
PARALLEL ALGORITHMS FOR NORMALIZATION

JANKO BÖHM, WOLFRAM DECKER, GERHARD PFISTER, SANTIAGO LAPLAGNE,
ANDREAS STEENPASS, AND STEFAN STEIDEL

Abstract. Given a reduced affine algebra A over a perfect field K, we present

parallel algorithms to compute the normalization A of A. Our starting point is
the algorithm of [Greuel et al. (2010)], which is an improvement of de Jong’s al-

gorithm, see [de Jong (1998), Decker et al. (1999)]. First, we propose to strat-
ify the singular locus Sing(A) in a way which is compatible with normalization,

apply a local version of the normalization algorithm at each stratum, and find
A by putting the local results together. Second, in the case where K = Q
is the field of rationals, we propose modular versions of the global and local–

to–global algorithms. We have implemented our algorithms in the computer

algebra system Singular and compare their performance with that of the al-
gorithm of [Greuel et al. (2010)]. In the case where K = Q, we also discuss the

use of modular computations of Gröbner bases, radicals, and primary decom-

positions. We point out that in most examples, the new algorithms outperform
the algorithm of [Greuel et al. (2010)] by far, even if we do not run them in

parallel.

1. Introduction

Normalization is an important concept in commutative algebra, with applica-
tions in algebraic geometry and singularity theory. We are interested in comput-
ing the normalization A of a reduced affine K–algebra A, where K is a perfect
field. For this, a number of algorithms have been proposed, but not all of them
are of practical interest (see the historical account in [Greuel et al. (2010)]). A
milestone is de Jong’s algorithm, see [de Jong (1998), Decker et al. (1999)], which
is based on the normality criterion of [Grauert and Remmert (1971)], and which
has been implemented in Singular (see [Decker et al. (2012)]), Macaulay2 (see
[Grayson and Stillman (2010)]), and Magma (see [Bosma et al. (1997)]). The al-
gorithm of [Greuel et al. (2010)] (GLS normalization algorithm for short), which
is also based on the Grauert and Remmert criterion, is an improvement of de
Jong’s algorithm. It is implemented in Singular. The algorithm proposed by
[Leonard and Pellikaan (2003)] and [Singh and Swanson (2009)] is designed for the
characteristic p case. It is implemented in Singular and Macaulay2 and works
well for small p.

In view of modern multi–core computers, the parallelization of fundamental al-
gorithms becomes increasingly important. Our objective in this paper is to present
parallel versions of the GLS normalization algorithm in that we reduce the general
problem to computational problems which are easier and do not depend on each

Date: July 17, 2012.
Key words and phrases. normalization, integral closure, test ideal, Grauert–Remmert criterion,

modular computation, parallel computation.

1

ar
X

iv
:1

11
0.

42
99

v2
 [

m
at

h.
A

C
]

 1
6

Ju
l 2

01
2

PARALLEL ALGORITHMS FOR NORMALIZATION 2

other. It turns out that in most cases, the new algorithms outperform the GLS
algorithm by far, even if we do not run them in parallel.

We start in Section 2 by reviewing the basic ideas of the GLS algorithm. In
particular, we recall the normality criterion of Grauert and Remmert. In Section 3,
we present a local version of the normality criterion which applies to a stratification
of the singular locus Sing(A) of A. This allows us to find A by a local–to–global ap-
proach. Section 4 contains a discussion of modular methods for the GLS algorithm
and its local–to–global version. Timings are presented in Section 5.

2. The GLS Normalization Algorithm

Referring to [Greuel et al. (2010)] and [Greuel and Pfister (2007)] for details and
proofs, we sketch the GLS normalization algorithm. We begin with some general
remarks. For these, A may be any reduced Noetherian ring.

Definition 2.1. Let A be a reduced Noetherian ring. The normalization of A,
written A, is the integral closure of A in its total ring of fractions Q(A). We call A
normal if A = A.

We write

Spec(A) = {P ⊆ A | P prime ideal}
for the spectrum of A and V (J) = {P ∈ Spec(A) | P ⊇ J} for the vanishing locus
of an ideal J of A. If P ∈ Spec(A), then AP denotes the localization of A at P .
More generally, if S is a multiplicatively closed subset of A and M is an A–module,
then S−1M denotes the localization of M at S.

Taking into account that normality is a local property, we call

N(A) = {P ∈ Spec(A) | AP is not normal}

the non–normal locus of A. Furthermore, we write

Sing(A) = {P ∈ Spec(A) | AP is not regular}

for the singular locus of A. Then N(A) ⊆ Sing(A).

Remark 2.2. A Noetherian local ring of dimension one is normal if and only if it is
regular. See [de Jong and Pfister (2000), Theorem 4.4.9].

Definition 2.3. Let A be a reduced Noetherian ring. The conductor of A in A is
the ideal

CA = AnnA(A/A) = {a ∈ A | aA ⊆ A}.

Lemma 2.4. Let A be a reduced Noetherian ring. Then N(A) ⊆ V (CA). Further-
more, A is module–finite over A if and only if CA contains a non–zerodivisor of A.
In this case, N(A) = V (CA).

To state the aforementioned Grauert and Remmert criterion, we need:

Lemma 2.5. Let A be a reduced Noetherian ring, and let J ⊆ A be an ideal
containing a non–zerodivisor g of A. Then the following hold:

(1) If ϕ ∈ HomA(J, J), then the fraction ϕ(g)/g ∈ A is independent of the
choice of g, and ϕ is multiplication by ϕ(g)/g.

PARALLEL ALGORITHMS FOR NORMALIZATION 3

(2) There are natural inclusions of rings

A ⊆ HomA(J, J) ∼=
1

g
(gJ :A J) ⊆ A ⊆ Q(A), a 7→ ϕa, ϕ 7→

ϕ(g)

g
,

where ϕa : J → J denotes the multiplication by a ∈ A.

Proposition 2.6 ([Grauert and Remmert (1971)]). Let A be a reduced Noetherian
ring, and let J ⊆ A be an ideal satisfying the following conditions:

(1) J contains a non–zerodivisor g of A,
(2) J is a radical ideal,
(3) V (CA) ⊆ V (J).

Then A is normal iff A ∼= HomA(J, J) via the map which sends a to ϕa.

Definition 2.7. A pair (J, g) as in Proposition 2.6 is called a test pair for A, and
J is called a test ideal for A.

By Lemma 2.4, test pairs exist iff A is module–finite over A. Given such a
pair (J, g), the idea of finding A is to successively enlarge A until the normality
criterion allows us to stop (since A is Noetherian, this will eventually happen in the
module–finite case). Starting from A0 = A, we get a chain of extensions of reduced
Noetherian rings

A = A0 ⊆ · · · ⊆ Ai−1 ⊆ Ai ⊆ · · · ⊆ Am = A.

Here, Ai+1 = HomAi(Ji, Ji)
∼= 1

g (gJi :Ai Ji), where Ji is the radical of the extended

ideal JAi, for i ≥ 1. Note that (Ji, g) is indeed a test pair for Ai:

Remark 2.8 ([Greuel et al. (2010)], Prop. 3.2). Let A be a reduced Noetherian ring
such that A is module–finite over A, and let A ⊆ A′ ⊆ A be an intermediate
ring. Clearly, every non–zerodivisor g ∈ A of A is a non–zerodivisor of Q(A). In
particular, it is a non–zerodivisor of A′. Furthermore, if CA′ is the conductor of A′

in A′ = A, then CA′ ⊇ CA. It follows that every prime ideal Q ∈ N(A′) = V (CA′)
contracts to a prime ideal P = Q ∩ A ∈ N(A) = V (CA). Hence, if (J, g) is a test

pair for A, then P ⊇ J , which implies that Q ⊇
√
JA′ =: J ′. We conclude that

(J ′, g) is a test pair for A′.

Explicit computations rely on explicit representations of the Ai as A–algebras.
These will be obtained as an application of Lemma 2.9 below. To formulate the
lemma, we use the following notation. Let J ⊆ A be an ideal containing a non–
zerodivisor g of A, and let A–module generators u0 = g, u1, . . . , us for gJ :A J be
given. Choose variables T1, . . . , Ts, and consider the epimorphism

Φ : A[T1, . . . , Ts]→
1

g
(gJ :A J), Ti 7→

ui
g
.

The kernel of Φ describes the A–algebra relations on the ui/g. We single out two
types of relations:

• Each A–module syzygy

α0u0 + α1u1 + . . .+ αsus = 0, αi ∈ A,
gives an element α0 + α1T1 + . . . + αsTs ∈ Ker Φ, which we call a linear
relation.
• Developing each product

ui

g
uj

g , 1 ≤ i ≤ j ≤ s, as a sum
ui

g
uj

g =
∑

k βijk
uk

g ,

we get elements TiTj−
∑

k βijkTk in Ker Φ, which we call quadratic relations.

PARALLEL ALGORITHMS FOR NORMALIZATION 4

It is easy to see that these linear and quadratic relations already generate Ker Φ.
We thus have:

Lemma 2.9. Let A be a reduced Noetherian ring, and let J ⊆ A be an ideal contain-
ing a non–zerodivisor g of A. Then, given A–module generators u0 = g, u1, . . . , us
for gJ :A J , we have an isomorphism of A–algebras

A[T1, . . . , Ts]/R ∼=
1

g
(gJ :A J), Ti 7→

ui
g
,

where R is the ideal generated by the linear and quadratic relations described above.

The following result from [Greuel et al. (2010)] will allow us to find the normal-
ization in a way such that all calculations except the computation of the radicals√
Ji can be carried through in the original ring A:

Theorem 2.10. Let A be a reduced Noetherian ring, let J ⊆ A be an ideal con-
taining a non–zerodivisor g of A, let A ⊆ A′ ⊆ Q(A) be an intermediate ring such

that A′ is module–finite over A, and let J ′ =
√
JA′. Let U and H be ideals of A

and d ∈ A such that A′ = 1
dU and J ′ = 1

dH, respectively. Then

(gJ ′ :A′ J
′) =

1

d
(dgH :A H) ⊆ Q(A).

Remark 2.11. In the case where A = K[X1 . . . , Xn]/I is a reduced affine algebra
over a field K, let P1, . . . , Pr be the associated primes of the radical ideal I. Then

A ∼= K[X1, . . . , Xn]/P1 × · · · ×K[X1, . . . , Xn]/Pr,

and A is module–finite over A by Emmy Noether’s finiteness theorem (see
[Swanson and Huneke (2006)]). Thus, using techniques for primary decomposition
as in [Greuel et al. (2010), Remark 4.6], the computation of normalization can be
reduced to the case where A is an affine domain (that is, I is a prime ideal). When
writing our algorithms in pseudocode, we will always start from a domain A. Talk-
ing about a non–zerodivisor then just means to talk about a non–zero element.

Remark 2.12. If A is an affine domain over a perfect field K, we can apply the
Jacobian criterion (see [Eisenbud (1995)]): If M is the Jacobian ideal1 of A, then
M is non–zero and contained in the conductor CA (see [Greuel et al. (2010), Lemma

4.1]). Hence, we may choose
√
M together with any non–zero element g of

√
M as

an initial test pair. Implementing all this, the GLS normalization algorithm will
find an ideal U ⊆ A and a denominator d ∈ CA such that

A =
1

d
U ⊆ Q(A).

Since M is contained in CA, any non–zero element of M is valid as a denominator:
If 0 6= c ∈M , then c · 1

dU =: U ′ is an ideal of A, so that 1
dU = 1

cU
′.

For the purpose of comparison with the local approach of the next section, we
illustrate the GLS algorithm by an example:

1The Jacobian ideal of A is generated by the images of the c× c minors of the Jacobian matrix(∂fi
∂xj

)
, where c is the codimension, and f1, . . . , fr are polynomial generators for I.

PARALLEL ALGORITHMS FOR NORMALIZATION 5

Example 2.13. For

A = K[x, y] = K[X,Y]/〈X4 + Y 2(Y − 1)3〉,
the radical of the Jacobian ideal is

J := 〈x, y (y − 1)〉A ,
and we can take g := x ∈ J as a non–zerodivisor of A. In its first step, starting
with the initial test pair (J, x), the normalization algorithm produces the following
data:

U (1) := xJ :A J =
〈
x, y(y − 1)2

〉
A

and A1 := A[t1] := A[T1]/I1 ∼=
1

x
U (1),

with relations and isomorphism given by

I1 =
〈
−T1x+ y(y − 1)2, T1y(y − 1) + x3, T 2

1 + x2(y − 1)
〉
A[T1]

and

t1 7→
y(y − 1)2

x
,

respectively. In the next step we find

J1 :=
√
〈x, y(y − 1)〉A1

= 〈x, y(y − 1), t1〉A1

=
1

x

〈
x2, xy(y − 1), y(y − 1)2

〉
A

=:
1

x
H1.

Using the test pair (J1, x) and applying Theorem 2.10 and Lemma 2.9, we get

1

x
(xJ1 :A1 J1) =

1

x2
(x2H1 :A H1)

=
1

x2

〈
x2, xy(y − 1), y(y − 1)2

〉
A

=:
1

x2
U (2)

and

A2 := A[t2, t3] := A[T2, T3]/I2 ∼=
1

x2
U (2),

with relations and isomorphism given by

I2 =
〈
T2x− T3(y − 1),−T3x+ y(y − 1), T2y(y − 1) + x2, T2y

2(y − 1)2 + T3x
3,

T 2
2 + (y − 1), T2T3 + x, T 2

3 − T2y
〉

and

t2 7→
y(y − 1)2

x2
, t3 7→

y(y − 1)

x
,

respectively. In the final step, we find that A2 is normal, so that A = A2.

3. Normalization via Localization

In this section, we discuss a local–to–global approach for computing normaliza-
tion. Our starting point is the following result:

Proposition 3.1. Let A be a reduced Noetherian ring. Suppose that the singular
locus Sing(A) = {P1, . . . , Ps} is finite. For i = 1, . . . , s, let Si = A \ Pi, and let an

intermediate ring A ⊂ A(i) ⊂ A be given such that S−1
i A(i) = S−1

i A. Then
s∑

i=1

A(i) = A.

PARALLEL ALGORITHMS FOR NORMALIZATION 6

Proof. We will show a more general result in Proposition 3.2 below. �

That Sing(A) is finite is, for example, true if A is the coordinate ring of a curve.
Whenever Sing(A) = {P1, . . . , Ps} is finite, the proposition allows us to find A
by normalizing locally at each Pi using Proposition 3.3 below, and putting the
local results together. In the case where Sing(A) is not finite, working just with the
(finitely many) minimal primes in Sing(A) will not give the correct result. However,
it is still possible to obtain A as a finite sum of local contributions: The idea is
to stratify Sing(A) in a way which is compatible with normalization. For this, if
P ∈ Sing(A), set

LP =
⋂

P⊇P̃∈Sing(A)

P̃ .

We stratify Sing(A) according to the values of the function P 7→ LP . That is, if

L = {LP | P ∈ Sing(A)}

denotes the set of all possible values, then the strata are the sets

VL = {P ∈ Sing(A) | LP = L}, L ∈ L.

We write Strata(A) = {VL | L ∈ L} for the set of all strata. If P1, ..., Pr denote the
minimal primes in Sing(A), we have

L ⊆
{⋂

i∈ΓPi | Γ ⊆ {1, ..., r}
}
.

Hence, the set of strata is finite. By construction, the singular locus is the disjoint
union of all strata. For V ∈ Strata(A), write LV for the constant value of P 7→ LP

on V .
We can now state and prove a result which is more general than Proposition 3.1:

Proposition 3.2. Let A be a reduced Noetherian ring with stratification of the
singular locus Strata(A) = {V1, ..., Vs}. For i = 1, . . . , s, let an intermediate ring

A ⊆ A(i) ⊆ A be given such that S−1A(i) = S−1A for each S = A \ P , P ∈ Vi.
Then

s∑
i=1

A(i) = A.

Proof. By construction, B :=
∑s

i=1A
(i) ⊆ A. We wish to show equality. It suffices

to show that if P ∈ Spec(A) is a prime ideal and S = A \ P , then S−1B = S−1A.

If P ∈ Sing(A), then P ∈ Vi for some i. Hence, S−1A(i) = S−1A, and the local
equality is obtained from the chain of inclusions

S−1A(i) ⊆ S−1B ⊆ S−1A = S−1A.

If P 6∈ Sing(A), then S−1A is normal, and the local equality follows likewise from
the chain of inclusions

S−1A ⊆ S−1B ⊆ S−1A = S−1A.

�

For a given stratum V = Vi, the modification of the Grauert and Remmert
criterion below will allow us to find a ring A(i) as above along the lines of the
previous section:

PARALLEL ALGORITHMS FOR NORMALIZATION 7

Proposition 3.3. Let A be a reduced Noetherian ring such that A is module–finite
over A, and let A ⊆ A′ ⊆ A be an intermediate ring. Let V ∈ Strata(A), and let
J ′ =

√
LVA′. Suppose that LV contains a non–zerodivisor g of A. If

A′ ∼= HomA′(J
′, J ′)

via the map which sends a′ to ϕa′ , then the localization S−1A′ with S = A \ P is
normal for each P ∈ V .

Proof. The assumption and [Eisenbud (1995), Proposition 2.10] give

S−1A′ ∼= S−1(HomA′(J
′, J ′)) ∼= HomS−1A′(S

−1J ′, S−1J ′).

Hence, the result will follow from the Grauert and Remmert criterion (Proposition
2.6) applied to S−1A′ once we show that the localized ideal S−1J ′ satisfies the three
conditions of the criterion. First, since forming radicals commutes with localization,
S−1J ′ is a radical ideal. Second, the image of g in S−1A′ is a non–zerodivisor
of S−1A′ contained in S−1J ′. Third, we show that V (CS−1A′) = N(S−1A′) ⊆
V (S−1J ′). For this, we first note that

V (CS−1A) = N(S−1A) = {S−1P̃ | P̃ ∈ N(A), P̃ ⊆ P}.

Indeed, prime ideals of S−1A correspond to prime ideals of A contained in P .
Let now Q ∈ N(S−1A′). Then, as shown in Remark 2.8, Q contracts to some

S−1P̃ ⊆ S−1A with P̃ ∈ N(A), P̃ ⊆ P . This implies that

Q ⊇
√

(S−1P̃)(S−1A′) =

√
S−1(P̃A′) = S−1(

√
P̃A′) ⊇ S−1J ′,

as desired. �

In the situation of Proposition 3.3, let a non–zerodivisor g ∈ LV of A be known.
Then, using (LV , g) instead of a test pair as in Definition 2.7, and proceeding as in
the previous section, we get a chain of rings

A ⊆ A1 ⊆ · · · ⊆ Am ⊆ A

such that S−1(Am) is normal and, hence, equal to S−1A = S−1A for all S = A\P ,
P ∈ V .

Summing up, we are lead to Algorithms 1 and 2 below.

Algorithm 1 Normalizing the localizations

Input: An affine domain A = K[X1, . . . , Xn]/I over a perfect field K, a stratum
V ∈ Strata(A), and 0 6= g ∈ LV .

Output: An ideal U ⊆ A and d ∈ A with 1
dU ⊆ A and S−1(1

dU) = S−1A for all
S = A \ P , P ∈ V .

1: return the result of the GLS normalization algorithm applied to (LV , g);

PARALLEL ALGORITHMS FOR NORMALIZATION 8

Algorithm 2 Normalization via localization

Input: An affine domain A = K[X1, . . . , Xn]/I over a perfect field K.
Output: An ideal U ⊆ A and d ∈ A such that A = 1

dU ⊆ Q(A).

1: J :=
√
M , where M is the Jacobian ideal of A;

2: choose 0 6= g ∈ J ;
3: compute the strata of the singular locus Strata(A) = {V1, ..., Vs};
4: for all i do
5: apply Algorithm 1 to (Vi, g) to find an ideal Ui ⊆ A and a power di = gmi

with A ⊆ 1
di
Ui ⊆ A and S−1(1

di
Ui) = S−1A for all S = A \ P , P ∈ Vi;

6: m := max{m1, . . . ,ms}, d := gm, U :=
∑

i g
m−miUi;

7: return (U, d);

Remark 3.4. In Algorithm 2, it may be more efficient to choose possibly different
non–zero elements gi ∈ LVi

. In Step 5, the algorithm computes, then, pairs (U ′i , di)
with ideals U ′i ⊆ A and powers di = gmi

i . As explained in [Greuel et al. (2010),
Remark 4.3], starting from the (U ′i , di), we may always find a denominator d ∈ M
and ideals Ui ⊆ A such that 1

dUi = 1
di
U ′i for all i. Then, the desired result is

(
∑

i Ui, d).

Remark 3.5. In Algorithm 2, it is sufficient to consider the minimal strata, that is,
the strata V such that LV is minimal with respect to inclusion. Denote, as above,
the minimal primes of the singular locus of A by P1, ..., Pr. We can obtain the
minimal LV as all possible intersections

⋂
i∈ΓPi, with subsets Γ ⊆ {1, ..., r} which

are maximal with the property that
∑

i∈ΓPi 6= 〈1〉.

Example 3.6. We come back to the coordinate ring A of the curve C with defining
polynomial f(X,Y) = X4 +Y 2(Y −1)3 from Example 2.13 to discuss normalization
via localization. The curve C has a double point of type A3 at (0, 0) and a triple
point of type E6 at (0, 1). We illustrate Algorithm 2, using for both singular points
the non–zerodivisor g = x: For the A3–singularity, consider

P1 = 〈x, y〉A and S1 = A \ P1.

The local normalization algorithm yields S−1
1 A = S−1

1 (1
d1
U1), where

d1 = x2 and U1 =
〈
x2, y(y − 1)3

〉
A

.

For the E6–singularity, considering

P2 = 〈x, y − 1〉A and S2 = A \ P2,

we get S−1
2 A = S−1

2 (1
d2
U2), where

d2 = x2 and U2 =
〈
x2, xy2 (y − 1) , y2 (y − 1)

2
〉
A

.

Combining the local contributions, we get

1

d
U =

1

d1
U1 +

1

d2
U2,

with d = x2 and

U =
〈
x2, xy2 (y − 1) , y(y − 1)3, y2 (y − 1)

2
〉
A

.

PARALLEL ALGORITHMS FOR NORMALIZATION 9

A moment’s thought shows that U coincides with the ideal U (2) found in Example
2.13.

The local–to–global approach is usually much faster than the global algorithm
even when not run in parallel. The reason is that the minimal primes of the singular
locus are much simpler than the singular locus itself. Therefore, in the local–to–
global case, the intermediate rings are much easier to handle. Most notably, the
representations of the intermediate rings as affine rings involve considerably less
variables than in the global case. In the following example, we exemplify this
difference.

Example 3.7. Consider the projective plane curve defined by the polynomial

f1,4 = (X5 + Y 5 + Z5)2 − 4(X5Y 5 +X5Z5 + Y 5Z5) ∈ Q[X,Y, Z],

which will be reconsidered in Section 5 with respect to timings. After the coordinate
transformation Z 7→ 3X−2Y +Z, all singularities of the projective curve lie in the
affine chart Z 6= 0. Write

f = f1,4(X,Y, 3X − 2Y + 1) ∈ Q[X,Y] =: W

for the defining polynomial of the affine curve, and let A = Q[x, y] = W/〈f〉.
The curve has 15 singular points: the radical of the Jacobian ideal M decomposes

as
√
M = 〈y, 121x4 + 142x3 + 64x2 + 13x+ 1〉 ∩ 〈y, 2x+ 1〉
∩ 〈211y4 − 131y3 + 51y2 − 11y + 1, 3x− 2y + 1〉
∩ 〈11y4 − 23y3 + 19y2 − 7y + 1, x〉 ∩ 〈y + 1, x+ 1〉 ∩ 〈3y − 1, x〉.

more complicated (see below). We compare the global approach to the local strategy
at the singularity corresponding to the test ideal J = 〈y, 2x+ 1〉.

In the local setting, we use the non–zerodivisor g = y and compute the ideal
quotient

U1 = gJ : J

= 〈y, 29282x9 + 83369x8 + 105668x7 + 78296x6 + 37382x5 + 11926x4

+ 2542x3 + 349x2 + 28x+ 1〉.

We observe that in addition to y, the ideal U1 requires only one more generator.
Hence, the representation of A1

∼= 1
g (gJ : J) as an affine ring A1 = A[T1]/I1 requires

only one additional variable T1. The ideal I1 is generated by 10 linear relations and
one quadratic relation. Next, we compute the radical of the image of J in A1.
Technically, this means to compute the radical

√
J + I1 in the polynomial ring

W [T1] (here, by abuse of notation, we denote the preimage of J in the polynomial
ring also by J). The ideal I1 is quite complicated. Since J is generated by linear
polynomials, however, the reduced Gröbner basis of J + I1 is very simple. It is
easily computed as

J + I1 = 〈Y, 2X + 1, 16384T 2
1 − T1 + 625〉.

As a consequence, the computation of the radical

J1 =
√
J + I1 = 〈Y, 2X + 1, 128T1 − 25〉

PARALLEL ALGORITHMS FOR NORMALIZATION 10

is cheap as well. In the next step, A2 can be represented as an affine algebra over
A with, again, only one new variable. Hence, verifying that A2 is already a local
contribution to A at the singularity corresponding to J is also cheap.

In contrast, the global approach uses the test ideal J =
√
M , which is generated

by one polynomial of degree 3 and three polynomials of degree 6. As a non–
zerodivisor, we consider the lowest degree generator g = 3x2y − 2xy2 + xy. As
in the local case, the first ideal quotient gJ : J is easily obtained. However, in
addition to g, it requires three more generators. Hence, as an affine algebra over
A, it is represented as A1 = A[T1, T2, T3]/I1, where the ideal of relations I1 ⊆
A[T1, T2, T3] is generated by 6 linear and 6 quadratic relations. No significant
reduction occurs in J + I1 since J does not contain any linear polynomial. The
complexity of Buchberger’s algorithm grows doubly–exponentially in the number
of variables. Compared to the local case, this increase in complexity makes the
computation of

√
J + I1 considerably more expensive. In fact, Singular does not

compute the corresponding Gröbner basis within 2000 seconds.

4. Modular Methods

Algorithm 2 from Section 3 is parallel in nature since the computations of the
local normalizations do not depend on each other. In this section, we describe a
modular way of parallelizing both the GLS normalization algorithm from Section
2 and the local–to–global algorithm from Section 3 in the case where K = Q is
the field of rationals. One possible approach is to just replace all involved Gröbner
basis respectively radical computations by their modular variants as introduced by
[Arnold (2003)] and [Idrees et al. (2011)]. These variants are either probabilistic
or require rather expensive tests to verify the results at the end. In order to re-
duce the number of verification tests, we provide a direct modularization for the
normalization algorithms. The approach we propose requires, in principle, only
one verification at the end. In the local–to–global setup, however, it is reasonable
to additionally handle the Gröbner basis computation for the Jacobian ideal, the
subsequent primary decomposition, and the recombination of the local results by
modular techniques. We exemplarily describe the modularization of the GLS nor-
malization algorithm as outlined in Section 2. Each of the local normalizations in
Algorithm 2 from Section 3 can be modularized similarly.

Fix a global monomial ordering > on the semigroup of monomials in the set of
variables X = {X1, . . . , Xn}. Consider the polynomial rings W = Q[X] and, given
an integer N ≥ 2, WN = (Z/NZ)[X]. If T ⊆W or T ⊆WN is a set of polynomials,
then denote by LM(T) := {LM(f) | f ∈ T} its set of leading monomials. If a

b ∈ Q
with gcd(a, b) = 1 and gcd(b,N) = 1, set

(
a
b

)
N

:= (a+NZ)(b+NZ)−1 ∈ Z/NZ. If
f ∈W is a polynomial such that N is coprime to any denominator of a coefficient
of f , then fN ∈WN is the polynomial obtained by reducing each coefficient modulo
N as just described. If H = {h1, . . . , ht} is a Gröbner basis in W such that N is
coprime to any denominator in any hi, then write HN = {(h1)N , . . . , (ht)N}. Given
an ideal I ⊆W , set IN = 〈fN | f ∈ I ∩ Z[X]〉 ⊆WN and (W/I)N = WN/IN .

Remark 4.1. For practical purposes, the ideal I ⊆W is given by a set of generators
f1, . . . , fr. Then for all but finitely many primes p, the ideal Ip can be realized via
the equality

Ip = 〈(f1)p, ..., (fr)p〉 ⊆Wp.

PARALLEL ALGORITHMS FOR NORMALIZATION 11

When performing the modular algorithm described below, we reject a prime p if
the ideal on the right hand side is not well–defined. Otherwise, we work with this
ideal instead of Ip. The finitely many primes where the two ideals differ will not
influence the result if we apply error tolerant rational reconstruction (see Remark
4.2).

From a practical point of view, we work with ideals of the polynomial ring W
containing I, but think of them as ideals of the quotient ring A = W/I. Therefore,
we simplify our notation as follows: If I ⊆ J ⊆ W are ideals, then we denote the
ideal induced by J in A also by J . Vice versa, if J ⊆ A is an ideal, then its preimage
in W is also denoted by J . Similarly for WN .

From now on, I = 〈f1, . . . , fr〉 ⊆ W will be a prime ideal. We wish to compute
the normalization of the affine domain A = W/I using modular methods. For this,
we fix a polynomial d ∈ W which represents a non–zero element in the Jacobian
ideal M of A. This element of M will also be denoted by d. It will serve as a
“universal denominator” for all normalizations in positive characteristic as well as
for the final normalization in characteristic zero (see Remark 2.12 for the choice
of denominators). In characteristic zero, we write U(0) for the ideal of A which
satisfies 1

dU(0) = A, and G(0) for the reduced Gröbner basis2 of U(0). Furthermore,

we write V (0) ⊆ A[T1, . . . , Ts] for the ideal3 of relations on the elements of 1
dG(0)

which represents A as an A–algebra as in Lemma 2.9. We denote the reduced
Gröbner basis of V (0) by R(0). In the same way, if p is a prime number which does
not divide any denominator in the reduced Gröbner basis of I and such that Ap is
a domain and dp is non–zero and contained in the conductor4 of Ap, we use U(p),
G(p), V (p), and R(p) in characteristic p.

Note that G(0)p is not necessarily equal to G(p). However, as we will show in
Lemma 4.5 below, equality holds for all but finitely many primes p. Relying on this
fact, the basic idea of the modular normalization algorithm can be described as
follows. First, compute the Jacobian ideal M of A and choose a polynomial d ∈W
representing a non–zero element d ∈M . Second, choose a set P of prime numbers
at random, and compute, for each p ∈ P, reduced Gröbner bases G(p) ⊆ Wp such
that 1

dp
〈G(p)〉 ⊆ Q(Ap) is the normalization of Ap. Third, lift the modular Gröbner

bases to a set of polynomials G ⊆ W and define U := 〈G〉. We then expect that
U = U(0) and G = G(0).

The lifting process has two steps. First, assuming that all LM(G(p)), p ∈ P,
are equal, we can lift the Gröbner bases in the set GP := {G(p) | p ∈ P} to a
set of polynomials G(N) ⊆ WN , with N :=

∏
p∈P p. For this, apply the Chinese

remainder algorithm to the coefficients of the corresponding polynomials occurring
in the G(p), p ∈ P. Second, compute a set of polynomials G ⊆ W by lifting
the modular coefficients occurring in G(N) to rational coefficients as described in
[Böhm et al. (2012)]:

2Recall that reduced Gröbner bases are uniquely determined. For practical purposes, however,

we do not need to reduce the Gröbner bases involved since the lifting process described below only
requires that the result is uniquely determined by the algorithm.

3With respect to ideals of W [T1, . . . , Ts] and A[T1, . . . , Ts], we use the same setup and notation

as for ideals of W and A.
4From a practical point of view, we check whether dp is in the Jacobian ideal of Ap.

PARALLEL ALGORITHMS FOR NORMALIZATION 12

Remark 4.2. Rational reconstruction via the Chinese remainder theorem and Gauss-
ian reduction is error–tolerant in the following sense: Let N1 and N2 be inte-
gers with gcd(N1, N2) = 1, and let a

b ∈ Q with gcd(a, b) = gcd(N1, b) = 1. Set

r1 :=
(
a
b

)
N1
∈ Z/N1Z, let r2 ∈ Z/N2Z be arbitrary, and denote by r the image of

(r1, r2) under the isomorphism

Z/N1Z× Z/N2Z→ Z/(N1N2)Z.

Lifting r to a rational number via Gaussian reduction will generate, starting from
(a0, b0) = (N1N2, 0) and (a1, b1) = (r, 1), a sequence of rational numbers (ai, bi)
obtained by setting

(ai−2, bi−2) = qi(ai−1, bi−1) + (ai, bi),

where qi is chosen such that (ai, bi) has minimal Euclidean length. Computing
this sequence until the Euclidean length does not decrease strictly any more, we
obtain a tuple (ai, bi) with ai

bi
= a

b , provided that N2 � N1. For details, see

[Böhm et al. (2012)].

Just as for GP, we proceed for the set of reduced Gröbner bases RP := {R(p) |
p ∈ P} giving the modular algebra relations.

As for other modular algorithms based on Chinese remaindering, we need suit-
ably adapted notions of a lucky prime and a sufficiently large set of lucky primes:

Definition 4.3. Using the notation introduced above, we define:

(1) A prime number p is called lucky for A if U(0)p = U(p), V (0)p = V (p),
and the following hold:
(a) Ap is a domain.
(b) dp is a non–zero element in the conductor of Ap.
(c) LM(G(0)) = LM(G(p)).
(d) LM(R(0)) = LM(R(p)).

Otherwise p is called unlucky for A.
(2) A finite set P of lucky primes for A is called sufficiently large for A if∏

p∈P
p ≥ max

{
2 · |c|2

∣∣∣∣ c a denominator or numerator of a
coefficient occurring in G(0) or R(0)

}
Remark 4.4. A modular algorithm for the basic task of computing Gröbner bases is
presented in [Arnold (2003)] and [Idrees et al. (2011)]. In contrast to our situation
here, where we wish to find the ideal U(0) by computing its reduced Gröbner
basis G(0), Arnold’s algorithm starts from an ideal which is already given. If p
is a prime number, J ⊂ W is an ideal, H(0) is the reduced Gröbner basis of J ,
and H(p) the reduced Gröbner basis of Jp, then p is lucky for J in the sense of
Arnold if LM(H(0)) = LM(H(p)). It is shown in [Arnold (2003), Thm. 5.12 and
6.2] that if p is lucky for J in this sense, then H(0)p is well–defined and equal to
H(p). By [Arnold (2003), Cor. 5.4 and Thm. 5.13], all but finitely many primes are
Arnold–lucky for J . Moreover, if P is a set of primes satisfying Arnold’s condition
LM(H(0)) = LM(H(p)) for all p ∈ P, and such that P is sufficiently large with
respect to the coefficients occurring in H(0), then the H(p), p ∈ P, lift to H(0).

In our situation, if p is a prime number, we find U(p) on our way, but U(0)p is only
known to us after U(0) has been computed. Therefore, the condition U(0)p = U(p)
in our definition of lucky can only be checked a posteriori. Similarly for V (0)p =

PARALLEL ALGORITHMS FOR NORMALIZATION 13

V (p). However, when performing our modular algorithm, by part 1 of Lemma 4.5
below and Remark 4.2, there are only finitely many primes not satisfying these
conditions and these primes will not influence the result of the algorithm.

Lemma 4.5. With notation as above, we have:

(1) All but a finite number of primes are lucky for A.
(2) If P is a sufficiently large set of lucky primes for A, then the reduced

Gröbner bases G(p), p ∈ P, lift to the reduced Gröbner basis G(0). In
the same way, the R(p), p ∈ P, lift to R(0).

Proof. With respect to part 1, it is clear that conditions (1a) and (1b) in our
definition of lucky are true for all but finitely many primes. Moreover, 1

dp
U(0)p

is integral over Ap for all but finitely many p. Since testing normality via the
Grauert and Remmert criterion amounts to a Gröbner basis computation, and since
reducing a Gröbner basis modulo a sufficiently general prime p gives a Gröbner
basis of the reduced ideal, we conclude that U(0)p = U(p) for all but finitely many
primes. Furthermore, if U(0)p = U(p), condition (1c) from our definition of lucky is
equivalent to asking that p is lucky for U(0) in the sense of Arnold, so that also this
condition holds for all but finitely many primes. For V (0)p = V (p) and condition
(1d), we may argue similarly since finding the ideal of algebra relations amounts to
another Gröbner basis computation.

For part 2, let P be a sufficiently large set of lucky primes for A. Then, as pointed
out above, G(0)p is well–defined and equal to G(p) for all p ∈ P. Furthermore, since
P is sufficiently large, the G(0)p, p ∈ P, lift to G(0). In the same way, we may
argue for the relations. �

From a theoretical point of view, the idea of the algorithm is now as follows:
Consider a sufficiently large set P of lucky primes for A, compute the reduced
Gröbner bases G(p), p ∈ P, and lift the results to the reduced Gröbner basis G(0)
as described above.

From a practical point of view, we face the problem that the conditions (1c),
(1d), and (2) from Definition 4.3 cannot be tested a priori. To remedy the situation,
we proceed in a randomized way. First, we fix an integer t ≥ 1 and choose a set
of t primes P at random. Second, we delete all primes p from P which do not
satisfy conditions (1a) and (1b). Third, we compute GP = {G(p) | p ∈ P} and
RP = {R(p) | p ∈ P}, and use the following test to modify P so that all primes in
P satisfy (1c) and (1d) with high probability:

deleteUnluckyPrimesNormal: Define an equivalence relation on P by setting
p ∼ q :⇐⇒

(
LM(G(p)) = LM(G(q)) and LM(R(p)) = LM(R(q))

)
. Then replace P

by an equivalence class of largest5 cardinality, and change GP and RP accordingly.

Only now, we lift the Gröbner bases in GP and RP to sets of polynomials G and
R, respectively. Since we do not know whether all primes in the chosen equivalence
class are indeed lucky and whether the class is sufficiently large, a final verification
step is needed: We have to check whether 1

d 〈G〉 is integral over A and normal. Since
this can be expensive, especially if the result is false, we test the result at first in
positive characteristic:

5If applicable, take Remark 4.7 below into account.

PARALLEL ALGORITHMS FOR NORMALIZATION 14

pTestNormal: Randomly choose a prime number p /∈ P such that Ap is a do-
main, dp is a non–zero element in the conductor of Ap, and p does not divide the
numerator and denominator of any coefficient occurring in a polynomial in G, R,
or {f1, . . . , fr}. Return true if 1

dp
〈Gp〉 is the normalization of Ap and satisfies the

relations Rp, and false otherwise.

If pTestNormal returns false, then P is not sufficiently large for A or not all
primes in P are lucky (or the extra prime chosen in pTestNormal is unlucky).
In this case, we enlarge the set P by t primes not used so far and repeat the
whole process. On the other hand, if pTestNormal returns true, then most likely
G = G(0) and, thus, 1

d 〈G〉 = A. It makes, then, sense to verify the result over the
rationals by applying the following lemma. If the verification fails, we enlarge P
and repeat the process.

Lemma 4.6. With notation as above, the ring 1
d 〈G〉 ⊆ Q(A) is the normalization

of A if and only if the following two conditions hold:

(1) The ring 1
d 〈G〉 is integral over A. This holds if G and R are Gröbner bases,

and the elements of 1
dG satisfy the relations R.

(2) The ring 1
d 〈G〉 is normal. Equivalently, 1

d 〈G〉 satisfies the conditions of
the Grauert and Remmert criterion.

Proof. If 1
d 〈G〉 is integral over A, then 1

d 〈G〉 ⊆ A. If 1
d 〈G〉 is also normal, then

equality holds. Note that if R is a Gröbner basis, then dim 〈R〉 = dim 〈R(p)〉 for
all p ∈ P. Hence, if the elements of 1

dG satisfy the relations R, and G is a Gröbner

basis, then 1
d 〈G〉 is integral over A. �

We summarize modular normalization in Algorithm 3.

Remark 4.7. If the loop in Algorithm 3 requires more than one round, we have to
apply deleteUnluckyPrimesNormal in Step 12 with some care. Otherwise, it
may happen that always classes containing only unlucky primes are selected. To
avoid this problem, when determining the cardinality of the classes considered in a
certain round of the loop, we count all prime numbers in the class selected in the
previous round as just one element. Then P will eventually contain lucky primes
and termination of the algorithm is ensured by Lemma 4.5 and Remark 4.2.

Remark 4.8. In Algorithm 3, the normalizations 1
dp
〈G(p)〉 can be computed in

parallel. Furthermore, we can parallelize the final verifications of integrality and
normality.

Remark 4.9. Algorithm 3 is also applicable without the final tests (that is, without
the verification that 1

d 〈G〉 ⊆ Q(A) is integral over A and normal). In this case, the

algorithm is probabilistic, that is, the output 1
d 〈G〉 ⊆ Q(A) is the normalization of

A only with high probability. This usually accelerates the algorithm considerably.

Remark 4.10. The computation of the algebra structure R of the normalization
via lifting of the relations R(p) may require a large number of primes. Hence, if
the number of cores available is limited, a better choice is to obtain just G by the
modular approach and then compute the relations R(0) over the rationals. For this
approach, the initial ideals of the relations need not be tested in deleteUnluck-
yPrimesNormal and pTestNormal.

PARALLEL ALGORITHMS FOR NORMALIZATION 15

Algorithm 3 Modular normalization

Input: A prime ideal I ⊆ Q[X].
Output: A Gröbner basis G ⊆ Q[X] and d ∈ Q[X] such that 1

d 〈G〉 ⊆ Q(A) is the
normalization of A = Q[X]/I.

1: compute M , the Jacobian ideal of A;
2: choose a polynomial d ∈ Q[X] representing a non–zero element d ∈M ;
3: choose P, a list of random primes;
4: GP = ∅, RP = ∅;
5: loop
6: for p ∈ P do
7: if Ap is not a domain or dp ∈ Ap is zero or dp is not contained in the

conductor of Ap then
8: delete p;
9: else

10: use the GLS algorithm to compute G(p), the reduced Gröbner basis
such that 1

dp
〈G(p)〉 ⊆ Q(Ap) is the normalization of Ap, and R(p), the

reduced Gröbner basis of the ideal of algebra relations;
11: GP = GP ∪ {G(p)}, RP = RP ∪ {R(p)};
12: (GP,RP,P) = deleteUnluckyPrimesNormal(GP,RP,P);
13: lift (GP,RP,P) to G ⊆ Q[X] and R ⊆ W [T1, . . . , Ts] via Chinese remain-

dering and the Farey rational map;
14: if the lift succeeds and pTestNormal(I, d,G,R,P) then
15: if 1

d 〈G〉 ⊆ Q(A) is integral over A then

16: if 1
d 〈G〉 ⊆ Q(A) is normal then

17: return (G, d);
18: enlarge P;

5. Timings

We compare the GLS normalization algorithm6 (denoted in the tables below
by normal) with Algorithm 2 from Section 3 (locNormal) and Algorithm 3 from
Section 4 (modNormal)7. For all modular computations, we use the simplified algo-
rithm as specified in Remark 4.10. Note that at this writing, modularized versions
of locNormal have not yet been implemented.

In many cases, it turns out that the final verification is a time consuming step
of modNormal. To quantify the improvement of computation times by omitting
the verification, we give timings for the resulting, now probabilistic, version of
Algorithm 3 (denoted by modNormal∗ in the tables). In all examples computed so
far, the result of the probabilistic algorithm is indeed correct.

All timings are in seconds on an AMD Opteron 6174 machine with 48 cores,
2.2 GHz, and 128 GB of RAM, running a Linux operating system. Computations
which did not finish within 2000 seconds are marked by a dash. The maximum
number of cores used is written in square brackets. For the single core version of
modNormal, we indicate the number of primes used by the algorithm in brackets.

6We use the implementation available in the Singular library normal.lib.
7To implement our algorithms, we have created the Singular libraries modnormal.lib and

locnormal.lib.

PARALLEL ALGORITHMS FOR NORMALIZATION 16

So far, in Singular, the computation of associated primes via fast modular
methods has only been implemented for the zero–dimensional case. As the compu-
tation of associated primes is required by the local approach, we first focus on the
case of curves, where the singular locus is zero–dimensional.

The projective plane curves defined by the equations

f1,k =
(
Xk+1 + Y k+1 + Zk+1

)2 − 4
(
Xk+1Y k+1 + Y k+1Zk+1 + Zk+1Xk+1

)
were constructed in [Hirano (1992)]. They have 3 (k + 1) singularities of type Ak,
provided that k is even. If k is odd, the curves are reducible, in which case the
normalization algorithms still work in the same way as in the irreducible case as
long as they do not detect a zerodivisor. After the coordinate transformation
Z 7→ 3X − 2Y + Z, all singularities of the projective curves lie in the affine chart
Z 6= 0. We apply the algorithm to the affine curves. The timings for k = 2, ..., 5
are shown in Table 1.

Table 1. Timings for plane curves with many Ak singularities:

f1,2 f1,3 f1,4 f1,5

normal[1] .34 14 − −
locNormal[1] .57 2.0 2.1 38
locNormal[20] .42 1.3 1.4 11
modNormal[1] 4.4 (3) 73 (4) 250(5) −
modNormal[10] 4.1 68 240 −
modNormal∗[1] .57 (3) 7.4 (4) 11 (5) −
modNormal∗[10] .31 2.1 2.5 −

Both the local and the probabilistic modular approach have a better performance
than the GLS algorithm, and they improve further in their parallel versions. The
modular algorithm with final verification is slower, but can still handle much bigger
examples than GLS.

Timings for the affine plane curves defined by

f2,k = ((X − 1)k − Y 3)((X + 1)k − Y 3)(Xk − Y 3)((X − 2)k − Y 3)((X + 2)k − Y 3) + Y 15,

f3 = X10 + Y 10 + (X − 2Y + 1)10 + 2(X5(X − 2Y + 1)5 −X5Y 5 + Y 5(X − 2Y + 1)5),

f4 = (Y 5 + 2X8)(Y 3 + 7(X − 1)4)((Y + 5)7 + 2X12) + Y 11,

f5 = 9127158539954X10 + 3212722859346X8Y 2 + 228715574724X6Y 4

− 34263110700X4Y 6 − 5431439286X2Y 8 − 201803238Y 10 − 134266087241X8

− 15052058268X6Y 2 + 12024807786X4Y 4 + 506101284X2Y 6 − 202172841Y 8

+ 761328152X6 − 128361096X4Y 2 + 47970216X2Y 4 − 6697080Y 6

− 2042158X4 + 660492X2Y 2 − 84366Y 4 + 2494X2 − 474Y 2 − 1,

are presented in Table 2.

In Table 3, we consider surfaces in A3 cut out by

f6,k = XY (X − Y)(X + Y)(Y − 1)Z + (Xk − Y 2)(X10 − (Y − 1)2),

f7,k = Z2 − (Y 2 − 1234X3)k(15791X2 − Y 3)(1231Y 2 −X2(X + 158))(1357Y 5 − 3X11),

f8 = Z5 − ((13X − 17Y)(5X2 − 7Y 3)(3X3 − 2Y 2)(19Y 2 − 23X2(X + 29)))2.

PARALLEL ALGORITHMS FOR NORMALIZATION 17

Table 2. Timings for plane curves with various types of singularities:

f2,7 f2,8 f2,9 f3 f4 f5

normal[1] 7.7 12 383 − 474 1620
locNormal[1] 4.4 13 118 1.9 19 1.2
locNormal[20] 1.4 3.3 31 1.4 18 .93
modNormal[1] 38 (3) 69 (3) 146(3) 142(3) − 50 (8)
modNormal[10] 38 69 146 84 − 43
modNormal∗[1] .70 (3) 1.2 (3) 1.2 (3) 88 (3) 9.8(3) 7.0 (8)
modNormal∗[10] .47 .70 .74 30 4.7 .98

We omit the verification step in the modular algorithm, as this is too time
consuming.

Table 3. Timings for the normalization of surfaces in A3:

f6,11 f6,12 f6,13 f7,2 f7,3 f8

normal[1] 2.6 11 6.4 − − −
locNormal[1] .25 .26 .29 80 113 70
locNormal[20] .21 .22 .24 80 113 70
modNormal∗[1] 2.2 (2) .60 (2) .78 (2) 12 (5) 17 (5) 2.3(2)
modNormal∗[10] 1.5 .52 .67 3.5 4.7 1.7

Note that the performance of the local approach will be considerably improved
as soon as modular primary decomposition in higher dimension will be available in
Singular.

Timings for the curves in A3 defined by the ideals

I9,k =
〈
Z3 − (19Y 2 − 23X2(X + 29))2, X3 − (11Y 2 − 13Z2(Z + 1))k

〉
and the surface in A4 defined by

I10 =
〈
Z2 − (Y 3 − 123456W 2)(15791X2 − Y 3)2,

WZ − (1231Y 2 −X(111X + 158))
〉

are given in Table 4.

Table 4. Timings for curves in A3 and a surface in A4:

I9,1 I9,2 I10

normal[1] 3.2 − 150
locNormal[1] 4.2 36 83
locNormal[20] 4.1 35 82
modNormal[1] − − 28 (4)
modNormal[10] − − 14
modNormal∗[1] 8.9(5) − 8.4(4)
modNormal∗[10] 2.1 − 2.5

To summarize, both the local and the probabilistic modular approach provide a
significant improvement over the GLS algorithm in computation times and size of

PARALLEL ALGORITHMS FOR NORMALIZATION 18

the examples covered. The probabilistic method is very stable in the sense that it
produces the correct result in all examples computed so far. As usual, the verifica-
tion step in the modular setup is the most time consuming task, and a refinement
of this step will be the focus of further research. The modular technique parallelizes
completely, the local approach parallelizes best if the complexity distributes evenly
over the minimal strata of the singular locus. In general, the localization technique,
even when not run in parallel, is a major improvement to the GLS algorithm. Note,
that the local contribution can also be obtained by other means. See, for example,
[Böhm et al. (2011)] for a fast method in the case of curves, using Hensel lifting
and Puiseux series.

References

[Arnold (2003)] Arnold, E. A.: Modular algorithms for computing Gröbner bases, Journal of

Symbolic Computation 35, 403–419 (2003).
[Böhm et al. (2011)] Böhm, J.; Decker, W.; Laplagne, S.; Seelisch, F.: Computing integral bases

via localization and Hensel lifting. In preparation.

[Böhm et al. (2012)] Böhm, J.; Decker, W.; Fieker, C.; Pfister, G.: The use of bad primes in
rational reconstruction. Preprint available at http://arxiv.org/abs/1207.1651 (2012).

[Bosma et al. (1997)] Bosma, W.; Cannon, J.; Playoust, C.: The Magma algebra system. I. The

user language. Journal of Symbolic Computation 24, 235–265 (1997).
[Decker et al. (1999)] Decker, W.; Greuel, G.–M.; Pfister, G.; de Jong, T.: The normalization: a

new algorithm, implementation and comparisons. In: Computational methods for representa-
tions of groups and algebras (Essen, 1997), Birkhäuser (1999).

[Decker et al. (2012)] Decker, W.; Greuel, G.–M.; Pfister, G.; Schönemann, H.: Singular 3-1-4

— A computer algebra system for polynomial computations. http://www.singular.uni-kl.de
(2012).

[Eisenbud (1995)] Eisenbud, D.: Commutative Algebra with a View Toward Algebraic Geometry.

Springer (1995).
[Grauert and Remmert (1971)] Grauert, H.; Remmert, R.: Analytische Stellenalgebren. Springer

(1971).

[Grayson and Stillman (2010)] Grayson, D.R.; Stillman, M.E.: Macaulay2 — A software system
for research in algebraic geometry. http://www.math.uiuc.edu/Macaulay2/ (2010).

[Greuel et al. (2010)] Greuel, G.-M.; Laplagne, S.; Seelisch. F.: Normalization of rings. Journal

of Symbolic Computation 45, 887–901 (2010).
[Greuel and Pfister (2007)] Greuel, G.–M.; Pfister, G.: A Singular Introduction to Commutative

Algebra. Second edition, Springer (2007).
[Hirano (1992)] Hirano, A.: Construction of plane curves with cusps. Saitama Mathematical Jour-

nal 10, 21–24 (1992).
[Idrees et al. (2011)] Idrees, N.; Pfister, G.; Steidel, S.: Parallelization of Modular Algorithms.

Journal of Symbolic Computation 46, 672–684 (2011).
[de Jong (1998)] de Jong, T.: An algorithm for computing the integral closure. Journal of Sym-

bolic Computation 26, 273–277 (1998).
[de Jong and Pfister (2000)] de Jong, T.; Pfister, G.: Local Analytic Geometry. Vieweg (2000).

[Leonard and Pellikaan (2003)] Leonard, D.A.; Pellikaan, R.: Integral closures and weight func-
tions over finite fields. Finite Fields and their Applications 9, 479–504 (2003).

[Singh and Swanson (2009)] Singh, A.; Swanson, I.: An algorithm for computing the integral
closure. Preprint available at http://arxiv.org/abs/0901.0871 (2009).

[Swanson and Huneke (2006)] Swanson, I.; Huneke, C.: Integral closure of ideals, rings, and mod-
ules. Cambridge University Press (2006).

http://arxiv.org/abs/1207.1651
http://www.singular.uni-kl.de
http://www.math.uiuc.edu/Macaulay2/
http://arxiv.org/abs/0901.0871

PARALLEL ALGORITHMS FOR NORMALIZATION 19

Janko Böhm, Department of Mathematics, University of Kaiserslautern, Erwin-

Schrödinger-Str., 67663 Kaiserslautern, Germany

E-mail address: boehm@mathematik.uni-kl.de

Wolfram Decker, Department of Mathematics, University of Kaiserslautern, Erwin-

Schrödinger-Str., 67663 Kaiserslautern, Germany
E-mail address: decker@mathematik.uni-kl.de

Gerhard Pfister, Department of Mathematics, University of Kaiserslautern, Erwin-

Schrödinger-Str., 67663 Kaiserslautern, Germany
E-mail address: pfister@mathematik.uni-kl.de

Santiago Laplagne, Departamento de Matemática, FCEN, Universidad de Buenos
Aires - Ciudad Universitaria, Pabellón I - (C1428EGA) - Buenos Aires, Argentina

E-mail address: slaplagn@dm.uba.ar

Andreas Steenpaß, Department of Mathematics, University of Kaiserslautern, Erwin-

Schrödinger-Str., 67663 Kaiserslautern, Germany

E-mail address: steenpass@mathematik.uni-kl.de

Stefan Steidel, Department of Mathematics, University of Kaiserslautern, Erwin-

Schrödinger-Str., 67663 Kaiserslautern, Germany
E-mail address: steidel@mathematik.uni-kl.de

	1. Introduction
	2. The GLS Normalization Algorithm
	3. Normalization via Localization
	4. Modular Methods
	5. Timings
	References

