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Abstract

In this paper we investigate the parallelization of two modular algorithms. In fact, we consider
the modular computation of Gröbner bases (resp. standard bases) and the modular computation
of the associated primes of a zero–dimensional ideal and describe their parallel implementation
in Singular. Our modular algorithms to solve problems over Q mainly consist of three parts,
solving the problem modulo p for several primes p, lifting the result to Q by applying Chinese
remainder resp. rational reconstruction, and a part of verification. Arnold proved using the
Hilbert function that the verification part in the modular algorithm to compute Gröbner bases
can be simplified for homogeneous ideals (cf. (A03)). The idea of the proof could easily be
adapted to the local case, i.e. for local orderings and not necessarily homogeneous ideals, using
the Hilbert–Samuel function (cf. (Pf07)). In this paper we prove the corresponding theorem for
non–homogeneous ideals in case of a global ordering.
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1. Introduction

We consider an ideal in a polynomial ring over the rationals. In section 2 we describe a
parallel modular implementation of the Gröbner basis (resp. standard basis) algorithm.
Afterwards we restrict ourselves to the case of a zero–dimensional ideal and introduce
a parallel modular implementation of the algorithm to compute the associated primes
in section 3. Finally we give a couple of examples with corresponding timings and some
conclusions in section 4. Both algorithms are implemented in Singular. The Gröbner
basis resp. standard basis algorithm can be found in the library modstd.lib and the
algorithm for computing the associated primes in assprimeszerodim.lib. They are
included in the release Singular 3-1-2.

The task to compute a Gröbner basis G of an ideal I using modular methods consists
of three steps. In the first step, we compute the Gröbner basis modulo p for sufficiently
many primes p and, in the second step, use Chinese remainder and rational reconstruction
to obtain a result over Q. In the third step, we have to verify that the result obtained
this way is correct, i.e. to verify that I = 〈G〉 and G is a Gröbner basis of 〈G〉. If this
fails we go back to the first step. The third step is usually at least as time consuming
as the first step. Omitting the third step would produce a Gröbner basis only with high
probability and the result could be wrong in extreme situations. It is known that some
of the commercial computer algebra systems have problems in this direction. 1

Arnold proved using the Hilbert function that the verification part in the modular
algorithm to compute Gröbner bases can be simplified for homogeneous ideals (cf. (A03)):
Let I ⊆ Q[x1, . . . , xn] be a homogeneous ideal, > a global monomial ordering and G ⊆
Q[x1, . . . , xn] be a set of polynomials such that I ⊆ 〈G〉, G is a Gröbner basis of 〈G〉 and
LM(G) = LM(IFp[x1, . . . , xn]) for some prime number p where LM(G) denotes the set
of leading monomials of G w.r.t. >, then G is a Gröbner basis of I. The idea of the proof
could easily be adapted to the local case, i.e. for local orderings and I not necessarily
homogeneous, using the Hilbert–Samuel function (cf. (Pf07)). In this paper we prove the
corresponding theorem for non–homogeneous ideals in case of a global ordering. Two
important assumptions of the theorem are the facts that I ⊆ 〈G〉 and G is a Gröbner
basis of 〈G〉. This verification can be very time consuming in a negative case. Hence, we
use a so–called pTestSB which is one of the new ideas for our algorithm. Therefore we
randomly choose a prime number p which has not been used in the previous computations
and perform the verification modulo p. Only if the pTestSB is positive we perform the
verification over Q, and the last required condition that LM(G) = LM(IFp[x1, . . . , xn])
is then automatically fulfilled.

The implementation of our algorithm as Singular library implies that we did not
change the kernel routines of Singular. We plan to implement the algorithm in the
kernel of Singular in future. For this purpose we can apply the ideas of Gräbe (cf. (G93))
- using multimodular coefficients - and Traverso (cf. (T89)) - using the trace–algorithm.
The trace–algorithm would speed up the computations in positive characteristic a lot. We

1 Let N be the product of all primes smaller than 232 and I = 〈v +w+ x+ y+ z, vw+wx+ xy+ yz+
vz, vwx+ wxy + xyz + vyz + vwz, vwxy + wxyz + vxyz + vwyz + vwxz, vwxyz +N〉 ⊆ Q[v, w, x, y, z].
Then Magma V2.16–11 (64-bit version) computes a wrong Gröbner basis, in particular it computes the
Gröbner basis of the ideal J = 〈v + w + x+ y + z, vw + wx+ xy + yz + vz, vwx + wxy + xyz + vyz +
vwz, vwxy + wxyz + vxyz + vwyz + vwxz, vwxyz〉 ⊆ Q[v,w, x, y, z] which obviously differs from I.
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compute a Gröbner basis of an ideal I ⊆ Q[x1, . . . , xn] over Fp[x1, . . . , xn] for a random
prime p and keep in mind the zero–reductions of the s–polynomials such that we do not
perform these reductions in any other Gröbner basis computation over Fq[x1, . . . , xn] for
primes q 6= p. We do not need this information, i.e. the guarantee that we really obtain
a Gröbner basis over Fq[x1, . . . , xn], since we have the verification step - that the lifted
result over Q[x1, . . . , xn] is a Gröbner basis of I - at the end anyway.

Our idea regarding the primary decomposition of a zero–dimensional ideal I ⊆ Q[X ]
is to compute the associated primes M1, . . . ,Ms of I and use separators σ1, . . . , σs

2

such that the saturation I : σ∞
i of I w.r.t. σi is the primary ideal corresponding to

Mi (cf. (SY96)). The computation of the associated primes is based on the so–called
Shape Lemma (Proposition 3.1(2)). Here, one new idea is to choose a generic linear
form r = a1x1 + . . . + an−1xn−1 + xn with a1, . . . , an−1 ∈ Z and a random prime p to
test if dimFp

(Fp[X ]/IFp[X ]) = dimFp

(

Fp[xn]/(ψ(I)Fp[X ] ∩ Fp[xn])
)

, i.e. ψ(I)Fp[X ] =
〈x1 − g1(xn), . . . , xn−1 − gn−1(xn), F (xn)〉 where ψ denotes the linear map defined by
ψ(xi) = xi for i = 1, . . . , n − 1 and ψ(xn) = 2xn − r. If this test called pTestRad is
positive then the ideal I in Q[X ] has the same property with high probability. If the
test is negative then we compute the radical of I using the idea of Krick and Logar
(Proposition 3.3(1)) combined with modular methods, and replace I by

√
I. Afterwards

we compute 〈F 〉 = 〈I, T −r〉Q[X,T ]∩Q[T ], again using modular methods, i.e. we compute

F (p) such that 〈F (p)〉 = 〈I, T − r〉Fp[X,T ] ∩ Fp[T ] and deg(F (p)) = dimQ(Q[X ]/I) for
sufficiently many primes p, and we use Chinese remainder and rational reconstruction to
obtain F ∈ Q[T ]. The verification is the test whether F (r) ∈ I and no proper factor of
F (r) is in I. If F = F ν1

1 · · ·F νs
s is the factorization of F in Q[T ] into irreducible factors

then M1 = 〈I, F1(r)〉, . . . ,Ms = 〈I, Fs(r)〉 are the associated primes of I. The new ideas
in this approach are the pTestRad described above and the fact that we do not compute
the associated primes in positive characteristic but instead one special generator of the
radical, F (r), which is much better to control. 3

We use the following notation. Let X = {x1, . . . , xn} be a set of variables. We denote
by Mon(X) the set of monomials, and by Q[X ] the polynomial ring over Q in these n
indeterminates. Let S ⊆ Q[X ] be a set of polynomials, then LM(S) := {LM(f) | f ∈ S}
is the set of leading monomials of S. Given an ideal I ⊆ Q[X ] we can always choose a
finite set of polynomials FI such that I = 〈FI〉. If I = 〈f1, . . . , fr〉 ⊆ Q[X ] and p is a
prime number which does not divide any denominator of the coefficients of f1, . . . , fr we
will write Ip := 〈f1 mod p, . . . , fr mod p〉 ⊆ Fp[X ].

2. Computing Gröbner bases using modular methods

In the following we consider an ideal I = 〈f1, . . . , fr〉 ⊆ Q[X ] together with a monomial
ordering > and set FI = {f1, . . . , fr}. We assume that > is either global or local. Within
this section we describe an algorithm for computing a Gröbner basis resp. a standard
basis 4 G ⊆ Q[X ] of I by using modular methods.

2 We call σi a separator w.r.t. Mi if σi /∈ Mi and σi ∈ Mj for j 6= i.
3 The computation of the associated primes in positive characteristic would create similar problems as
the factorization of polynomials: Different behaviour of splitting in different characteristics. Therefore it
is easier and faster to compute F ∈ Q[T ] and factorize this polynomial.
4 For definitions and properties cf. (GP07).
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The basic idea of the algorithm is as follows. Choose a set P of prime numbers, compute
standard bases Gp of Ip ⊆ Fp[X ], for every p ∈ P , and finally lift these modular standard
bases to a standard basis G ⊆ Q[X ] of I. The lifting process consists of two steps.
Firstly, the set GP := {Gp | p ∈ P} is lifted to GN ⊆ Z/NZ[X ] with N :=

∏

p∈P p by
applying the Chinese remainder algorithm to the coefficients of the polynomials occuring
in GP . Since GN is uniquely determined modulo N , theory requires N to be larger
than the moduli of all coefficients occuring in a standard basis of I over Q. This issue
is not resolvable a priori and will be discussed later in this section. Secondly, we obtain
G ⊆ Q[X ] by pulling back the modular coefficients occuring in GN to rational coefficients
via the Farey rational map 5 . This map is guaranteed to be bijective provided that

√

N/2
is larger than the moduli of all coefficients in G. 6 The latter condition on N concerning
the Farey rational map obviously implies the former condition concerning the Chinese
remainder algorithm.We consequently define two corresponding notions that are essential
regarding the algorithm.

Definition 2.1. Let G be a standard basis of I.
(1) If Gp is a standard basis of Ip, then the prime number p is called lucky for I if and

only if LM(G) = LM(Gp). Otherwise p is called unlucky for I.
(2) A set P of lucky primes for I is called sufficiently large for I if and only if

∏

p∈P p ≥
max{2 · |c|2 | c coefficient occuring in G}.

Now we can concretize the theoretical idea of the algorithm. Consider a sufficiently
large set P of lucky primes for I such that none of these primes divides any coefficient
occuring in FI , compute the set GP , and lift this result to a rational standard basis G
of I as aforementioned. More details can be found in (A03).

In practice, we have to handle two difficulties since naturally the standard basis G of
I is a priori unknown. In fact, it is necessary to ensure that every prime number used is
lucky for I, and to decide whether the chosen set of primes is sufficiently large for I.

Therefore, we fix a natural number s and an arbitrary set of primes P of cardinality
s. After having computed the set of standard bases GP := {Gp | p ∈ P} we delete the
unlucky primes in the following way.

deleteUnluckyPrimesSB: We define an equivalence relation on (GP,P ) by
(Gp, p) ∼ (Gq, q) :⇐⇒ LM(Gp) = LM(Gq). Then the equivalence class of largest car-
dinality is stored in (GP,P ), the others are deleted.

With the aid of this method we are able to choose a set of lucky primes with high
probability. A faulty decision will be compensated by subsequent tests.

Since we cannot predict if a given set of primes P is sufficiently large for I, we have to
proceed by trial and error. Hence, we lift the set GP to G ⊆ Q[X ], as per the description
at the beginning of this section, and test whether G is already a standard basis of I.
Otherwise we enlarge the set P by s new prime numbers and continue analogously until
once the test is positive. The test especially verifies whether G is a standard basis of
〈G〉, but this computation in Q[X ] can be very expensive if P is far away from being

5 Farey fractions refer to rational reconstruction. A definition of Farey fractions and the Farey rational

map can be found in (A03),(KG83),(Pf07); for remarks concerning its computation cf. (KG83).
6 Remarks on the required bound on the coefficients are given in (KG83).
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sufficiently large for I. Hence, we prefix a test in positive characteristic that is a sufficient
criterion if P is not sufficiently large for I.

pTestSB: We randomly choose a prime number p /∈ P such that p does not divide
the numerator and denominator of any coefficient occuring in FI . The test is positive if
and only if (G mod p) is a standard basis of Ip. We explicitly test whether (fi mod p) ∈
〈G mod p〉 for i = 1, . . . , r and (G mod p) ⊆ std(Ip)

7 .

This test in positive characteristic accelerates the algorithm enormously. It is much
faster than in characteristic zero since the standard basis computation in pTestSB is
as expensive as in any other positive characteristic, i.e., as any other standard basis
computation within the algorithm.

If the pTestSB is negative, then P is not sufficiently large for I, that is, G cannot be
a standard basis of I over Q. Contrariwise, if the pTestSB is positive, then G is most
probably a standard basis of I.

Algorithm 1 shows the modular standard basis algorithm. 8

Algorithm 1 modStd

Assume that > is either a global or a local monomial ordering.

Input: I ⊆ Q[X ].
Output: G ⊆ Q[X ] the standard basis of I.

choose P , a list of random primes;
GP = ∅;
loop

for p ∈ P do

compute a standard basis Gp of Ip;
GP = GP ∪ {Gp};

(GP,P ) = deleteUnluckyPrimesSB(GP,P );
lift (GP,P ) to G ⊆ Q[X ] by applying Chinese remainder and Farey rational map;
if pTestSB(I,G, P ) then
if I ⊆ 〈G〉 then
if G is a standard basis of 〈G〉 then
return G;

enlarge P ;

Remark 2.2. The presented version of the algorithm is just pseudo-code whereas its
implementation in Singular is optimized. E.g., the standard bases Gp of Ip ⊆ Fp[X ] for
p ∈ P are not computed repeatedly, but stored and reused in further iteration steps.

Remark 2.3. Algorithm 1 can easily be parallelized in the following way:
(1) Compute the standard bases Gp in parallel.
(2) Parallelize the final tests:

• Check if I ⊆ 〈G〉 by checking if f ∈ 〈G〉 for all f ∈ FI .

7 The procedure std is implemented in Singular and computes a Gröbner basis resp. standard basis of
the input.
8 The corresponding procedures are implemented in Singular in the library modstd.lib.
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• Check if G is a standard basis of 〈G〉 by checking if every s–polynomial not
excluded by well-known criteria, vanishes by reduction w.r.t. G.

Algorithm 1 terminates by construction, and its correctness is guaranteed by the
following theorem which is proven in (A03) in the case that I is homogeneous resp. in
(Pf07) in the case that the ordering is local. The case that the ordering is global follows
by using weighted homogenization as in Theorem 7.5.1 of (GP07).

Theorem 2.4. Let G ⊆ Q[X ] be a set of polynomials such that LM(G) = LM(Gp) where
Gp is a standard basis of Ip for some prime number p, G is a standard basis of 〈G〉 and
I ⊆ 〈G〉. Then I = 〈G〉.

Note that the first condition follows from a positive result of pTestSB whereas the
second and third condition are verified explicitly at the end of the algorithm.

Proof of Theorem 2.4. We assume that > is a global monomial ordering. The proof for
a local ordering is similar. Let FI = {f1, . . . , fr} ⊆ Q[X ] such that I = 〈FI〉 and G =
{g1, . . . , gs} ⊆ Q[X ]. Since G is a standard basis of 〈G〉 w.r.t. > and I ⊆ 〈G〉 there exist
for each i = 1, . . . , r polynomials ξij ∈ Q[X ] such that

fi =
s

∑

j=1

ξijgj satisfying LM>(fi) ≥ LM>(ξijgj) for all j = 1, . . . , s.

Due to Corollary 1.7.9 of (GP07) there exists a finite setM ⊆ Mon(X) with the following
property: Let >′ be any monomial ordering on Mon(X) coinciding with > on M , then
LM>(G) = LM>′(G) and G is also a standard basis of 〈G〉 w.r.t. >′.

Moreover, due to Lemma 1.2.11 resp. Exercise 1.7.17 of (GP07) we possibly enlarge the
set M and choose some w = (w1, . . . , wn) ∈ Zn

>0 such that >=>w on M , i.e. LM>(G) =
LM>w

(G) resp. G is a standard basis of 〈G〉 w.r.t. >w, and
9

w-deg (LM>w
(fi)) > w-deg (LM>w

(tail(fi))) ,

w-deg (LM>w
(gj)) > w-deg (LM>w

(tail(gj))) ,

w-deg (LM>w
(ξijgj)) > w-deg (LM>w

(tail(ξijgj))) ,

for all i = 1, . . . , r and j = 1, . . . , s.
We consider on Q[X, t] the weighted degree ordering with weight vector (w1, . . . , wn, 1)

refined by >w on Q[X ] and denote it also by >w. For f ∈ Q[X ] let fh = tw-deg(f) ·
f(x1/t

w1 , . . . , xn/t
wn) be the weighted homogenization of f w.r.t. t. We set F I :=

{

fh
1 , . . . , f

h
r

}

, I :=
〈

F I

〉

and G :=
{

gh1 , . . . , g
h
s

}

. Then Proposition 7.5.3 of (GP07)

guarantees that G is a standard basis of
〈

G
〉

and since LM>w
(G) = LM>w

(Gp) it also

holds by construction that LM>w
(G) = LM>w

(Gp). Now let i ∈ {1, . . . , r}, then fi =
∑s

j=1 ξijgj satisfying LM>w
(fi) ≥w LM>w

(ξijgj) for all j = 1, . . . , s. This implies
w-deg(fi) ≥ w-deg(ξijgj) for all j = 1, . . . , s by the choice of w ∈ Zn

>0. Consequently we
have

tw-deg(fi)f
( x1
tw1

, . . . ,
xn
twn

)

=
s

∑

j=1

tw-deg(fi)ξij

( x1
tw1

, . . . ,
xn
twn

)

gj

( x1
tw1

, . . . ,
xn
twn

)

∈
〈

G
〉

,

9 For a polynomial f ∈ Q[X], we define by tail(f) := f − LM(f) the tail of f ; cf. (GP07).
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thus fh
i ∈

〈

G
〉

resp. I ⊆
〈

G
〉

since i ∈ {1, . . . , r} was arbitrarily chosen.

It remains to prove that I =
〈

G
〉

. Let n ∈ N. We know that Ip =
〈

Gp

〉

due to the fact

that LM>w
(G) = LM>w

(Gp), so especially it holds HF
Ip
(n) = HF〈Gp〉(n) = HF〈G〉(n)

for the corresponding Hilbert functions. On the other hand we have

HF
I
(n) ≤ HF

Ip
= HF〈G〉(n) ≤ HF

I
(n) <∞,

where the second inequality is true since I ⊆
〈

G
〉

. The first inequality follows from the

fact that dimQ(I [n]) ≥ dimFp
(Ip[n]), where I[n] resp. Ip[n] denotes the vector space

generated by all (weighted) homogeneous polynomials of degree n. Namely we can find
a Q-basis of I[n] of polynomials in Z[X, t] ∩ I which induces generators of Ip[n]. 2

Remark 2.5. Algorithm 1 is also applicable without applying the final tests, i.e. skip-
ping the verification that I ⊆ 〈G〉 and G is a standard basis of 〈G〉. In this case the
algorithm is probabilistic, i.e. the output G is a standard basis of the input I only with
high probability. This usually accelerates the algorithm enormously. Note that the prob-
abilistic algorithm works for any ordering, i.e. also for the so–called mixed ordering. In
case of a mixed ordering one could homogenize the ideal I, compute a standard basis
using modStd and dehomogenize afterwards. Experiments showed that this is usually
not efficient since the standard basis of the homogenized input has often much more
elements than the standard basis of the ideal we started with.

3. A modular approach to primary decomposition

In the following let I ⊆ Q[X ] be a zero–dimensional ideal and d := dimQ(Q[X ]/I).
Within this section we describe an algorithm for computing the associated primes of I
using modular methods. In conclusion we make remarks how to achieve the corresponding
primary ideals from the associated primes of I.

The following well–known proposition (cf. (GTZ88) or (GP07)) describes how to com-
pute the associated prime ideals of a radical ideal over Q. Note that these results are also
valid for perfect infinite fields.

Proposition 3.1. Let I ⊆ Q[X ] be a radical ideal.
(1) Let 〈F 〉 = I ∩Q[xn] and assume deg(F ) = dimQ(Q[X ]/I). Let F = F1 · · ·Fs be the

factorization of F into irreducible factors over Q. Then I =
⋂s

i=1〈I, Fi〉 and 〈I, Fi〉
is prime for i = 1, . . . , s.

(2) There exists a non–empty Zariski open subset U ⊆ Qn−1 such that for all a =
(a1, . . . , an−1) ∈ U the linear coordinate change ϕa defined by ϕa(xi) = xi for

i = 1, . . . , n− 1 and ϕa(xn) = xn +
∑n−1

i=1 aixi satisfies

dimQ

(

Q[X ]/ϕa(I)
)

= dimQ

(

Q[xn]/(ϕa(I) ∩Q[xn])
)

.

Corollary 3.2. Let F ∈ Q[T ], T a variable, be squarefree and r = xn +
∑n−1

i=1 aixi
with a1, . . . , an−1 ∈ Z such that deg(F ) = dimQ(Q[X ]/I), and F (r) ∈ I but no proper
factor of F (r) is in I, then I is a radical ideal. Let F = F1 · · ·Fs be the factorization of
F into irreducible factors over Q. Then I =

⋂s

i=1〈I, Fi(r)〉 and 〈I, Fi(r)〉 is prime for
i = 1, . . . , s.

7



Proof. Using a linear change of variables we may assume that r = xn. Since no proper

factor of F (r) is in I we obtain 〈F (xn)〉 = I ∩Q[xn]. Since deg(F ) = dimQ(Q[X ]/I) we

have I = 〈x1 − h1(xn), . . . , xn−1 − hn−1(xn), F (xn)〉 for suitable h1, . . . , hn−1 ∈ Q[xn].

Thus, I is radical because F is squarefree. The rest is an immediate consequence of

Proposition 3.1(1). 2

Consequently, for the computation of the primary decomposition, we firstly verify

whether I is already radical. Therefore we choose a generic linear form r = a1x1 + . . .+

an−1xn−1 + xn with a1, . . . , an−1 ∈ Z, and use a test in positive characteristic, similarly

to section 2.

pTestRad: We randomly choose a prime number p such that dimFp
(Fp[X ]/Ip) = d.

Let ϕ : Fp[T ] −→ Fp[X ] be defined by ϕ(T ) = r mod p (cf. Lemma 3.6(1)) and 〈Fp〉 :=
ϕ−1(Ip). We test if deg(Fp) = d.

In case of a negative result of the test there is a high probability that the ideal is not

radical (cf. Proposition 3.1(2)) and we compute the radical using modular methods. The

computation of the radical is usually much more time consuming than the pTestRad

even if the ideal is already radical. The following proposition (cf. (KrLo91), (GP07)) is

the basis for computing the radical of a zero–dimensional ideal.

Proposition 3.3. Let I ⊆ Q[X ] be a zero–dimensional ideal and 〈fi〉 = I ∩ Q[xi] for

i = 1, . . . , n. Moreover, let gi be the squarefree part of fi. Then the following holds.

(1)
√
I = I + 〈g1, . . . , gn〉.

(2) If deg(fn) = dimQ(Q[X ]/I) then
√
I = 〈I, gn〉.

Proof. Part (1) of the proposition is proved in (KrLo91). For part (2) we notice that

if deg(fn) = dimQ(Q[X ]/I) then there exist h1, . . . , hn−1 ∈ Q[xn] such that {x1 −
h1, . . . , xn−1 − hn−1, fn} is a Gröbner basis of I w.r.t. the lexicographical ordering

x1 > . . . > xn. Thus, we have
√
I = 〈x1 − h1, . . . , xn−1 − hn−1, gn〉. 2

With analogous considerations as in section 2, the essential idea of the algorithm

to compute the radical of I is as follows. Choose a set P of prime numbers, compute,

for every p ∈ P , monic polynomials f
(p)
1 , . . . , f

(p)
n satisfying 〈f (p)

i 〉 = Ip ∩ Fp[xi] for

i = 1, . . . , n and finally lift these polynomials via Chinese remainder algorithm and

Farey rational map to (f1, . . . , fn) ∈ Q[x1]× . . .×Q[xn].

Definition 3.4. Let (f1, . . . , fn) ∈ Q[x1] × . . . × Q[xn] satisfy 〈fi〉 = I ∩ Q[xi] for

i = 1, . . . , n. 10

(1) If (f
(p)
1 , . . . , f

(p)
n ) ∈ Fp[x1]× . . .×Fp[xn] satisfies 〈f (p)

i 〉 = Ip∩Fp[xi] for i = 1, . . . , n,

then the prime number p is called lucky for I if and only if deg(fi) = deg(f
(p)
i ) for

i = 1, . . . , n. Otherwise p is called unlucky for I.

(2) A set P of lucky primes for I is called sufficiently large for I if and only if
∏

p∈P p ≥
max{2 · |c|2 | c coefficient occuring in f1, . . . , fn}.

10By abuse of notation we use the same terminology as in Definition 2.1 since it is always clear from
context which definition we are referring to.
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After having computed the set FP := {(f (p)
1 , . . . , f

(p)
n ) | p ∈ P} we delete the unlucky

primes in the following way.

deleteUnluckyPrimesRad: We define an equivalence relation on (FP, P ) by

(F (p), p) ∼ (F (q), q) :⇐⇒ deg(f
(p)
i ) = deg(f

(q)
i ) for i = 1, . . . , n. Then the equivalence

class of largest cardinality is stored in (FP, P ), the others are deleted.

With the aid of this method we are able to choose a set of lucky primes with high
probability. A faulty decision will be compensated by the subsequent test whether fi ∈ I
for i = 1, . . . , n.

Since we cannot predict if a given set of primes P is sufficiently large for I, we have
to proceed by trial and error as already described in section 2.

Algorithm 2 computes the radical of I. 11

Algorithm 2 zeroRadical

Input: I = 〈GI〉 ⊆ Q[X ] a zero–dimensional ideal generated by a Gröbner basis GI

w.r.t. some global ordering.
Output: G ⊆ Q[X ] a Gröbner basis of the radical of I w.r.t. a degree–ordering.

choose P , a list of random primes;
FP = ∅;
loop

for p ∈ P do

compute monic polynomials f
(p)
i such that

〈

f
(p)
i

〉

= Ip ∩ Fp[xi] for i = 1, . . . , n;

FP = FP ∪ {(f (p)
1 , . . . , f

(p)
n )};

(FP, P ) = deleteUnluckyPrimesRad(FP, P );
lift (FP, P ) to (f1, . . . , fn) ∈ Q[x1]× . . .×Q[xn] by applying Chinese remainder and
Farey rational map;
use GI to test if fi ∈ I for i = 1, . . . , n;
if fi ∈ I for all i = 1, . . . , n then

exit loop;
enlarge P ;

for i = 1, . . . , n do

compute gi, the squarefree part of fi;
I = I + 〈g1, . . . , gn〉;
compute G ⊆ Z[X ], a Q[X ]–Gröbner basis of I w.r.t. a degree–ordering; 12

return G;

If the pTestRad is positive then, with high probability, after a generic coordinate
change it holds dimQ(Q[xn]/(I ∩Q[xn])) = d. In this case it is not necessary to compute
the radical of I and we rely on the following corollary.

Corollary 3.5. Let I ⊆ Q[X ] be a zero–dimensional ideal and r = xn +
∑n−1

i=1 aixi with
a1, . . . , an−1 ∈ Z. Let F ∈ Q[T ], T a variable, such that deg(F ) = dimQ(Q[X ]/I) and
F (r) ∈ I but no proper factor of F (r) is in I. Moreover, let H be the squarefree part of
F . Then

√
I = 〈I,H(r)〉.

11The corresponding procedure is implemented in Singular in the library assprimeszerodim.lib.
12Here we use the procedure modStd as described in section 2.
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Proof. The proof is a consequence of Proposition 3.3(2) and Corollary 3.2. 2

Consequently we need to obtain a polynomial F ∈ Q[T ] satisfying the required proper-
ties of Corollary 3.2 resp. Corollary 3.5. The following lemma is helpful in this direction.

Lemma 3.6. Let K be a field 13 , F ∈ K[T ], T a variable, be monic and squarefree, let

r = xn+
∑n−1

i=1 aixi, a1, . . . , an−1 ∈ K, such that deg(F ) = dimK(K[X ]/I) and F (r) ∈ I
but no proper factor of F (r) is in I.
(1) Let ϕ : K[T ] → K[X ] be defined by ϕ(T ) = r. Then ϕ−1(I) = 〈F 〉.
(2) Let ψ : K[X ] → K[X ] be defined by ψ(xi) = xi for i = 1, . . . , n − 1 and ψ(xn) =

2xn − r. Then ψ(I) ∩K[xn] = 〈F (xn)〉.
(3) Let λ : K[X ]/I → K[X ]/I be the map defined by the multiplication with r, λ(g +

I) = r · g + I. Then F is the characteristic polynomial of λ.

Proof. (1) Since ϕ(F ) = F (r) ∈ I we obtain F ∈ ϕ−1(I). Thus we have 〈F 〉 = ϕ−1(I)
because no proper factor of F (r) is in I.

(2) It holds F (xn) = ψ(F (r)) ∈ ψ(I) by definition of ψ. The assumption implies that
no proper factor of F (xn) is in ψ(I), i.e. 〈F (xn)〉 = ψ(I) ∩K[xn].

(3) Using the map ψ of (2) we may assume r = xn. As in the proof of Corollary
3.2 we obtain I = 〈x1 − h1, . . . , xn−1 − hn−1, F (xn)〉 for suitable h1, . . . , hn−1 ∈
K[xn] since deg(F ) = dimK(K[X ]/I) = d. Hence, we may choose {1, xn, . . . , xd−1

n }
as a basis of K[X ]/I ∼= K[xn]/ 〈F (xn)〉, and obtain the polynomial F to be the
characteristic polynomial of the multiplication with xn.
2

Lemma 3.6 shows that the approach of Eisenbud, Hunecke, Vasconcelos (cf. (EHV92))
using (1) of the lemma, the approach of Gianni, Trager, Zacharias (cf. (GTZ88)) using
(2) of the lemma and the approach of Monico (cf. (M02)) using (3) of the remark are
in principle the same. The computations for (1) resp. (2) require Gröbner bases with
respect to suitable block–orderings whereas in (3) we do not need a special ordering
for the Gröbner basis but we have to compute a determinant. All three algorithms are
implemented in Singular.

Remark 3.7. We can also compute the polynomial F ∈ Q[T ] using modular methods.
For this purpose we compute F (p) ∈ Fp[T ] monic such that

〈

F (p)
〉

= ker(ϕp), where
ϕp : Fp[T ] −→ Fp[X ]/Ip, ϕp(T ) = r mod Ip, for several prime numbers p and preserve
just those F (p) with deg(F (p)) = d. Afterwards we lift the results to F ∈ Q[T ] by applying
Chinese remainder and Farey rational map.

Remark 3.8. If K = C is the field of complex numbers we can use the polynomial F
of Corollary 3.2 to compute the zeros of the ideal I. The zeros of F are the eigenvalues
of the multiplication map λ defined in Lemma 3.6. Let λ1, . . . , λd be the (different)

eigenvalues of λ then I =
⋂d

i=1 〈I, r − λi〉. Moreover, 〈I, r − λi〉 is a maximal ideal in
C[X ] representing a zero of I for i = 1, . . . , d.

Referring to Proposition 3.1, Corollary 3.2 and the above considerations, Algorithm 3
computes the associated primes of I. 14

13We substitute Q by an arbitrary field K since we also need the results of Lemma 3.6 for finite fields.
14The corresponding procedures are implemented in Singular in the library assprimeszerodim.lib.
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Algorithm 3 assPrimes

Input: I ⊆ Q[X ] a zero–dimensional ideal.
Output: L = {M1, . . . ,Ms}, Mi prime and

√
I =

⋂s

i=1Mi.

compute G ⊆ Z[X ], a Q[X ]–Gröbner basis of I w.r.t. a degree–ordering; 15

compute d = dimQ(Q[X ]/I) using G;
choose a1, . . . , an−1 ∈ Z randomly, r = a1x1 + . . .+ an−1xn−1 + xn;
if not pTestRad(d, r,G) then
G = zeroRadical(G);
d = dimQ(Q[X ]/ 〈G〉);

choose P , a list of random primes;
FP = ∅;
l = 0;
loop

for p ∈ P do

compute F (p) ∈ Fp[T ] monic such that
〈

F (p)
〉

= ker(ϕp), whereat ϕp : Fp[T ] −→
Fp[X ]/Ip, ϕp(T ) = r mod Ip;

16

if deg(F (p)) = d then

FP = FP ∪ {F (p)};
if #(FP ) = l then
G = zeroRadical(G);
d = dimQ(Q[X ]/ 〈G〉);
choose a1, . . . , an−1 ∈ Z randomly, r = a1x1 + . . .+ an−1xn−1 + xn;

else

lift (FP, P ) to F ∈ Q[T ] by applying Chinese remainder and Farey rational map;
factorize F = F ν1

1 · · ·F νs
s with F1, . . . , Fs irreducible;

compute F (r) and F1(r), . . . , Fs(r);
if F (r) ∈ I then

if no proper factor of F (r) is in I then

return {〈I, F1(r)〉, . . . , 〈I, Fs(r)〉};
else

choose a non–trivial factor H of F of minimal degree such that H(r) ∈ I;
let Fi1 , . . . , Fit correspond to H ;
return assPrimes(〈I, Fi1(r)〉) ∪ . . . ∪ assPrimes(〈I, Fit(r)〉);

enlarge P ;
l = #(FP );

Remark 3.9. The presented versions of Algorithms 2 and 3 are just pseudo-code whereas

their implementation in Singular is optimized. E.g., the polynomials f
(p)
i ∈ Fp[xi] resp.

F (p) ∈ Fp[T ] for p ∈ P are not computed repeatedly, but stored and reused in further

iteration steps.

Remark 3.10. Algorithm 2 resp. Algorithm 3 can easily be parallelized by computing

the polynomials f
(p)
i ∈ Fp[xi] resp. F

(p) ∈ Fp[T ] in parallel. Experiments indicate that

15Here we use the procedure modStd as described in section 2.
16All approaches mentioned in Lemma 3.6 are applicable to verify this step.
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the difficult and time consuming part of Algorithm 3 is the test whether F (r) ∈ I and the
computation of F1(r), . . . , Fs(r). These s + 1 computations are independent from each
other such that they can also be verified separately in parallel.

Following the idea of one of the referees we tried to avoid the computation of F (r) by
computing a Q[X,T ]–Gröbner basis of 〈I, T − r〉 w.r.t. an elimination ordering (eliminat-
ing X) by using modular methods (cf. section 2) and FGLM–algorithm (cf. (FGLM93)).
In this case we directly compute 〈I, T − r〉Q[X,T ] ∩ Q[T ] = 〈F 〉 and may consequently
omit the verification. Experiments showed that this is as time consuming as the presented
method in Algorithm 3.

Remark 3.11. Knowing the associated primes it is easy to compute the primary ideals
using the method of Shimoyama and Yokoyama (cf. (SY96)): Let M1, . . . ,Ms be the
associated primes of the zero–dimensional ideal I and σ1, . . . , σs a system of separators,
i.e. σi /∈ Mi and σi ∈ Mj for j 6= i, then the saturation of I w.r.t. σi is the primary
ideal corresponding to Mi. Each σi can be chosen as

∏

j 6=imj where mj is an element of
a Gröbner basis of Mj which is not in Mi. The saturation can be computed modularly,
similarly to modStd and in parallel.

4. Examples, timings and conclusion

In this section we provide examples on which we time the algorithms modStd (cf.
section 2) resp. assPrimes (cf. section 3) and their parallelizations as opposed to the usual
algorithms std resp. minAssGTZ 17 implemented in Singular. Timings are conducted
by using the 32-bit version of Singular 3-1-2 on an AMD Opteron 6174 with 48 CPUs,
800 MHz each, 128 GB RAM under the Gentoo Linux operating system. All examples
are chosen from The SymbolicData Project (cf. (G10)).

Remark 4.1. The parallelization of our modular algorithms is attained via multiple
processes organized by Singular library code. Consequently a future aim is to enable
parallelization in the kernel via multiple threads.

We choose the following examples to emphasize the superiority of modular standard
basis computation and especially its parallelization:

Example 4.2. Characteristic: 0, ordering: dp 18 , Cyclic 8.xml (cf. (BF91)).

Example 4.3. Characteristic: 0, ordering: dp, Paris.ilias13.xml (cf. (KoLa99)).

Example 4.4. Characteristic: 0, ordering: dp, homog. Cyclic 7.xml (cf. (BF91)).

Example 4.5. Characteristic: 0, ordering: ds 19 , Steidel 1.xml (cf. (Pf07)).

17The procedure minAssGTZ is implemented in Singular in the library primdec.lib and computes the
minimal associated prime ideals of the input.
18Degree reverse lexicographical ordering: Let Xα,Xβ ∈ Mon(X). Xα >dp Xβ :⇐⇒ deg(Xα) >
deg(Xβ) or (deg(Xα) = deg(Xβ) and ∃ 1 ≤ i ≤ n : αn = βn, . . . , αi−1 = βi−1, αi < βi), where
deg(Xα) = α1 + . . .+ αn; cf. (GP07).
19Negative degree reverse lexicographical ordering: Let Xα,Xβ ∈ Mon(X). Xα >ds Xβ :⇐⇒
deg(Xα) < deg(Xβ) or (deg(Xα) = deg(Xβ) and ∃ 1 ≤ i ≤ n : αn = βn, . . . , αi−1 = βi−1, αi < βi),
where deg(Xα) = α1 + . . .+ αn; cf. (GP07).
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Table 1 summarizes the results where modStd∗(n) denotes the parallelized version of
the algorithm applied on n cores. In all tables, the symbol ”-” indicates out of memory
failures. All timings are given in seconds.

Example std modStd modStd
∗(4) modStd

∗(9) modStd
∗(30)

4.2 - 8271 4120 2927 1138

4.3 37734 1159 676 580 380

4.4 3343 3436 886 408 113

4.5 - 6 3 3 3

Table 1. Total running times for computing a standard basis of the considered examples via
std, modStd and its parallelized variant modStd∗(n) for n = 4, 9, 30.

The basic algorithm std runs out of memory for examples 4.2 and 4.5. As mentioned
in section 2, it is possible to parallelize the computation in several parts of the algorithm
modStd. In many cases it turns out that the final test - the verification whether the lifted
set of polynomials includes the input and is itself a standard basis, see also Remark 2.5 -
is a time consuming part. Therefore we extract the timings for the computation without
the verification test in Table 2, again in seconds.

Example modStdw/o ver. modStd
∗

w/o ver.(4) modStd
∗

w/o ver.(9) modStd
∗

w/o ver.(30)

4.2 7929 3751 2698 920

4.3 941 614 552 370

4.4 52 38 31 36

4.5 6 3 3 3

Table 2. Running times for modStd and modStd
∗(n) with n = 4, 9, 30 without verification test.

We consider the following examples for the computation of the associated prime ideals
of a given zero–dimensional ideal :

Example 4.6. Characteristic: 0, ordering: dp, Becker-Niermann.xml (cf. (DGP98)).

Example 4.7. Characteristic: 0, ordering: dp, FourBodyProblem.xml (cf. (BM10)).

Example 4.8. Characteristic: 0, ordering: dp, Reimer 5.xml (cf. (BM10)).

Example 4.9. Characteristic: 0, ordering: lp 20 , ZeroDim.example 12.xml (cf. (G10)).

Example 4.10. Characteristic: 0, ordering: dp, Cassou 1.xml (cf. (BM10)).

Using modular methods via the algorithm assPrimes we apply all three variants
mentioned in section 3.

20Lexicographical ordering: Let Xα, Xβ ∈ Mon(X). Xα >lp Xβ :⇐⇒ ∃ 1 ≤ i ≤ n : α1 =
β1, . . . , αi−1 = βi−1, αi > βi; cf. (GP07).
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(1) approach of Eisenbud, Hunecke, Vasconcelos (cf. (EHV92)),
(2) approach of Gianni, Trager, Zacharias (cf. (GTZ88)),
(3) approach of Monico (cf. (M02)).

We summarize the results of the timings in Table 3 and 4 where assPrimes∗(n) denotes
the parallelized version of the algorithm applied on n cores.

Example minAssGTZ assPrimes assPrimes
∗(4) assPrimes

∗(9)

(1) (2) (3) (1) (2) (3) (1) (2) (3)

4.6 - 1 1 0 1 1 1 1 1 1

4.7 - 169 169 188 104 98 104 95 100 105

4.8 - 129 131 230 90 87 114 76 77 103

4.9 189 4 5 5 10 8 8 8 8 8

4.10 589 35 35 35 24 23 19 25 24 25

Table 3. Total running times for computing the associated prime ideals of the considered
examples via minAssGTZ, assPrimes and its parallelized variant assPrimes∗(n) for n = 4, 9.

The usual algorithm minAssGTZ runs out of memory for examples 4.6, 4.7 and 4.8.
Analogously to the modular standard basis algorithm, we also list the timings needed for
assPrimes resp. assPrimes∗(n) without the final verification step - the check whether
F (r) ∈ I and the computation of F1(r), . . . , Fs(r), see also Remark 3.10 - in Table 4.

Example assPrimesw/o ver. assPrimes
∗

w/o ver.(4) assPrimes
∗

w/o ver.(9)

(1) (2) (3) (1) (2) (3) (1) (2) (3)

4.6 1 1 0 1 0 0 1 1 1

4.7 15 14 34 7 7 13 5 5 15

4.8 41 37 139 39 38 64 30 26 55

4.9 4 5 5 9 8 8 8 8 8

4.10 7 6 7 5 5 5 5 4 6

Table 4. Running times for assPrimes and assPrimes
∗(n) with n = 4, 9 without final verifi-

cation step.

Final Remarks and Conclusion 4.11.

(1) For the computation of Gröbner bases resp. standard bases of ideals I ⊆ Q[X ]
w.r.t. global resp. local orderings modStd should be used. This is usually faster
even without parallel computing.

(2) The probabilistic algorithm to compute standard bases works without any restric-
tion to the ordering. It is much faster than the deterministic one. It can be used to
obtain ideas in Algebraic Geometry and other fields by computing several examples,
similarly to computations in positive characteristic 20 years ago when computations
of standard bases in characteristic zero have been impossible resp. too slow.
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(3) A kernel–implementation of modStd could speed up the modular part using the
trace–algorithm of Traverso (cf. (T89)).

(4) We also implemented a variant for modular computing of Gröbner bases using p–
adic lifting of the coefficients of a Gröbner basis modulo p for a random prime p.
This requires to compute the so–called conversion matrix modulo p, i.e. a matrix
which represents the Gröbner basis in terms of the generators of the input ideal.
It turned out that this is more expensive than using several primes and Chinese
remainder combined with rational reconstruction. In addition, we tested the idea
of Gräbe (cf. (G93)) to compute the conversion matrix and a syzygy matrix for
the input to replace Chinese remainder and rational reconstruction by a system
of linear equations with coefficients in Q whose solution gives the unique lifting
of the Gröbner basis. This turned out to be slower than our approach because the
computation of the conversion matrix takes more time than Chinese remainder and
rational reconstruction.

(5) An increasing number of cores used during the parallel computation of standard
bases resp. associated primes speeds up the computation if the corresponding prob-
lem in positive characteristic takes some time to be computed. If the computations
in positive characteristic are fast then an increasing number of cores may slow down
the computations because of too much overhead.

(6) In the current implementation Chinese remainder and Farey fractions are not paral-
lelized. Experiments (e.g. the computation of the Gröbner basis of Cyclic 9) show
that the computations in positive characteristic need different time on different
cores. Therefore one should apply Chinese remainder and Farey fractions already
to partial results. This could save about 3% computing time.

(7) For zero–dimensional primary decomposition the modular approach is very efficient.
This should be extended to higher–dimensional ideals.
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[G10] Gräbe, H.-G.: The SymbolicData Project — Tools and Data for Testing Com-
puter Algebra Software. http://www.symbolicdata.org (2010).

[GP07] Greuel, G.-M.; Pfister, G.: A Singular Introduction to Commutative Alge-
bra. Second edition, Springer (2007).

[GTZ88] Gianni, P.; Trager, B.; Zacharias, G.: Gröbner Bases and Primary Decom-
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[Pa92] Pauer, F.: On lucky ideals for Gröbner bases computations. Journal of Sym-
bolic Computation 14, 471–482 (1992).

[Pf07] Pfister, G.: On Modular Computation of Standard Basis. Analele Stiintifice
ale Universitatii Ovidius, Mathematical Series XV (1), 129–137 (2007).

[ST89] Sasaki, T.; Takeshima, T.: A modular method for Gröbner-basis construction
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