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Abstract. We present an algorithm to compute a primary decomposition

of an ideal in a polynomial ring over the integers. For this purpose we use
algorithms for primary decomposition in polynomial rings over the rationals

resp. over finite fields, and the idea of Shimoyama–Yokoyama resp. Eisenbud–

Hunecke–Vasconcelos to extract primary ideals from pseudo–primary ideals. A
parallelized version of the algorithm is implemented in Singular. Examples

and timings are given at the end of the article.

1. Introduction

Algorithms for primary decomposition in Z[x1, . . . , xn] have been developed by
Seidenberg (cf. [Se]) and Ayoub (cf. [A]). Within this article we present a slightly
different approach which seems to be much more efficient. It uses primary decom-
position in Q[x1, . . . , xn] resp. Fp[x1, . . . , xn] as well as the computation of the
minimal associated primes of an ideal in Fp[x1, . . . , xn]1, pseudo–primary decom-
position2, and the extraction of the primary components.

Let x = {x1, . . . , xn} always denote a set of indeterminates and let I ⊆ Z[x]
be an ideal. We use the following known facts from commutative algebra for our
algorithm:

(1) If I ∩ Z = 〈0〉, then there exists an h ∈ Z such that I : h = IQ[x] ∩ Z[x]
and I = (I : h) ∩ 〈I, h〉 (cf. [Se], Theorem 2).

(2) If I ∩Z = 〈0〉 and IQ[x] = Q1 ∩ . . .∩Qs is an irredundant primary decom-

position with P i =
√
Qi, then IQ[x]∩Z[x] = (Q1∩Z[x])∩ . . .∩ (Qs∩Z[x])

is an irredundant primary decomposition and P i ∩ Z[x] =
√
Qi ∩ Z[x] (cf.

[Se], Theorem 3).
(3) If I ∩ Z = 〈q〉 such that q 6= 0 and q = pν11 · · · pνrr with p1, . . . , pr pairwise

different primes, then I =
⋂r
i=1〈I, p

νi
i 〉.

(4) If I ∩ Z = 〈pν〉 for some prime p and P 1, . . . , P s are the minimal associ-
ated primes of IFp[x], then the liftings P1, . . . , Ps to Z[x] are the minimal
associated primes of I.
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1One can choose one of the modern algorithms, cf. [DGP], [EHV], [GTZ], [SY].
2An ideal is called pseudo–primary if its radical is prime, cf. [EHV], [SY].
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The following result can easily be adapted to Z[x].

(5) If P is a minimal associated prime of I, then I + Pm is a pseudo–primary
component of I for a suitable m ∈ N, i.e. the equidimensional part of
I + Pm is the primary component of I associated to P (cf. [EHV]).

Alternatively we can compute a separator3 s of I w.r.t. P and obtain
by I : s∞ a pseudo–primary component of I (cf. [SY]).

(6) If Q1, . . . , Qs are the primary components of I associated to the minimal
associated prime ideals and J = Q1 ∩ . . . ∩Qs, then there exists a natural
number m such that I = J ∩ (I + (I : J)m).

Consequently, by applying (1)–(6), we can reduce the computation of the primary
decomposition in Z[x] to the computation of the primary decomposition in Q[x],
the computation of the minimal associated primes in Fp[x], and the extraction
of the primary components in Z[x]. In this connection, the extraction has to be
generalized to polynomial rings over principal ideal domains (cf. Lemma 2.10).
In section 2 we state the results used in the algorithm, whereupon in section 3
we explain our algorithm which has been implemented in Singular in a parallel
version. Finally we give some examples and the corresponding timings in section 4.

2. Basic definitions and results

Definition 2.1. Let I ⊆ Z[x] be an ideal and > be a monomial ordering on Z[x].
A subset G ⊆ I is called strong Gröbner basis of I w.r.t. > if for all f ∈ I there
exists a g ∈ G such that LT(g)|LT(f).4

Lemma 2.2. Let G = {g1, . . . , gk} ⊆ Z[x] and I = 〈G〉Z[x]. Assume that I∩Z = 〈0〉
and G is a Gröbner basis of IQ[x] w.r.t. some ordering. Let h be the least common
multiple of the leading coefficients of g1, . . . , gk, i.e. h = lcm(LC(g1), . . . ,LC(gk)).
Then IQ[x]∩Z[x] = I : h∞. Moreover, if I : h∞ = I : hm for some natural number
m, then I = (I : hm) ∩ 〈I, hm〉.

The proof of Lemma 2.2 is similar to the corresponding proof for polynomial
rings over a field (cf. [GP], Proposition 4.3.1).

Remark 2.3. The saturation I : h∞ can be computed in Z[x] similarly to the case
of a polynomial ring over a field by computing a Gröbner basis of 〈I, Th− 1〉Z[x,T ]

w.r.t. an elimination ordering for T :

I : h∞ = 〈I, Th− 1〉Z[x,T ] ∩ Z[x].

A natural number m satisfying I : h∞ = I : hm can be found by computing the
normal form of hlg w.r.t. I for each generator g of I : h∞ and increasing l ∈ N.

The following four Lemmata are well–known in commutative algebra.

Lemma 2.4. Let I ⊆ Z[x] be an ideal with I ∩Z = 〈0〉. Let IQ[x] = Q1 ∩ . . .∩Qs
be an irredundant primary decomposition with associated primes P 1, . . . , P s and
Qi = Qi∩Z[x] resp. Pi = P i∩Z[x] for i = 1, . . . , s. Then IQ[x]∩Z[x] = Q1∩. . .∩Qs
is an irredundant primary decomposition with associated primes P1, . . . , Ps.

3We call s a separator of I w.r.t. P if s /∈ P and s is contained in any other minimal associated
prime of I.

4We use the notations of [GP] for the basics of Gröbner bases. Especially LT(f) denotes the
leading term (leading monomial with leading coefficient) of f w.r.t. the ordering >.
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Lemma 2.5. Let I ⊆ Z[x] be an ideal with I ∩Z = 〈q〉 and q = pν11 · . . . · pνrr be the
prime factorization. Then I =

⋂r
i=1〈I, p

νi
i 〉.

Lemma 2.6. Let I ⊆ Z[x] be an ideal such that I ∩ Z = 〈pν〉 for some prime
number p . Moreover, let minAss(IFp[x]) = {P 1, . . . , P s} be the set of minimal
associated prime ideals of IFp[x] and P1, . . . , Ps be the canonical liftings to Z[x].
Then minAss(I) = {P1, . . . , Ps} is the set of minimal associated primes of I.

If ν = 1 let IFp[x] = Q1∩ . . .∩Qs be an irredundant primary decomposition with

associated primes P 1, . . . , P s and Q1, . . . , Qs, P1, . . . , Ps be the canonical liftings
to Z[x]. Then I = Q1 ∩ . . . ∩ Qs is an irredundant primary decomposition with
associated primes P1, . . . , Ps.

Lemma 2.7 (cf. [EHV]). Let I ⊆ Z[x] be an ideal and P a minimal associated
prime. Then there exists a natural number m such that I + Pm is a pseudo–
primary component of I. For any m let Qm be the equidimensional part of I+Pm.
Qm is a primary component of I with associated prime P if the canonical map
((IZ[x]P ∩ Z[x]) : P∞)/(IZ[x]P ∩ Z[x]) −→ Z[x]/Qm is injective.

Example 2.8. Consider in Z[x, y]

I = 〈9, x+ 3〉 ∩ 〈9, y + 3〉, P = 〈3, x〉, m = 20.

Then it holds I + Pm = 〈9, xy + 3x + 3y, 3x19, x20〉 which is not equidimensional.
Now we have Qm = 〈9, x+ 3〉, and the canonical map defined above is the identity
map Z[x, y]/〈9, x+ 3〉 −→ Z[x, y]/〈9, x+ 3〉.

Lemma 2.9 (cf. [SY]). Let I ⊆ Z[x] be an ideal, P a minimal associated prime
and s /∈ P a separator, i.e. s is contained in any other associated prime. Then
I : s∞ is a pseudo–primary component of I, and s can be chosen as∏

Q 6=P
Q∈minAss(I)

sQ

where sQ is an element of a Gröbner basis of Q which is not in P .

Lemma 2.10 (Extraction Lemma). Let I = Q∩J be pseudo–primary with
√
I = P

and Q be P–primary with ht(Q) < ht(J). Let P ∩ Z = 〈p〉 for some prime p and
u ⊂ x be a maximal independent set of variables for P = PFp[x]. Let R := Z[u]〈p〉,
then the following holds:

(1) IR[xr u] ∩ Z[x] = Q
(2) Let G be a strong Gröbner basis of I w.r.t. a block ordering satisfying

x r u � u. Then G is a strong Gröbner basis of IR[x r u] w.r.t. the
induced ordering for the variables xr u.

(3) Let G = {g1, . . . , gk} be as in (2), LTR[xru](gi) = pνiai(x r u)βi with
ai ∈ Z[u]r 〈p〉 for i = 1, . . . , k, and h = lcm(a1, . . . , ak). Then IR[xr u]∩
Z[x] = I : h∞.

Proof.

(1) Let K =
√
J and K = KFp[x] then K ) P = PFp. This implies that

K ∩ Fp[u] 6= 〈0〉 since u ⊂ x is maximally independent for P and therefore
K ∩ (Z[u]r 〈p〉) 6= ∅. Thus it holds JR[xr u] = R[xr u]. Finally, because
Q is primary, we obtain IR[xr u] ∩ Z[x] = QR[xr u] ∩ Z[x] = Q.
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(2) Let f ∈ IR[x r u] and choose s ∈ Z[u] r 〈p〉 such that sf ∈ I. Since G
is a strong Gröbner basis of I there exists a g ∈ G such that LTZ[x](g) |
LTZ[x](sf). As a polynomial in x r u with coefficients in R, the element
sf can be written as sf = pνa(xr u)α + (terms in xr u of smaller order)
with a ∈ Z[u] r 〈p〉. If pτ is the maximal power of p dividing the leading
coefficient LCZ[x](g) of g then τ ≤ ν since LTZ[x](sf) = pν LTZ[x](a)(xru)α.
Now we can write g as an element of R[x r u] w.r.t. the corresponding
ordering, i.e. g = pµb(x r u)β + (terms in xr u of smaller order) with
b ∈ Z[u] r 〈p〉 and µ ≤ τ ≤ ν. By definition we have LTR[xru](g) =

pµb(xru)β resp. LTR[xru](f) = pν as (xru)α and on the other hand it holds

LTZ[x](g) = pµ LTZ[x](b)(x r u)β resp. LTZ[x](sf) = pν LTZ[x](a)(x r u)α.

Thus the assumption LTZ[x](g) | LTZ[x](sf) implies (xr u)β | (xr u)α and
consequently LTR[xru](g) | LTR[xru](f). This proves (2).

(3) Follows from (2) similarly to the proof for fields (cf. [GP]).

�

The following Lemma is a consequence of the Lemma of Artin–Rees (cf. [GP]).

Lemma 2.11. Let I ⊆ Z[x] be an ideal and J the intersection of all primary
components of I associated to the minimal prime ideals of I. Then there exists a
natural number m such that I = J ∩ (I + (I : J)m).

Notation 2.12. Given an ideal I ⊆ Z[x] we can always choose a finite set of polyno-

mials FI = {f1, . . . , fk} such that I = 〈FI〉 and we denote F
(m)
I := {fm1 , . . . , fmk }

for m ∈ N.

Corollary 2.13. With the assumptions and notations of Lemma 2.11 there exists

a natural number m such that I = J ∩ (I + 〈F (m)
I:J 〉).

Proof. Due to Lemma 2.11 there exists an m such that I = J ∩ (I + (I : J)m).

Now we have I ⊆ J ∩ (I + 〈F (m)
I:J 〉) ⊆ J ∩ (I + (I : J)m) = I and therefore

I = J ∩ (I + 〈F (m)
I:J 〉). �

Remark 2.14. The corollary is very important from a computational point of view

because 〈F (m)
I:J 〉 has much less generators than (I : J)m.

3. The algorithms

In this section we present the algorithm to compute a primary decomposition of
an ideal in a polynomial ring over the integers by applying the results of section 2.

Algorithm 1 computes the primary decomposition of an ideal in Z[x]5 with the
aid of algorithms 2 and 3 which we introduce subsequently in detail.

Corollary 3.1. Algorithm 1 can easily be parallelized by computing - depending on
the exponents νi for i = 1, . . . , r - either the primary decomposition or the set of
minimal associated primes in positive characteristic in parallel.

5The corresponding procedures are implemented in Singular in the library primdecZ.lib.
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Algorithm 1 primdecZ

Input: FI = {f1, . . . , fk}, I = 〈FI〉Z[x], optional: a test ideal T .
Output: L := {(Q1, P1), . . . , (Qs, Ps)}, I = Q1 ∩ . . . ∩ Qs irredundant primary

decomposition with Pi =
√
Qi.

if T is not given in the input then
T := 〈1〉;

G := strong Gröbner basis of I;
q := generator of I ∩ Z;6

if q = 0 then
compute h ∈ Z such that I : h = IQ[x] ∩ Z[x];7

compute Q1, . . . , Qs, an irredundant primary decomposition of IQ[x] and P i =√
Qi the associated primes;

compute Qi = Qi ∩ Z[x], Pi = P i ∩ Z[x];8

L := {(Q1, P1), . . . , (Qs, Ps)};
M := primdecZ(〈I, h〉);
remove redundant primary ideals from M ;
return L ∪M ;

else
compute q = pν11 . . . pνrr , the prime factorization of q;
for i = 1, . . . , r do

if νi = 1 then

compute Li = {(Q(i)

1 , P
(i)

1 ), . . . , (Q
(i)

si , P
(i)

si )}, the primary decomposition
of IFpi [x];

Li := {(Q(i)
1 , P

(i)
1 ), . . . , (Q

(i)
si , P

(i)
si )}, the lifting of Li to Z[x];9

else

compute Ai = {P (i)

1 , . . . , P
(i)

si }, the set of minimal associated primes of

IFpi [x] and independent sets of variables u
(i)
1 , . . . , u

(i)
si for P

(i)

1 , . . . , P
(i)

si ;

Ai := {P (i)
1 , . . . , P

(i)
si }, the lifting of Ai to Z[x];

for j = 1, . . . , si do

Q
(i)
j := extractZ(I, Ai, P

(i)
j , u

(i)
j );

Li := {(Q(i)
1 , P

(i)
1 ), . . . , (Q

(i)
si , P

(i)
si )};

L := L1 ∪ . . . ∪ Lr;
compute J , the intersection of all primary ideals in L and T ;
if J = I then

return L;
compute FI:J such that 〈FI:J〉 = I : J ;

compute m such that J ∩ (I + 〈F (m)
I:J 〉) = I;

M := primdecZ(I + 〈F (m)
I:J 〉, J);

return L ∪M ;

6q is either 0 or the unique element in G of degree 0.
7h is a suitable power of the least common multiple of all leading coefficients of elements in G,

cf. Lemma 2.2.
8The computation of Qi resp. Pi is based on Lemma 2.4.
9If I = 〈FI〉 ⊆ Fp[x] then its lifting is obtained by 〈p, FI〉 with the canonical lifting of FI .
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The algorithm to compute the separators is based on Lemma 2.9.

Algorithm 2 separatorsZ

Input: B a list of prime ideals generated by a Gröbner basis w.r.t. some ordering,
not contained in each other, P ∈ B.

Output: Polynomial s such that s 6∈ P , s ∈ Q for all Q ∈ B\{P}.
for Q ∈ B\{P} do

choose sQ in the Gröbner basis of Q such that sQ /∈ P ;
return

∏
Q∈B\{P} sQ;

The algorithm to extract the primary component from the pseudo–primary com-
ponent is based on the Extraction Lemma 2.10.

Algorithm 3 extractZ

Input: I ⊆ Z[x] an ideal, B the list of minimal associated primes of I, P ∈ B with
P ∩ Z = 〈p〉 for some prime p, u ⊂ x an independent set of variables for PFp[x].

Output: The primary component Q of I associated to P .

s := seperatorsZ(P,B);
I = I : s∞;
compute G = {g1, . . . , gk}, a strong Gröbner basis of I w.r.t. a block ordering
satisfying xr u� u;
compute {a1, . . . , ak} such that LCZ[u]〈p〉[xru](gi) = pνi · ai with ai ∈ Z[u] r 〈p〉;
compute h = lcm(a1, . . . , ak), the least common multiple of a1, . . . , ak;
return I : h∞;

Example 3.2. Consider I = 〈9, 3x, 3y〉, P = 〈3〉, u = {x, y} and B = {P} in Z[x, y].
Then we obtain s = 1, h = xy and thus I : h∞ = 〈3〉.

4. Examples and timings

In this section we provide examples on which we time the algorithm primdecZ

(cf. section 3) and its parallelization implemented in Singular. Timings are con-
ducted by using the 32-bit version of Singular 3-1-1 on an Intel R© Xeon R© X5460
with 4 CPUs, 3.16 GHz each, 64 GB RAM under the Gentoo Linux operating sys-
tem. All examples are chosen from The SymbolicData Project (cf. [G]).

We choose the following examples:

Example 4.1. Coefficients: integer, ordering: dp10, Gerdt-93a.xml (cf. [G]) con-
sidered with another integer generator 2 · 3 · 5 · 13 · 17 · 181.

Example 4.2. Coefficients: integer, ordering: dp, Gerdt-93a.xml (cf. [G]) con-
sidered with another integer generator 2 · 3 · 5 · 13 · 17 · 31 · 181.

Example 4.3. Coefficients: integer, ordering: dp, Gerdt-93a.xml (cf. [G]) con-
sidered with another integer generator 2 · 3 · 5 · 13 · 17 · 31 · 37 · 181.

10For definitions of the orderings cf. [GP].

6



Example 4.4. Coefficients: integer, ordering: dp, Steidel 6.xml (cf. [ES]) con-
sidered with another integer generator 2 · 3 · 5 · 7 · 11 · 13 · 17 · 19 · 23.

Example 4.5. Coefficients: integer, ordering: dp, Gonnet-83.xml (cf. [BGK])
considered with another integer generator 2 · 3 · 5 · 7 · 11 · 13 · 17 · 19 · 23.

Table 1 summarizes the results where primdecZ∗(n) denotes the parallelized
version of the algorithm using n processes. All timings are given in seconds.

Example primdecZ primdecZ∗(2) primdecZ∗(3) primdecZ∗(4)

4.1 344 229 208 157
4.2 426 309 236 215
4.3 508 331 258 248
4.4 11 7 6 5
4.5 13 9 8 6

Table 1. Total running times for computing a primary decompo-
sition of the considered examples via primdecZ and its parallelized
variant primdecZ∗(n) for n = 2, 3, 4.
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