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Abstract Let u : A→ A′ be a regular morphism of Noetherian rings and B an A-
algebra of finite type. Then any A-morphism v : B→ A′ factors through a smooth
A-algebra C, that is v is a composite A-morphism B→C→ A′. This theorem called
General Neron Desingularization was first proved by the second author [8]. Later
different proofs were given by André [1], Swan [12] and Spivakovsky [11]. All the
proofs are not constructive. In [6] the authors gave a constructive proof together with
an algorithm to compute the Neron Desingularization for 1-dimensional local rings.
In this paper we go one step further. We give an algorithmic proof of the General
Neron Desingularization theorem for 2-dimensional local rings and morphisms with
small singular locus. The main idea of the proof is to reduce the problem to the
one-dimensional case. Based on this proof we give an algorithm to compute the
desingularization.
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1 Introduction

The General Neron Desingularization Theorem, first proved by the second author
has many important applications. One application is the generalization of Artin’s
famous approximation theorem (Artin [2], Popescu [9], [10]).
Let us recall some definitions. A ring morphism u : A→ A′ has regular fibers if for
all prime ideals P ∈ SpecA the ring A′/PA′ is a regular ring, i.e. its localizations
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are regular local rings. It has geometrically regular fibers if for all prime ideals P ∈
SpecA and all finite field extensions K of the fraction field of A/P the ring K⊗A/P
A′/PA′ is regular. If for all P ∈ SpecA the fraction field of A/P has characteristic
0 then the regular fibers of u are geometrically regular fibers. A flat morphism u is
regular if its fibers are geometrically regular. If u is regular of finite type then u is
called smooth. A localization of a smooth algebra is called essentially smooth.

Theorem 1. (General Neron Desingularization, André [1], Popescu [8], [9], [10],
Swan [12], Spivakovsky [11]) Let u : A→ A′ be a regular morphism of Noetherian
rings and B an A-algebra of finite type. Then any A-morphism v : B→ A′ factors
through a smooth A-algebra C, that is v is a composite A-morphism B→C→ A′.

The proof of this theorem is not constructive. Constructive proofs for one-
dimensional rings were given in A. Popescu, D. Popescu [7], and Pfister, Popescu
[6]. In this paper we will treat the 2-dimensional case. The idea is to reduce the
problem to the one-dimensional case. We will choose a suitable element a ∈ A and
consider Ā = A/aA, B̄ = Ā⊗A B, Ā′ = A′/aA′, v̄ = Ā⊗A v : B̄→ Ā′ to find a desin-
gularization B̄→ D̄→ Ā′ induced by a smooth A-algebra D. This desingularization
can then be lifted to a desingularization B→ D→ A′.

For the computational part we have the following assumptions: Let k be a field,
x = (x1, . . . ,xn) and J ⊂ k[x] be an ideal. We assume

A = (k[x]/J)<x> is Cohen-Macaulay of dimension 2, A′ is its completion

and u the inclusion. The images of the morphism v : B→ A′ need not to be in A, i.e.
the input for the algorithm can only be an approximation of v by polynomials up
to a given bound. The bound to obtain a desingularization of v depends also on the
ring B and is usually not known in advance. If the given bound is not good enough
the algorithm will fail. In this case the bound has to be enlarged and the algorith has
to be restarted with new approximations of v.
The case that the image of v is already in A is trivial because in this case we can use
the smooth A-algebra C = A as desingularization.

2 Constructive General Neron Desingularization

Let u : A→ A′ be a flat morphism of Noetherian local rings of dimension 2. Suppose
that the maximal ideal m of A generates the maximal ideal of A′ and the completions
of A,A′ are isomorphic. Moreover suppose that A′ is Henselian, and u is a regular
morphism.

Let B = A[Y ]/I, Y = (Y1, . . . ,Yn). If f = ( f1, . . . , fr), r ≤ n is a system of polyno-
mials from I then we can define the ideal

∆ f generated by all r× r-minors of the Jacobian matrix (∂ fi/∂Yj).

After Elkik [4] let HB/A be the radical of the ideal ∑ f (( f ) : I)∆ f B, where the sum is
taken over all systems of polynomials f from I with r ≤ n. Then for p ∈ SpecB
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Bp is essentially smooth over A if and only if p 6⊃ HB/A

by the Jacobian criterion for smoothness. Thus HB/A measures the non smooth locus
of B over A. B is standard smooth over A if there exists f in I as above such that

B = (( f ) : I)∆ f B.

The aim of this paper is to give an algorithmic proof of the following theorem.

Theorem 2. Any A-morphism v : B→A′ such that v(HB/A)A′ is mA′-primary factors
through a standard smooth A-algebra B′.

Proof. The idea is to find a suitable element a ∈ A such that we can use the one-
dimensional result obtained for Ā = A/(a), B̄ = Ā⊗A B, Ā′ = A′/(aA′), v̄ = Ā⊗A v
to find a desingularization D̄ induced by a standard smooth A-algebra D (Lemma 2).
This desingularization can then be lifted using D. To simplify the proof we assume
that A is Cohen-Macaulay.

We choose γ,γ ′ ∈ v(HB/A)A′∩A such that γ,γ ′ is a regular sequence in A, let us
say

γ = ∑
q
i=1 v(bi)zi, γ ′ = ∑

q
i=1 v(bi)z′i for some 1 bi ∈ HB/A and zi,z′i ∈ A′.

Set B0 = B[Z,Z′]/( f , f̃ ), where f = −γ +∑
q
i=1 biZi ∈ B[Z], Z = (Z1, . . . ,Zq), f̃ =

−γ ′+∑
q
i=1 biZ′i ∈ B[Z′], Z′ = (Z′1, . . . ,Z

′
q) and let v0 : B0 → A′ be the map of B-

algebras given by Z → z, Z′ → z′. Replacing B by B0 we may suppose that γ,γ ′ ∈
HB/A.

We need the following lemmata.

Lemma 1. 1. ([8, Lemma 3.4]) Let B1 be the symmetric algebra SB(I/I2) of I/I2

over2 B. Then HB/AB1 ⊂HB1/A and (ΩB1/A)γ is free over (B1)γ for any γ ∈HB/A.
2. ([12, Proposition 4.6]) Suppose that (ΩB/A)γ is free over Bγ . Let I′ = (I,Y ′) ⊂

A[Y,Y ′], Y ′ = (Y ′1, . . . ,Y
′
n). Then (I′/I′2)γ is free over Bγ .

3. ([10, Corollary 5.10]) Suppose that (I/I2)γ is free over Bγ . Then a power of γ is
in ((g) : I)∆g for some g = (g1, . . .gr), r ≤ n in I.

Using (1) of Lemma 1 we can reduce the proof of Theorem 2.1 to the case when
ΩBγ/A and ΩB

γ ′/A are free over Bγ respectively Bγ ′ . Let B1 be given by (1) of Lemma

1. The inclusion B⊂B1 has a retraction w which maps I/I2 to zero. For the reduction
we change B,v by B1,vw.

Using (2) from Lemma 1 we may reduce the proof to the case when (I/I2)γ

(resp. (I/I2)γ ′ ) is free over Bγ (resp. Bγ ′ ). Indeed, since ΩBγ/A is free over Bγ we see

1 For the algorithm we have to choose γ,γ ′ more carefully: γ ≡ ∑
q
i=1 bi(y′)zi modulo (γ t ,γ ′t),

γ ′ ≡ ∑
q
i=1 bi(y′)z′i modulo (γ t ,γ ′t) with zi,z′i ∈ A, and y′i ≡ v(Yi) modulo mN in A , N >> 0.

2 Let M be a finitely represented B-module and Bm (ai j)−−→ Bn→M→ 0 a presentation then SB(M) =

B[T1, . . . ,Tn]/J with J = ({
n
∑

i=1
ai jTi} j=1,...,m).
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that changing I with (I,Y ′) ⊂ A[Y,Y ′] we may suppose that (I/I2)γ is free over Bγ .
Similarly, for γ ′.

Using (3) from Lemma 1 we may reduce the proof to the case when a power of
γ (resp. γ ′) is in (( f ) : I)∆ f (resp. (( f ′) : I)∆ f ′ ) for some f = ( f1, . . . fr), r ≤ n and
f ′ = ( f ′1, . . . f ′r′), r′ ≤ n from I.

We may now assume that a power d (resp. d′) of γ (resp. γ ′) has the form

d ≡ P = ∑
q
i=1 MiLi modulo I, d′ ≡ P′ = ∑

q′
i=1 M′i L

′
i modulo I

for some r× r (resp. r′× r′) minors Mi (resp. M′i ) of (∂ f/∂Y ) (resp. (∂ f ′/∂Y ))
and Li ∈ (( f ) : I) (resp. L′i ∈ (( f ′) : I)).

The Jacobian matrix (∂ f/∂Y ) (resp. (∂ f/∂Y )) can be completed with (n− r)
(resp. (n− r′)) rows from An obtaining a square n matrix Hi (resp. H ′i ) such that
detHi = Mi (resp. detH ′i = M′i ). This is easy using just the integers 0,1.

Let Ā = A/(d3), B̄ = Ā⊗A B, Ā′ = A′/(d3A′), v̄ = Ā⊗A v. We will now construct
a standard smooth A-algebra D and an A-morphism ω : D→ A′ such that y = v(Y )∈
ℑω +d3A′.

Lemma 2. There exists a standard smooth A-algebra D such that v̄ factors through
D̄ = Ā⊗A D.

Proof. Let y′ ∈ An be such that y = v(Y )≡ y′ modulo (d3,d′3)A′, let us say y−y′ ≡
d′2ε modulo d3 for ε ∈ d′A′n. Thus

I(y′)≡ 0 modulo (d3,d′3)A′.

Recall that we have d′ ≡ P′ modulo I and so P′(y′)≡ d′ modulo (d3,d′3) in A. Thus

P′(y′)≡ d′s modulo d3 for a certain s ∈ A with s≡ 1 modulo d′.

Let G′i be the adjoint matrix of H ′i and Gi = L′iG
′
i. We have GiH ′i = H ′i Gi = M′i L

′
iIdn

and so

P′(y′)Idn = ∑
q′
i=1 Gi(y′)H ′i (y

′).

But H ′i is the matrix 3 (∂ f ′k/∂Yj)k∈[r′], j∈[n] completed with some (n− r′) rows of
0, 1. Especially we obtain

(∂ f ′/∂Y )Gi = M′i L
′
i(Idr′ |0). (1)

Then ti := H ′i (y
′)ε ∈ d′A′n satisfies

Gi(y′)ti = M′i(y
′)L′i(y

′)ε

and so
q

∑
i=1

Gi(y′)ti = P′(y′)ε ≡ d′sε modulo d3.

3 We use the notation [n] = {1, . . . ,n}.
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It follows that

s(y− y′)≡ d′
q′

∑
i=1

Gi(y′)ti modulo d3.

Note that ti j = ti1 for all i ∈ [r′] and j ∈ [n] because the first r′ rows of H ′i does not
depend on i (they are the rows of (∂ f ′/∂Y )).

Let

h = s(Y − y′)−d′
q′

∑
i=1

Gi(y′)Ti, (2)

where Ti = (T1, . . . ,Tr′ ,Ti,r′+1 . . . ,Ti,n), i ∈ [q′] are new variables. We will use also
Ti j = Ti for i ∈ [r′], j ∈ [n] because it is convenient sometimes. The kernel of the
map φ̄ : Ā[Y,T ]→ Ā′ given by Y → y, T → t contains h modulo d3. Since

s(Y − y′)≡ d′
q′

∑
i=1

Gi(y′)Ti modulo h

and

f ′(Y )− f ′(y′)≡∑
j
(∂ f ′/∂Yj)(y′)(Yj− y′j) modulo higher order terms in Yj− y′j

by Taylor’s formula. We see that for p′ = maxi deg f ′i we have

sp′ f ′(Y )− sp′ f ′(y′)≡∑
j

sp′−1d′(∂ f ′/∂Yj)(y′)
q′

∑
i=1

Gi j(y′)Ti j +d′2Q modulo h (3)

where Q ∈ T 2A[T ]r
′
. We have f ′(y′)≡ d′2b′ modulo d3 for some b′ ∈ d′Ar′ . Then

gi = sp′b′i + sp′Ti +Qi, i ∈ [r′] (4)

modulo d3 is in the kernel of φ̄ . Indeed, we have sp′ f ′i = d′2gi modulo (h,d3) be-
cause of (3). Thus d′2φ̄(g) = d′2g(t) ∈ (h(y, t), f ′(y)) ∈ d3A′ and so g(t) ∈ d3A′, be-
cause u is flat and d′ is regular on A/(d3). Set E = Ā[Y,T ]/(I,g,h) and let ψ̄ : E→ Ā′

be the map induced by φ̄ . Clearly, v̄ factors through ψ̄ because v̄ is the composed

map B̄ = Ā[Y ]/I→ E
ψ̄−→ Ā′.

We will see, there are s′,s′′ ∈ E such that Ess′s′′ is smooth over Ā and ψ̄ factors
through Ess′s′′ .

Note that the r′ × r′-minor s′ of (∂g/∂T ) given by the first r′-variables T is
from sr′p′ + (T ) ⊂ 1 + (d′,T ) because Q ∈ (T )2. Then V = (Ā[Y,T ]/(h,g))ss′ is
smooth over Ā. As in [6] we claim that IĀ[Y,T ] ⊂ (h,g)Ā[Y,T ]ss′s′′ for some s′′ ∈
1+(d′,d3,T )A[Y,T ]. Indeed, we have

P′IĀ[Y,T ]⊂ ( f ′)A[Y,T ]⊂ (h,g)Ā[Y,T ]s
and so

P′(y′+ s−1d′G(y′)T )I ⊂ (h,g,d3)A[Y,T ]s.
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Since P′(y′+ s−1d′G(y′)T ) ∈ P′(y′)+d′(T )V we get

P(y′+ s−1d′G(y′)T )≡ d′s′′ modulo d3

for some s′′ ∈ 1+(T )A[Y,T ]. It follows that s′′I ⊂ (((h,g) : d′),d3)A[Y,T ]ss′ . Thus
s′′I is contained modulo d3 in (0 :V d′) = 0 because d′ is regular on V , the map
Ā→ V being flat. This shows our claim. It follows that I ⊂ (d3,h,g)A[Y,T ]ss′s′′ .
Thus Ess′s′′

∼=Vs′′ is a B̄-algebra which is also standard smooth over Ā.
As u(s) ≡ 1 modulo d′ and ψ̄(s′), ψ̄(s′′) ≡ 1 modulo (d′,d3, t), d,d′, t ∈ mA′

we see that u(s), ψ̄(s′), ψ̄(s′′) are invertible because A′ is local. Thus ψ̄ (and so v̄)
factors through the standard smooth Ā-algebra Ess′s′′ , let us say by ω̄ : Ess′s′′ → Ā′.

Now, let Y ′ = (Y ′1, . . . .Y
′
n), and D be the A-algebra isomorphic with

(A[Y,T ]/(I,h,g))ss′s′′ by Y ′→ Y , T → T .

Since A′ is Henselian we may lift ω̄ to a map (A[Y,T ]/(I,h,g))ss′s′′ → A′ which will
correspond to a map ω : D→ A′. Then v̄ factors 4 through D̄, let us say B̄→ D̄→ Ā′,
where the first map is given by Y → Y ′. This proves the lemma 2.

To continue with the proof of Theorem 2.1 let δ be the A-morphism defined by

δ : B⊗A D∼= D[Y ]/ID[Y ]→ A′, b⊗λ → v(b)ω(λ ).

Claim: δ factors through a special finite type B⊗A D-algebra Ẽ.
The proof will follow the proof of Lemma 2. Note that the map B̄→ D̄ is given by

Y → Y ′+d3D. Thus I(Y ′)≡ 0 modulo d3D. Set ỹ = ω(Y ′). Since v̄ factors through
ω̄ we get

y− ỹ = v(Y )− ỹ ∈ d3A′n, let us say y− ỹ = d2ν for ν ∈ dA′n.

Recall that P = ∑i Li detHi for Li ∈ (( f ) : I). We have d ≡ P modulo I and so
P(Y ′) ≡ d modulo d3 in D because I(Y ′) ≡ 0 modulo d3D. Thus P(Y ′) = ds̃ for a
certain s̃ ∈D with s̃≡ 1 modulo d. Let G̃′i be the adjoint matrix of Hi and G̃i = LiG̃′i.
We have ∑i G̃iHi = ∑i HiG̃i = PIdn and so

ds̃Idn = P(Y ′)Idn = ∑
i

G̃i(Y ′)Hi(Y ′).

But Hi is the matrix (∂ fi/∂Yj)i∈[r], j∈[n] completed with some (n− r) rows from
0,1. Especially we obtain

(∂ f/∂Y )∑
i

G̃i = (PIdr|0). (5)

Then t̃i := ω(Hi(Y ′))ν ∈ dA′n satisfies

∑
i

G̃i(Y ′)t̃i = P(Y ′)ν = ds̃ν

and so
4 Note that v does not necessarily factors through D.
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s̃(y− ỹ) = d ∑
i

ω(G̃i(Y ′))t̃i.

Let
h̃ = s̃(Y −Y ′)−d ∑

i
G̃i(Y ′)T̃i, (6)

where T̃ = (T̃1, . . . , T̃n) are new variables. The kernel of the map φ̃ : D[Y, T̃ ]→ A′

given by Y → y, T̃ → t̃ contains h̃. Since

s̃(Y −Y ′)≡ d ∑
i

G̃i(Y ′)T̃i modulo h̃

and
f (Y )− f (Y ′)≡∑

j
(∂ f/∂Yj)((Y ′)(Yj−Y ′j)

modulo higher order terms in Yj −Y ′j , by Taylor’s formula we see that for p =
maxi deg fi we have

s̃p f (Y )− s̃p f (Y ′)≡∑
j

s̃p−1d(∂ f/∂Yj)(Y ′)∑
i

G̃i j(Y ′)T̃i j +d2Q̃ (7)

modulo h̃ where Q̃ ∈ T̃ 2D[T̃ ]r. We have f (Y ′) = d2b̃ for some b̃ ∈ dDr. Then

g̃i = s̃pb̃i + s̃pT̃i + Q̃i, i ∈ [r] (8)

is in the kernel of φ̃ . Indeed, we have s̃p fi = d2g̃i modulo h̃ because of (7) and
P(Y ′) = ds̃. Thus d2φ(g̃) = d2g̃(t) ∈ (h̃(y, t̃), f (y)) = (0) and so g̃(t̃) = 0. Set Ẽ =
D[Y, T̃ ]/(I, g̃, h̃) and let ψ̃ : Ẽ → A′ be the map induced by φ̃ . Clearly, v factors
through ψ̃ because v is the composed map

B→ B⊗A D∼= D[Y ]/I→ Ẽ
ψ̃−→ A′.

Finally we will prove that there exist s̃′, s̃′′ ∈ Ẽ such that Ẽs̃s̃′ s̃′′ is standard smooth
over A and ψ̃ factors through Ẽs̃s̃′ s̃′′ .

Note that the r× r-minor s̃′ of (∂ g̃/∂ T̃ ) given by the first r-variables T̃ is from
s̃rp +(T̃ ) ⊂ 1+(d, T̃ ) because Q̃ ∈ (T̃ )2. Then Ṽ = (D[Y, T̃ ]/(h̃, g̃))s̃s̃′ is smooth
over D. We claim that I ⊂ (h̃, g̃)D[Y, T̃ ]s̃s̃′ s̃′′ for some other s̃′′ ∈ 1+(d, T̃ )D[Y, T̃ ].
Indeed, we have

PID[Y ]⊂ ( f )D[Y ]⊂ (h̃, g̃)D[Y, T̃ ]s̃

and so

P(Y ′+ s̃−1d ∑i G̃i(Y ′)T̃i)I ⊂ (h̃, g̃)D[Y, T̃ ]s̃.

Since P(Y ′+ s̃−1d ∑i G̃i(Y ′)T̃i) ∈ P(Y ′)+ d(T̃ ) we get P(Y ′+ s̃−1d ∑i G̃i(Y ′)T̃i) =
ds̃′′ for some s̃′′ ∈ 1+(T̃ )D[Y, T̃ ]. It follows that s̃′′I ⊂ ((h̃, g̃) : d)D[Y, T̃ ]s̃s̃′ . Thus
s̃′′I⊂ (0 :Ṽ d) = 0, which shows our claim. It follows that I⊂ (h̃, g̃)D[Y, T̃ ]s̃s̃′ s̃′′ . Thus
Ẽs̃s̃′ s̃′′

∼= Ṽs̃′′ is a B-algebra which is also standard smooth over D and A.



8 Gerhard Pfister and Dorin Popescu

As ω(s̃) ≡ 1 modulo d and ψ̃(s̃′), ψ̃(s̃′′) ≡ 1 modulo (d, t̃), d, t̃ ∈ mA′ we see
that ω(s̃), ψ̃(s̃′), ψ̃(s̃′′) are invertible because A′ is local. Thus ψ̃ (and so v) factors
through the standard smooth A-algebra B′ = Ẽs̃s̃′ s̃′′ . This proves Theorem 2.

3 The Algorithm

Now we want to apply Theorem 2 to compute the Neron desingularization. We
assume A = (k[x]/J)<x> is Cohen-Macaulay of dimension 2, A′ is the completion of
A and u the inclusion. The morphism v : B→ A′ will be given by an approximation,
polynomials up to a given bound. We obtain the following algorithms (which will be
implemented in SINGULAR as a library). The algorithm prepareDesingularization
corresponds to Lemma 1 in the proof of Theorem 2.

Algorithm 1 prepareDesingularization
Input: A := k[x](x)/J given by J = (h1, . . . ,hp)⊆ k[x],x = (x1, . . . ,xt),k a field

B := A[Y ]/I given by I = (g1, . . . ,gl)⊆ k[x,Y ],Y = (Y1, . . . ,Yn)
and y′ = (y′1, . . . ,y

′
n) ∈ k[x]n such that HB/A(y′) is zero-dimensional

Output: B := A[Y ]/I given by I = (g1, . . . ,gl)⊆ k[x,Y ],Y = (Y1, . . . ,Yn), y′ = (y′1, . . . ,y
′
n) ∈ k[x]n,

f , f ′ ∈ I and d, d′ a regular sequence in A, d ∈ (( f ) : I)∆ f resp. d′ ∈ (( f ′) : I)∆ f ′ , such that
(I/I2)d resp. (I/I2)d′ are free Bd resp. Bd′ modules.

1: compute HB/A = (b1, . . . ,bq)B and HB/A∩A
2: if dimA/HB/A∩A = 0 then
3: choose γ,γ ′ ∈ HB/A∩A, a regular sequence in A
4: else
5: choose γ,γ ′ ∈ HB/A(y′), a regular sequence in A

write
γ ≡ ∑

q
i=1 bi(y′)y′i+n modulo (γ t ,γ ′t), γ ′ ≡ ∑

q
i=1 bi(y′)y′i+n+q modulo (γ t ,γ ′t) for some t

and y′j ∈ k[x]
6: gl+1 :=−γ +∑

q
i=1 biYi+n, gl+2 :=−γ ′+∑

q
i=1 biYi+n+q,

Y := (Y1, . . . ,Yn+2q); y′ := (y′1, . . . ,y
′
n+2q); I := (g1, . . . ,gl+2); l := l + 2; n := n+ 2q;

B := A[Y ]/I.
7: B := SB(I/I2), y′ trivially extended
8: write

B := A[Y ]/I, n := |Y |, Y := Y,Z, Z = (Z1, . . . ,Zn), I := (I,Z), B := A[Y ]/I, y′ trivially ex-
tended

9: compute f = ( f1, . . . , fr), and f ′ = ( f ′1, . . . , f ′r′ ) such that
a power d of γ , resp. d′ of γ ′ is in (( f ) : I)∆ f , resp. in (( f ′) : I)∆ ′f

10: return B,y′, f , f ′,d,d′

The next algorithm corresponds to Lemma 2 in the proof of Theorem 2.



Neron Desingularization for Two Dimensional Rings 9

Algorithm 2 reductionToDimensionOne
Input: A := k[x](x)/J given by J = (h1, . . . ,hp)⊆ k[x],x = (x1, . . . ,xt),k a field

B := A[Y ]/I given by I = (g1, . . . ,gl)⊆ k[x,Y ],Y = (Y1, . . . ,Yn), y′ = (y′1, . . . ,y
′
n) ∈ k[x]n , f ′ =

( f ′1, . . . , f ′r′ ), d′, d ∈ A and {H ′i ,L′i} such that d′ ≡ P′ = ∑
q′
i=1det (H ′i )L

′
i modulo I

Output: D := (A[Y ′,T ]/(I,g,h))ss′s′′ given by I,g,h,s,s′,s” ∈ k[x,Y ′,T ],Y ′ := (Y ′1, . . . ,Y
′
n);

1: write
P′(y′) = d′s modulo d3 for s ∈ A, s≡ 1 modulo d′

2: for i = 1 to q′ do
3: compute G′i the adjoint matrix of H ′i and Gi = L′iG

′
i

4: h := s(Y − y′)−d′∑i Gi(y′)Ti, Ti = (T1, . . . ,Tr′ ,Ti,r′+1, . . . ,Ti,n)
5: p′ := maxi{deg f ′i }
6: write

sp′ f ′(Y )− sp′ f ′(y′) = ∑ j sp′−1d′∂ f ′/∂Y (y′)∑i Gi j(y′)Ti j +d′2Q modulo h
7: write f ′(y′) = d′2b′ modulo d3

8: for i = 1 to r′ do
9: gi := sp′b′i + sp′Ti +Qi

10: compute s′ the r′-minor of (∂g/∂T ) given by the first r′ variables and s′′ such that
P(y′+ s−1d′∑i Gi(y′)T ) = d′s′′ modulo d3

11: D := (A[Y ′,T ]/(I,g,h))ss′s′′ ; Y ′ := (Y ′1, . . . ,Y
′
n); g := g(Y ′); I := I(Y ′); h := h(Y ′)

12: return D

Algorithm 3 NeronDesingularization
Input: N ∈ Z>0 a bound

A := k[x](x)/J given by J = (h1, . . . ,hp)⊆ k[x],x = (x1, . . . ,xt),k a field
B := A[Y ]/I given by I = (g1, . . . ,gl)⊆ k[x,Y ],Y = (Y1, . . . ,Yn) v : B→ A′ ⊆ K[[x]]/JK[[x]] an
A-morphism given by y′ = (y′1, . . . ,y

′
n) ∈ k[x]n, approximations modulo (x)N of v(Y ).

Output: A Neron desingularization of v : B→ A′ or the message ”the bound is too small”
1: (B,y′, f , f ′,d,d′):=prepareDesingularization(A,B,y′)
2: if (d3,d′3) 6⊇ (x)N then
3: return ”the bound is too small”
4: choose r-minors Mi (resp. r′-minors M′i ) of (∂ f/∂Y ), (resp. (∂ f ′/∂Y )) and Li ∈ (( f ) : I),

(resp. L′i ∈ (( f ′) : I)) such that
for P = ∑i MiLi (resp. P′ = ∑i M′i L

′
i), d ≡ P modulo I (resp. d′ ≡ P′ modulo I)

5: complete the Jacobian matrix (∂ f/∂Y ) (resp. (∂ f ′/∂Y )) by (n− r) (resp. (n− r′) rows of 0,1
to obtain square matrices Hi (resp. H ′i ) such that

detHi = Mi (resp. detH ′i = M′i )
6: D:=reductionToDimensionOne(A,B,y′, f ′,d′,d,{H ′i ,L′i})
7: write P(Y ′) = ds̃; s̃≡ 1 modulo d
8: compute G̃′i the adjoint matrix of Hi and G̃i = LiG̃′i
9: h̃ := s̃(Y −Y ′)−d ∑

q
i=1 G̃iT̃i, T̃i = (T̃1, . . . , T̃r, T̃i,r+1, . . . , T̃i,n)

10: p := maxi{deg fi}
11: write s̃p f (Y )− s̃p f (Y ′) = ∑ j s̃p−1d∂ f/∂Y (Y ′)∑i G̃i j(Y ′)T̃i j +d′2Q̃ modulo h̃ and
12: write f (Y ′) = d2b̃, b̃ ∈ dDr

13: for i = 1 to r do
14: g̃i := s̃pb̃i + s̃pT̃i + Q̃i
15: compute s̃′ the r× r-minors of (∂ g̃/∂ T̃ ) given by the first r variables of T̃
16: compute s̃′′ such that

P(Y ′+ s̃−1d ∑i G̃i(Y ′)T̃ ) = ds̃′′

17: return D[Y, T̃ ]/(I, g̃, h̃)s̃s̃′ s̃′′
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