals, problems re-
garding arbitrary ideals can be reduced to problems regarding ideals generated
by monomials which are usually much easier. Once the ideal and the monomial
ordering are fixed, there is a uniquely determined reduced Gröbner basis, where
reduced means that certain minimality conditions are fulfilled.

Gröbner basis techniques can be used, for example, to compute the intersec-
tion I ∩ J of two ideals in a polynomial ring R with coefficients in a field, the
ideal quotient

I : J := {f ∈ R | fg ∈ I for all g ∈ J}

of I by J , or the saturation

I : J∞ := {f ∈ R | fJm ⊂ I for some m ≥ 1} =
∞⋃
m=1

(I : Jm)

of I with respect to J . By the Noetherian property of R, and since I : Jk+1 =
(I : Jk) : J for each k, the computation of I : J∞ just means iterating the
computation of ideal quotients until it stabilizes, i.e., I : Jm = I : Jm+1 for
some m.

In our context here, Gröbner basis techniques settle the problem of finding
the dimension and the degree. To compute the (minimal) associated primes,
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however, these techniques (or other means of manipulating ideals in polynomial
rings) have to be combined with algorithms for polynomial factorization. Before
discussing this in more detail, we need to make a remark on the ground field.
Exact computer algebra calculations require that the arithmetic operations of
the field under consideration can be implemented in an exact way. Thus, these
calculations are carried through over fields such as the field of rational numbers,
finite prime fields, or algebraic extensions thereof. Note that if we are given a
system of polynomial equations f with rational coefficients, then the decompo-
sition of V (f) over Q may differ from that over C in that polynomials (algebraic
sets) which are irreducible over Q may be reducible over C. Factoring a polyno-
mial (decomposing an algebraic set) over C then means to find an appropriate
algebraic field extension of Q over which the absolute factorization (absolute de-
composition) occurs, and to compute the irreducible factors (components) over
that field. On the other hand, in many examples of interest, calculations over Q
provide a reliable picture of what is happening over C. In fact, it is often even
sufficient to work over a finite prime field. In the latter way, the well-known
problem of intermediate coefficient swell over the rationals can be avoided.

In the following two subsections, given a field K and a proper ideal I in the
polynomial ring K[z] = K[z1, . . . , zN ], we sketch two algorithms for computing
the minimal associated primes of I. Either algorithm proceeds by appropriately
“splitting”

√
I as an intersection of “simpler” ideals which are either prime or

can be handled recursively. See [DGP99, GP08] for details and proofs.

4.1. The algorithm of Gianni, Trager, and Zacharias
To split

√
I, the algorithm of Gianni, Trager, and Zacharias (see [GTZ88])

first makes use of Gröbner bases to reduce to the zero-dimensional case, and
then relies on properties of zero-dimensional ideals in general position to reduce
to polynomial factorization. If a zero-dimensional ideal occurring in the process
is not in general position, a generic coordinate transformation is required.

Before discussing some details, we regard the notion of Krull dimension from
a computational point of view. For this, we think of z = {z1, . . . , zN} as a set
of variables, and consider subsets u of z.

Definition 4.1.1. A maximal independent set of variables with respect to a
given ideal I ⊂ K[z] is a subset of variables u ⊂ z which is of maximal cardinality
with the property that I ∩K[u] = {0}.

In the situation above, the Krull dimension of I is precisely the cardinality
of a maximal independent set of variables with respect to I. In particular, I
is zero-dimensional if and only if I ∩K[zi] 6= 〈0〉 for all i. In view of Gröbner
bases, we can go one step further: The Krull dimension of I is the cardinality
of a maximal independent set of variables with respect to the leading ideal of I.
This reduces the computation of dimension to a purely combinatorial problem.
The zero-dimensional case is particularly easy:

Remark 4.1.2. To detect whether a given ideal I ⊂ K[z] is zero-dimensional,
compute a Gröbner basis of I. Then I is zero-dimensional if and only if for
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each i, 1 ≤ i ≤ N , there is some mi ≥ 0 such that zmi
i occurs as the leading

monomial of a Gröbner basis element.

We are now ready to describe the decomposition of zero-dimensional ideals.
If I is such an ideal, by the very definition of Krull dimension, each associated
prime of I is a maximal ideal. In particular, every associated prime of I is a
minimal associated prime. We start with the following simple fact:

Lemma 4.1.3. Let I ⊂ K[z] be a zero-dimensional ideal, let g be a monic gen-
erator of the principal ideal I∩K[zN ], and let g = gν11 · · · gνs

s be the factorization
of g, where the gi are monic and irreducible, with gi 6= gj for i 6= j. Then

I =
s⋂
i=1

〈I, gνi
i 〉. (4)

Next, it turns out that (4) is a primary decomposition whenever I is in gen-
eral position. Essentially, this means that each associated prime P of I is in
general position, which in turn means that P is of type 〈z1 +g1(zN ), . . . , zN−1 +
gN−1(zN ), gN (zN )〉, with polynomials g1, . . . , gN ∈ K[zN ]. Furthermore, the
condition that I is in general position can be achieved by a coordinate transfor-
mation. In making this precise, we use the following notation:

Definition 4.1.4. For a = (a1, . . . , aN−1) ∈ KN−1, let the coordinate trans-
formation ϕa : K[z]→ K[z] be defined by

ϕa(zi) = zi if i < N and ϕa(zN ) = zN +
N−1∑
i=1

aizi.

In Proposition 4.1.5 below, we use the superscript (a) to indicate that the
polynomials under consideration depend on a.

Proposition 4.1.5 (Shape Lemma). Assume that K has characteristic zero.
Let I ⊂ K[z] be a zero-dimensional ideal. Then there is a non-empty Zariski
open subset U ⊂ KN−1 such that the following holds for each a ∈ U : There
are g(a)

1 , . . . , g
(a)
N ∈ K[zN ], with g(a)

N square-free, and such that ϕa(
√
I) = 〈z1 +

g
(a)
1 , . . . , zN−1 + g

(a)
N−1, g

(a)
N 〉. Furthermore, if g(a)

N = f
(a)
1 · · · f (a)

ra is the decom-
position into irreducible factors, then {ϕ−1

a (〈z1 + g
(a)
1 , . . . , zN−1 + g

(a)
N−1, f

(a)
i 〉) |

i = 1, . . . , ra} is the set of minimal associated primes of I.

Remark 4.1.6. The proposition is also true in characteristic p > 0 if p is
large compared to the degree of the given generators for I. In fact, if Algorithm
1 below terminates in characteristic p, then it returns a correct result.

To compute the associated primes of a zero-dimensional ideal I ⊂ K[z], the
above discussion suggests to apply a coordinate transformation ϕa chosen at
random, if necessary, and then use polynomial factorization. However, to make
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this work, we need to be able to decide whether the random choice of a made
by the computer was indeed general enough. Here, we use a criterion which
allows us to check wether a given ideal is a zero-dimensional primary ideal in
general position. Rather than stating this criterion, we exemplify its usage in
Algorithm 1 below, where we will just return the associated primes and not the
primary ideals. In formulating the algorithm (and in subsequent statements),
given an ideal I ⊂ K[z] and a polynomial f ∈ K[z], we write 〈I, f〉 for the ideal
generated by the elements of I and f .

Algorithm 1 zeroMinAssGTZ (I)
Input: A zero-dimensional ideal I ⊂ K[z] given by a finite set of generators.
Output: The associated primes of I.

1: compute S, the reduced Gröbner basis of I with respect to the lexicograph-
ical ordering, taking z1 > . . . > zN

2: factor the element g ∈ S with smallest leading monomial: g = gν11 · · · gνs
s

3: if (s > 1) then
4: return

⋃s
i=1 zeroMinAssGTZ (〈I, gi〉)

5: Prime := 〈g1〉
6: i := N
7: while (i > 1) do
8: i := i− 1
9: choose f ∈ S with leading monomial of type zmi

10: b := the coefficient of zm−1
i in f considered as a polynomial in zi

11: q := zi + b
m

12: if (qm ≡ f mod Prime) then
13: Prime := Prime +〈q〉
14: else
15: choose a ∈ KN−1 at random
16: return ϕ−1

a (zeroMinAssGTZ (ϕa(I)))
17: return Prime

It remains to explain how to reduce the higher-dimensional case to the zero-
dimensional case. The basis for this is Proposition 4.1.7 below. In stating the
proposition, given a subset of variables u ⊂ z and its complement z r u, we
write K(u) for the field of rational functions in the u variables; furthermore,
given an ideal I of K[z], we write IK(u)[z r u] for the ideal generated by I in
the polynomial ring with coefficients in K(u) and variables in z r u.

Proposition 4.1.7. Let I ⊂ K[z] be an ideal, and let u ⊆ z be a maximal
independent set of variables with respect to I. Then there exists h ∈ K[u] such
that

1. I = (I : 〈h〉) ∩ 〈I, h〉, and
2. IK(u)[z r u] ∩K[z] = I : 〈h〉 = I : 〈h〉∞.

Furthermore, IK(u)[z r u] is zero-dimensional, and if IK(u)[z r u] =
⋂s
i=1Qi

is a primary decomposition, with associated primes P1, . . . , Ps, then I : 〈h〉 =
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⋂s
i=1(Qi ∩K[z]) is a primary decomposition, with associated primes P1 ∩K[z],

. . . , Ps ∩K[z].

In fact, the proof of the proposition gives a constructive way of finding the
polynomial h. This will be exemplified in Algorithm 2. Combining Algorithms
1 and 2, we get Algorithm 3 which computes the minimal associated primes for
ideals which are not necessarily zero-dimensional.

Algorithm 2 reductionToZero (I)
Input: I := 〈f1, . . . , fk〉 ⊂ K[z].
Output: A list (u,G, h), where

- u ⊂ z is a maximal independent set of variables with respect to I,
- G = {g1, . . . , gs} ⊂ I is a Gröbner basis of IK(u)[z r u],
- h ∈ K[u] such that IK(u)[z r u] ∩K[z] = I : 〈h〉 = I : 〈h〉∞.

1: compute a maximal independent set u ⊂ z with respect to I
2: compute a Gröbner basis G = {g1, . . . , gs} of I with respect to the lexico-

graphical ordering, with any variable in zru taken greater than any variable
in u

3: h := product of the leading coefficients of the gi considered as polynomials
in z r u with coefficients in K(u)

4: compute m such that 〈g1, . . . , gs〉 : 〈h〉m = 〈g1, . . . , gs〉 : 〈h〉m+1

5: return u, {g1, . . . , gs}, hm

Algorithm 3 minAssGTZ (I)
Input: I := 〈f1, . . . , fk〉 ⊂ K[z].
Output: The list of minimal associated primes of I.

1: (u,G, h) = reductionToZero (I)
2: change ring to K(u)[z r u] and compute

PrimesZero := zeroMinAssGTZ (〈G〉K(u)[zru])
3: change ring to K[z] and compute

Primes:= {P ∩K[z] | P ∈ PrimesZero}
4: return Primes ∪ minAssGTZ (〈I, h〉)

Remark 4.1.8. The inclusion I ⊂ 〈I, h〉 in Step 4 of Algorithm 3 is proper
since I ∩K[u] = {0} but h ∈ K[u]. Hence, by the ascending chain condition in
the Noetherian ring K[z], the algorithm must terminate, provided that Algorithm
1 terminates. Algorithm 1, in turn, terminates by a similar argument, provided
we can find coordinate transformations which are defined over K and are general
enough. This is guaranteed to work in characteristic zero but may fail in positive
characteristic.

4.2. Minimal associated primes via characteristic sets
The concept of characteristic sets goes back to Ritt [Rit32, Rit50] and Wu

[Wu84]. In our context, it yields an algorithm which first applies successive
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pseudo-divisions to construct a characteristic set F , and then makes use of
F to split

√
I. There are two types of splitting, depending on whether F is

irreducible or not. Computational tools involved are polynomial factorization
over an appropriate extension field of K and, in the irreducible case, Gröbner
bases.

To present some details, we need the following notation:

Definition 4.2.1. Let f be a polynomial in K[z] = K[z1, . . . , zN ].

1. The class of f , written cl(f), is the maximal k such that f actually depends
on zk. This number is zero if f is constant.

2. If cl(f) 6= 0, the initial of f , written in(f), is the leading coefficient of f
considered as a polynomial in zcl(f).

3. If f 6= 0, a polynomial g ∈ K[z] is Ritt-Wu reduced with respect to f if
degzcl(f)

(g) < degzcl(f)
(f).

Definition 4.2.2. A set of polynomials F = {f1, . . . , fr} ⊂ K[z] is called an
ascending set if either

1. r = 1 and f1 6= 0, or
2. r > 1, 0 < cl(f1) < · · · < cl(fr), and each fi, i = 2, . . . , r, is Ritt-Wu

reduced with respect to f1, . . . , fi−1.

The basic computational tool here is pseudo-division: Given f, g ∈ K[z]
with k := cl(f) > 0, this yields a unique expression

in(f)αg = qf + h , with degzk
(h) < degzk

(f)

and α := max{0,degzk
(g) − degzk

(f) + 1}. Then prem(g|f) := h is called
the pseudo-remainder of g with respect to f . The pseudo-remainder of g with
respect to an ascending set F = {f1, . . . , fr} ⊂ K[z] is inductively defined by
prem(g|F) := prem(g|f1, . . . , fr) := prem(prem(g|f2, . . . , fr)|f1). Note that g is
Ritt-Wu reduced with respect to each fi if and only if prem(g|F) = g.

Definition 4.2.3. Let X ⊂ K[z] \ {0} be a finite set of generators for I. An
ascending set F = {f1, . . . , fr} ⊂ I is called a characteristic set for X, if either

1. r = 1 and f1 is constant, or
2. cl(f1) > 0 and prem(g|F) = 0 for all g ∈ X.

Remark 4.2.4. With notation as above, there is a natural way of defining a
well-founded ordering on the set of all ascending sets contained in X. Based on
pseudo-division, there is an efficient algorithm CharSet which first computes
a minimal element with respect to this ordering, and then extends the minimal
element to a characteristic set.

To explain the two types of splitting via a characteristic set, we need:
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Definition 4.2.5. Let F = {f1, . . . , fr} ⊂ K[z] = K[z1, . . . , zN ] be an as-
cending set, and let m = N − r. After renaming the variables, we may as-
sume that cl(fi) = zm+i, i = 1, . . . , r. With this assumption, F is called irre-
ducible if each fi is irreducible in Ki[zm+i], where Ki is inductively defined by
K1 := K(z1, . . . , zm), and Ki := Ki−1[zm+i−1]/〈fi−1〉.

Proposition 4.2.6. Let F = {f1, . . . , fr} ⊂ K[z] be an irreducible ascending
set. Then

PF := {g ∈ K[z] | prem(g|F) = 0}

is a prime ideal. Furthermore, if X ⊂ K[z] \ {0} is a finite set of generators for
I, and F is an irreducible characteristic set for X, then

√
I = PF ∩

√
〈X ∪ {in(f1)}〉 ∩ · · · ∩

√
〈X ∪ {in(fr)}〉 .

Remark 4.2.7. If F = {f1, . . . , fr} ⊂ K[z] is an irreducible ascending set, then

PF = (. . . ((〈F〉 : 〈in(f1)〉∞) : 〈in(f2)〉∞) : · · · ) : 〈in(fr)〉∞ .

Hence PF can be computed via Gröbner bases.

Remark 4.2.8. Let F = {f1, . . . , fr} ⊂ K[z] be an ascending set. With nota-
tion and assumption as in Definition 4.2.5, suppose that F is reducible. Choose
i minimal with {f1, . . . , fi} reducible. Let fi = hρ11 · · ·hρs

s be the factoriza-
tion of fi into irreducible factors in Ki[zm+i]. Then, by clearing denomina-
tors in the hj and subsequently computing pseudo-remainders with respect to
{f1, . . . , fi−1}, we get polynomials gj ∈ K[z] which are Ritt-Wu reduced with
respect to F and satisfy cl(gj) = cl(fi). Furthermore, there is an expression of
type in(f1)s1 · · · in(fi−1)si−1gp11 · · · gps

s ∈ 〈f1, . . . , fi〉.

Summing up, we get Algorithm 4.

5. Comparison and timings

We have chosen a series of five examples that are easy to create automatically.
All but the n-point problem can be made arbitrarily large.

The problems are:

1. the problem of adjacent minors (§5.1):
(a) 2× 2 minors in a 3× n matrix;
(b) 3× 3 minors in a 4× n matrix;

2. the KSS-Wright systems (§5.2);
3. the Sudoku problem (§5.3);
4. the n-point problem for n = 3 and n = 9 (§5.4); and
5. the Stevenson-pattern planar structures (§5.5).
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Algorithm 4 MinAssPrimesCharSets (I)
Input: An ideal I ( K[z] given by a finite set of generators X ⊂ K[z] \ {0}.
Output: The minimal associated primes of I.

1: Result := ∅
2: Rest := {X}
3: while Rest 6= ∅ do
4: choose X ∈ Rest
5: Rest:= Rest \{X}
6: F := CharSet(X)
7: if F = {f} with f ∈ K then
8: return 〈1〉
9: else

10: if F is irreducible then
11: Result := Result ∪ {F}
12: Rest := Rest ∪ {X ∪ F ∪ {in(f)} | f ∈ F , cl(in(f)) > 0}
13: else
14: find f1, . . . , fi−1 ∈ F and g1, . . . , gs as in Remark 4.2.8
15: Rest := Rest ∪ {X ∪ F ∪ in(fj) | j = 1, . . . , i− 1}
16: ∪ {X ∪ F ∪ {gj} | j = 1, . . . , s, cl(in(fj)) > 0}
17: write Result = {F1, . . . ,Fk}
18: for i = 1 to k do
19: J := 〈Fi〉
20: for f ∈ Fi do
21: J := J : 〈in(f)〉∞
22: Result :=

(
Result \{Fi}

)
∪ {J}

23: discard redundant prime ideals in Result
24: return Result
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The timings reported below used a cluster of Xeon 5410 cores (2.33 GHz)
running Linux. We used Bertini version 1.3.0 and Singular version 3.1.3. The
timings are reported in seconds as returned by Singular or by the Linux time
command, rounded to the nearest second, for Bertini. The Singular timings
are reported under the headings GTZ (Gianni-Trager-Zacharias [GTZ88]) and
SY (Shimoyama-Yokoyama [SY96]). The Bertini timings are averages over five
runs since different choices of random numbers will result in slightly different run
times. The Bertini runs used regeneration in all cases except the Stephenson-
pattern structures, where a classic 2-homogeneous homotopy was used instead.

Some discussion of these results may be found in §6.

5.1. Adjacent Minors
Our first family of problems is the adjacent k×k minors of an m×n matrix

of indeterminants. Here, adjacent means that the k column and k row indices
are consecutive sequences of numbers. The advantage of the system is that it
is easy to count the number of components of a given degree and dimension a
priori, so we know in advance what output to expect.

For example, consider the 2× 2 adjacent minors of a 2× n matrix For each
tuple d = (d1, . . . , ds) of positive integers with d1+· · ·+ds+s = n+1, there exists
a prime component of degree d1 · · · ds defined by the following sum of ideals. For
each t = 1, . . . , s, consider the indices `t = d1 + · · ·+ dt + t. Define the ideal Id,t
as the ideal generated by the 2×2 minors of the matrix consisting of the `t−1 +1
to `t−1 columns of the original matrix. For t = 1, . . . , s−1, define the ideals Ld,t
as the ideal generated by entries of the `t. Then, Id =

∑s
t=1 Id,t +

∑s−1
t=1 Ld,t

is a prime ideal of codimension n − 1 = 2(s − 1) +
∑s
t=1(dt − 1) and degree∏s

t=1 dt of codimension n − 1. We leave it to the reader to check the primary
decomposition of the ideal of adjacent minors A2,2,n = ∩dId. See [Stu02, HS04]
(and others) for more details.

A2,m,n, for 3 ≤ m ≤ n, are radical ideals with primary components of
various dimensions which have a combinatorial description similar to, though
more complicated than, the one above. For example, A2,3,5 has 11 components
of codimension and degree as follows: 1 codimension 5 component of degree 1,
3 codimension 6 components all of degree 1, 6 codimension 7 components, two
of degree 6, one of degree 4, two of degree 2 and one of degree 1, 1 codimension
8 component of degree 15.

We conjecture that 2× 2 adjacent minors always define radical ideals.

5.2. The Wright-KSS systems
Our next family is an example of a zero-dimensional ideal with a high-

multiplicity solution [KSS98, Wri85]. Wright constructed the first example to
test his early version of a continuation algorithm. His example is case n = 5 in
the sequence of systems defined in [KSS98], a straightforward generalization of
Wright’s problem. The systems are defined by n equations in n unknowns:

z2
k +

n∑
i=1

zi − 2zk − (n− 1) = 0, k = 1, 2, . . . , n.
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n GTZ SY Bertini Bertini with 64 cores
3 0 0 0 3
4 0 0 2 4
5 1 0 13 6
6 3 1 71 11
7 19 3 370 23
8 154 22 1935 63
9 1430 170 9871 248
10 14294 1429 51098 1132
11 > 24 hours 12709 > 24 hours 6823

Table 1: Comparison of Singular GTZ and SY methods, Bertini on 1 core, and Bertini
on 64 cores on adjacent minors systems with k = 2, m = 3: in seconds unless otherwise
marked.

n GTZ SY Bertini Bertini with 64 cores
4 0 70 4 6
5 111 > 24 hours 49 9
6 > 24 hours > 24 hours 527 39
7 > 24 hours > 24 hours 6548 157
8 > 24 hours > 24 hours 78362 1958

Table 2: Comparison of Singular GTZ and SY methods, Bertini on 1 core, and Bertini
on 64 cores on adjacent minors systems with k = 3, m = 4: in seconds unless otherwise
marked.

Due to the high-multiplicity, numerical methods must use adaptive-precision
tracking [BHSW08, BHSW09] which increases the cost. Again this example can
be analyzed without a computer by rewriting the system (by subtracting two
equations and factoring).

5.3. Sudoku puzzles
Our next examples arise from Sudoku puzzles. A well-posed such puzzle has

a unique solution. Once completed, a Sudoku is a 9×9 square grid consisting of
nine distinguished 3×3 blocks whose entries are taken from the digits 1 through
9. Furthermore, the Sudoku is subject to the condition that each digit from 1
to 9 appears exactly once in each row, column, and distinguished 3× 3 block.

To model the Sudoku conditions by polynomial equations, represent the 81
cells of the Sudoku by 81 variables, say z1, . . . , z81. Then the entry ai in the
ith cell of the completed Sudoku satisfies ai ∈ {1, . . . , 9} if and only if ai is a
root of the univariate polynomial Fi =

∏9
k=1(zi − k) ∈ Q[zi]. The polynomial

Fi(zi)−Fj(zj) vanishes on V (zi−zj), so that zi−zj is a factor of Fi(zi)−Fj(zj),
for i 6= j. We hence have well-defined polynomials

Gij(zi, zj) =
Fi − Fj
zi − zj

∈ Q[zi, zj ], i 6= j.
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n GTZ SY Bertini
5 0 0 1
6 0 0 1
7 1 1 1
8 1 3 9
9 7 37 18
10 71 203 21
11 1095 3488 94
12 18173 18892 160
13 > 24 hours > 24 hours 972
14 > 24 hours > 24 hours 1682
15 > 24 hours > 24 hours 5892
16 > 24 hours > 24 hours 8831
17 > 24 hours > 24 hours 26925
18 > 24 hours > 24 hours 42574
19 > 24 hours > 24 hours > 24 hours

Table 3: Comparison of Singular GTZ and SY methods, and Bertini on 1 core on
Wright-KSS systems: in seconds unless otherwise marked.

Now set

E = {(i, j) | 1 ≤ i < j ≤ 81, and the ith and jth cell are in the
same row, column, or distinguished 3× 3 block},

and suppose that we are given a well-posed Sudoku puzzle with pre-assigned
values {ai}i∈L, for some subset L ⊂ {1, . . . , 81}. Consider the system defined
by the polynomials Fi, i = 1, . . . , 81, Gij , (i, j) ∈ E, and zi − ai, i ∈ L. Then,
with respect to any monomial well-ordering, the reduced Gröbner basis of IS
has the shape z1 − a1, . . . , z81 − a81, where (a1, . . . , a81) is the solution of the
Sudoku. See [DP12] for details.

In this way, Sudokus provide excellent examples of polynomial systems with a
structure very well-suited to symbolic computation but poorly-suited to numeri-
cal computation. In fact, some of the equations in our setting are well-known ex-
amples of poorly conditioned equations of Wilkinson type [Wil59]. Furthermore,
the system is overdetermined, so Bertini must “square” the system, thereby de-
stroying the special structure. One instance of a Sudoku problem, for example,
ran in 1274 seconds in Singular. Bertini required over 24 hours.

Let us point out, however, that attacking a Sudoku puzzle can be regarded
as a graph coloring problem, with one color for each of the digits from 1 to
9, and that compared to what we discussed here, graph theory provides much
more efficient methods for solving a given puzzle. See, for example, [HM07].

5.4. n-point four-bar design
These problems concern finding four-bar linkages whose coupler curve in-

terpolates a number of given points. The maximum number of general points
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that can be interpolated exactly is nine, as this equals the number of design
parameters in a four-bar linkage. The associated nine-point problem was first
posed by Alt in 1923 [Alt23] and complete solution lists (for various sets of
nine given points) were first computed in 1992 [WMS92, WMS97]. One can
also consider interpolating fewer than nine points, in which case the solution
sets are positive-dimensional, giving the designer the ability to choose a design
that satisfies other concerns that may affect the suitability of the four-bar. We
consider n points for 3 ≤ n ≤ 9. In each case, we are only interested in the
solution components of dimension 9−n. Higher dimensional components exist,
but for general points these are degenerate sets that contain no useful four-bars.

The definition of the n-point problem is as follows. We are given points
in isotropic coordinates as (pi, p̄i) ∈ C2, i = 0, . . . , n − 1. Kinematicians
call these precision points, because we ask that the coupler curve pass exactly
through them. Without loss of generality, we may translate coordinates to
make (p0, p̄0) = (0, 0). The variables of the problem are the linkage parameters
q = (a1, a2, b1, b2, ā1, ā2, b̄1, b̄2) ∈ C8. Define the 2× 1 column vectors v, u, ū as

v =
[
(p− a1)(p̄− ā1) + b1b̄1 − (b1 − a1)(b̄1 − ā1)
(p− a2)(p̄− ā2) + b2b̄2 − (b2 − a2)(b̄2 − ā2)

]
, (5)

u =
[
b1(p̄− ā1)
b2(p̄− ā2)

]
, and ū =

[
b̄1(p− a1)
b̄2(p− a2)

]
. (6)

Then the coupler curve equation is

fcc(p, p̄; q) = det[v ū] · det[v u] + (det[u ū])2 = 0. (7)

The n-point system is

fcc(pi, p̄i; q) = 0, i = 1, . . . , n− 1. (8)

One may check that fcc(0, 0; q) = 0 for any q, as expected, so the coupler curve
passes through the first point (p0, p̄0) = (0, 0). It is easy to rotate any coupler
curve around this point to make it pass through the second precision point.
Thus the interesting cases begin at n = 3 and progress to n = 9. Each equation
in the system is degree seven in the variables q, so the n-point problem has total
degree 7(n−1).

From [WMS92], for n = 9, we expect 8652 isolated roots that appear in a
six-way symmetry group, meaning that the solutions appear in 1442 distinct
orbits. Notice that 8652 is much smaller than the total degree of 78, so the
problem has a very special structure compared to systems of general seventh-
degree equations.

Singular did not terminate in under 24 hours for n = 3 or n = 9. On 1 core,
Bertini took 24 seconds for n = 3 and 28018 seconds for n = 9. On 64 cores,
the n = 9 case required 929 seconds with Bertini.

5.5. Stephenson-pattern planar structures
The Stephenson six-bar linkage is obtained by adding a dyad (two links in

series) to a four-bar linkage, with one end of the dyad connected to the four-
bar’s coupler point and the other end connected to ground. The ungrounded
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link of this dyad becomes the new coupler link. The Stephenson-pattern 2n-bar
linkages continue this pattern by sequentially adding yet another dyad going
from the previous coupler link to ground [Wun63]. Any of these one-degree-of-
freedom (1DOF) linkages can be converted to a structure by adding a single
final link from the last coupler link to ground. Thus, the n-th Stephenson-
pattern planar structure is a mechanism having 2n + 1 links. Structures such
as these, which do not contain any sub-mechanism that is also a structure are
called Baranov trusses. The solution of any complicated structure can be broken
down into solving a sequence of submechanisms that are each Baranov trusses
[Man73]. The Baranov trusses are precisely those structures whose solution
cannot be subdivided in this way.

The polynomial system for the n-th Stephenson-pattern structure written in
isotropic coordinates is:

xix̄i = `2i , i = 0, . . . , n, (9)
θiθ̄i = 1, i = 1, . . . , n− 1, (10)
a0 + x0 = a1 + x1 + b1θ1, (11)

ai + xi + ciθi = ai+1 + xi+1 + bi+1θi+1, i = 1, . . . , n− 2, (12)
an−1 + xn−1 + cn−1θn−1 = an + xn, (13)

ā0 + x̄0 = ā1 + x̄1 + b̄1θ̄1, (14)
āi + x̄i + c̄iθ̄i = āi+1 + x̄i+1 + b̄i+1θ̄i+1, i = 1, . . . , n− 2, (15)

ān−1 + x̄n−1 + c̄n−1θ̄n−1 = ān + x̄n. (16)

Here, the parameters are (`i, ai, āi), i = 0, . . . , n, and (bi, b̄i, ci, c̄i), i = 1, . . . , n−
1. The variables are (xi, x̄i), i = 0, . . . , n and (θiθ̄i), i = 1, . . . , n− 1. One sees
that we have 4n equations in 4n unknowns. Of these equations, 2n are quadratic
and the other 2n are linear. Notice that (11–13) are of similar form to (14–16)
except each symbol without an overbar is swapped for the same symbol with an
overbar. The quadratics are all self-similar under this operation. Considering
a partition of the variables into two groups, (xi, θi) and (x̄i, θ̄i), all valid i, one
easily sees that the linear equations respect the groups and the quadratic ones
are bilinear. The total degree of the n-th system is 22n, while its 2-homogeneous
root count is

(
2n
n

)
and its actual root count is 2 · 3n−1 [Wun63]. Case n = 2

is the pentad, having 6 solutions, case n = 3 is one of three possible Baranov
septads, having 18 solutions [Inn95].

Since the problem is algebraic in its parameters, after solving the problem for
case n for one set of random complex parameters, the solution for any subsequent
example of that case can be found by numerically tracking the solutions as the
parameters move along a path in C7n−1 from the first instance to the new set
of parameters. The performance of this parameter homotopy is documented
in Table 4 along with the symbolic runs and the numerical runs for solving
the system from scratch. For this problem only, since we are looking for only
isolated solutions, the numerical runs used a 2-homogeneous homotopy instead
of regeneration.
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N min ass primes lex GB Bertini param 64 cores
4 2 676 1 0 2
8 > 24 hours > 24 hours 1145 21 6
12 > 24 hours > 24 hours > 24 hours 3676 266

Table 4: Comparison of Singular min ass primes and lex GB methods, Bertini on 1
core with random parameter values, a parameter run with Bertini on 1 core, and the
same on 64 cores, for the Stephenson-N problems with N = 4, 8, 12.

a0

x0

ai

xi

xn

an
bi

ci

Figure 1: Stephenson-pattern structures. Label ai means point (ai, āi), etc.

6. Discussion

The timings of §5 clearly indicate that neither the symbolic methods nor the
numerical methods considered in this article are always superior.

It may seem that certain classes of users might want to use one set of methods
rather than the other. For example, for users interested in certified, exact
solutions, symbolic methods are likely the preferred choice, though recent work
on certification of numerical methods, e.g., [HS12], may soon provide a viable
alternative.1 Conversely, those satisfied with numerical output might tend to use
numerical methods, but the Sudoku example indicates that such methods are
not nearly as effective as symbolic methods for problems with a certain structure.

So what conclusions can the reader draw from this article. Here are a few:

1. Both numerical and symbolic methods have value, and a collaboration
between the researchers in these two communities could be beneficial to the
mathematicians, scientists, and engineers who need to solve polynomial
systems.

2. One difference between the two sets of methods is clear. Symbolic meth-
ods produce exact output whereas numerical methods produce numerical
approximations. Of course, as discussed above, if symbolic methods are
not run over Q, then one could argue that the exact computations of sym-

1In fact, there may be an opportunity to combine numerical and symbolic methods to
develop symbolically certified numerical methods. In particular, one could use the numerical
methods of this paper to find solutions, convert them to exact solutions via exactness recovery
techniques [BHMPS12], then certify these exact results with symbolic methods such as those
in the paper.
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bolic methods are not necessarily producing the output expected by the
user.

3. Numerical methods tend to scale more nicely than symbolic methods for
the examples of this paper, though this may not always be the case (see
the 2 × 2 adjacent minors example). Even if numerical methods do scale
better, that does not necessarily mean that they will be faster for smaller
problems (see the Sudoku example). Similarly, numerical methods are
parallelizable, though there has been recent work on parallelizing symbolic
methods, as well.

4. Problems with special structure, particularly those that are already (or
are nearly) Gröbner bases, as with the 2× 2 adjacent minors (each being
a binomial polynomial) of a 3 × n matrix, are particularly well-suited
to symbolic computation. However, the timings for the 2 × 2 adjacent
minors problems indicate that even this advantage does not always mean
that such methods will necessarily be significantly faster.

5. For problems that are parameterized and need to be solved repeatedly for
many different parameter values, parameter homotopies can be particu-
larly effective, as demonstrated on the Stephenson-pattern problems. Of
course, parameterized Gröbner bases could be a viable alternative.

As for future work in this vein, there are several clear directions. First and
foremost, it is likely that there are currently undiscovered symbolic-numeric
methods that will take advantage of the best of both worlds. For example,
some symbolic computation may help to condition polynomial systems for nu-
merical runs. Conversely, numerical runs might help to pinpoint the underlying
geometric structure of the solution set, which could help the user to improve
the efficiency of symbolic methods. Also, it would be interesting to compare
polyhedral homotopy methods (see [Li03]), which seem particularly efficient for
highly-structured polynomial systems, to the symbolic methods of this article.

Finally, it is clear that potential users should try all symbolic and numerical
methods, perhaps one method on each on several computers, to see which are
particularly effective for their class of problems. With this in mind, it seems im-
portant to have software packages that seamlessly connect symbolic, numerical,
and symbolic-numeric methods. Currently, users wishing to use Bertini and Sin-
gular (or any other pairing of numerical and symbolic software packages) must
create input files or scripts in significantly different syntaxes and also must be-
come accustomed to the various forms of output produced by each. This is a
significant obstacle for non-experts that can be overcome only by collaborations
between experts.
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